Search results for: organic material
653 Characterization of Polymorphic Forms of Rifaximin
Authors: Ana Carolina Kogawa, Selma Gutierrez Antonio, Hérida Regina Nunes Salgado
Abstract:
Rifaximin is an oral antimicrobial, gut - selective and not systemic with adverse effects compared to placebo. It is used for the treatment of hepatic encephalopathy, travelers diarrhea, irritable bowel syndrome, Clostridium difficile, ulcerative colitis and acute diarrhea. The crystalline form present in the rifaximin with minimal systemic absorption is α, being the amorphous form significantly different. Regulators are increasingly attention to polymorphisms. Polymorphs can change the form by altering the drug characteristics compromising the effectiveness and safety of the finished product. International Conference on Harmonization issued the ICH Guidance Q6A, which aim to improve the control of polymorphism in new and existing pharmaceuticals. The objective of this study was to obtain polymorphic forms of rifaximin employing recrystallization processes and characterize them by thermal analysis (thermogravimetry - TG and differential scanning calorimetry - DSC), X-ray diffraction, scanning electron microscopy and solubility test. Six polymorphic forms of rifaximin, designated I to VI were obtained by the crystallization process by evaporation of the solvent. The profiles of the TG curves obtained from polymorphic forms of rifaximin are similar to rifaximin and each other, however, the DTG are different, indicating different thermal behaviors. Melting temperature values of all the polymorphic forms were greater to that shown by the rifaximin, indicating the higher thermal stability of the obtained forms. The comparison of the diffractograms of the polymorphic forms of rifaximin with rifaximin α, β and γ constant in patent indicate that forms III, V and VI are formed by mixing polymorph β and α and form III is formed by polymorph β. The polymorphic form I is formed by polymorph β, but with a significant amount of amorphous material. Already, the polymorphic form II consists of polymorph γ, amorphous. In scanning electron microscope is possible to observe the heterogeneity of morphological characteristics of crystals of polymorphic forms among themselves and with rifaximin. The solubility of forms I and II was greater than the solubility of rifaximin, already, forms III, IV and V presented lower solubility than of rifaximin. Similarly, the bioavailability of the amorphous form of rifaximin is considered significantly higher than the form α, the polymorphic forms obtained in this work can not guarantee the excellent tolerability of the reference medicine. Therefore, studies like these are extremely important and they point to the need for greater requirements by the regulatory agencies competent about polymorphs analysis of the raw materials used in the manufacture of medicines marketed globally. These analyzes are not required in the majority of official compendia. Partnerships between industries, research centers and universities would be a viable way to consolidate researches in this area and contribute to improving the quality of solid drugs.Keywords: electronic microscopy, polymorphism, rifaximin, solubility, X-ray diffraction
Procedia PDF Downloads 663652 In Vitro Antimycoplasmal Activity of Peganum harmala on Mycoplasma hominis Tunisian Strains
Authors: Nadine khadraoui, Rym Essid, Olfa Tabbene, Imen Chniba, Safa Boujemaa, Selim Jallouli, Nadia Fares, Behija Mlik, Boutheina Ben Abdelmoumen Mardassi
Abstract:
Background and aim: Mycoplasma hominis is an opportunistic pathogen that can cause various gynecological infections such cervicitis, infertility, and, less frequently, extra-genital infections. Previous studies on the antimicrobial susceptibility of Mycoplasma hominis Tunisian strains have highlighted a significant resistance, even multi-resistance, to the most used antibiotic in the therapy of consequential infections. To address this concern, the present study aimed for the alternative of phytotherapy. Peganum harmala seed extract was tested as an antibacterial agent against multidrug-resistant M.hominis clinical strains. Material and Methods: Peganum harmala plant was collected from Ain Sebaa, Tabarka, North West region of Tunisia in April 2018, air-dried, grounded and extracted by different solvents.The crude methanolic extract was further partitioned with n-HEX, DCM, EtOAC and n-BuOl. Antibacterial activity was evaluated against M. hominis ATCC 23114 and 20 M. hominis clinical strains.The antimycoplasmal activity was tested by the microdilution method, and MIC values were determined. Phytochemical analysis and hemolytic activity on human erythrocytes were also performed. The active fraction was then subjected to purification, and the chemical identification of the active compound was investigated. Results: Among the tested fractions, the n-BuOH extract was the most active fraction since it exhibited an inhibitory effect against M. hominis ATCC 23114 and 80% of the tested clinical strains with MIC between 125 and 1000 µg/ml. The phytochemical analysis of the n-BuOH revealed its metabolic abundance in polyphenols, flavonoids and condensed tannin with levels of 257.37 mg AGE/g, 172.27 mg EC/g and 58.27 mg EC/g, respectively. In addition, P. harmala n-BuOH extract exhibited potent bactericidal activity against all M. hominis isolates with CMB values ranging between 125 and 4000 µg/ml. Further, the active fraction exhibited weak cytotoxicity effect at active concentrations when tested on human erythrocytes. The active compound was identified by gas chromatography–mass spectrometry as an indole alkaloid harmaline. Conclusion: In summary, Peganum harmala extract demonstrated an interesting anti-mycoplasmal activity against M. hominis Tunisian strains. Therefore, it could be considered as a potential candidate for the treatment of consequential infections. However, further studies are necessary to evaluate its mechanism of action in mycoplasmas.Keywords: mycoplasma hominis, peganum harmala, antibioresistance, phytotherapy, phytochemical analysis
Procedia PDF Downloads 117651 CO₂ Conversion by Low-Temperature Fischer-Tropsch
Authors: Pauline Bredy, Yves Schuurman, David Farrusseng
Abstract:
To fulfill climate objectives, the production of synthetic e-fuels using CO₂ as a raw material appears as part of the solution. In particular, Power-to-Liquid (PtL) concept combines CO₂ with hydrogen supplied from water electrolysis, powered by renewable sources, which is currently gaining interest as it allows the production of sustainable fossil-free liquid fuels. The proposed process discussed here is an upgrading of the well-known Fischer-Tropsch synthesis. The concept deals with two cascade reactions in one pot, with first the conversion of CO₂ into CO via the reverse water gas shift (RWGS) reaction, which is then followed by the Fischer-Tropsch Synthesis (FTS). Instead of using a Fe-based catalyst, which can carry out both reactions, we have chosen the strategy to decouple the two functions (RWGS and FT) on two different catalysts within the same reactor. The FTS shall shift the equilibrium of the RWGS reaction (which alone would be limited to 15-20% of conversion at 250°C) by converting the CO into hydrocarbons. This strategy shall enable optimization of the catalyst pair and thus lower the temperature of the reaction thanks to the equilibrium shift to gain selectivity in the liquid fraction. The challenge lies in maximizing the activity of the RWGS catalyst but also in the ability of the FT catalyst to be highly selective. Methane production is the main concern as the energetic barrier of CH₄ formation is generally lower than that of the RWGS reaction, so the goal will be to minimize methane selectivity. Here we report the study of different combinations of copper-based RWGS catalysts with different cobalt-based FTS catalysts. We investigated their behaviors under mild process conditions by the use of high-throughput experimentation. Our results show that at 250°C and 20 bars, Cobalt catalysts mainly act as methanation catalysts. Indeed, CH₄ selectivity never drops under 80% despite the addition of various protomers (Nb, K, Pt, Cu) on the catalyst and its coupling with active RWGS catalysts. However, we show that the activity of the RWGS catalyst has an impact and can lead to longer hydrocarbons chains selectivities (C₂⁺) of about 10%. We studied the influence of the reduction temperature on the activity and selectivity of the tandem catalyst system. Similar selectivity and conversion were obtained at reduction temperatures between 250-400°C. This leads to the question of the active phase of the cobalt catalysts, which is currently investigated by magnetic measurements and DRIFTS. Thus, in coupling it with a more selective FT catalyst, better results are expected. This was achieved using a cobalt/iron FTS catalyst. The CH₄ selectivity dropped to 62% at 265°C, 20 bars, and a GHSV of 2500ml/h/gcat. We propose that the conditions used for the cobalt catalysts could have generated this methanation because these catalysts are known to have their best performance around 210°C in classical FTS, whereas the iron catalysts are more flexible but are also known to have an RWGS activity.Keywords: cobalt-copper catalytic systems, CO₂-hydrogenation, Fischer-Tropsch synthesis, hydrocarbons, low-temperature process
Procedia PDF Downloads 57650 Drying Shrinkage of Concrete: Scale Effect and Influence of Reinforcement
Authors: Qier Wu, Issam Takla, Thomas Rougelot, Nicolas Burlion
Abstract:
In the framework of French underground disposal of intermediate level radioactive wastes, concrete is widely used as a construction material for containers and tunnels. Drying shrinkage is one of the most disadvantageous phenomena of concrete structures. Cracks generated by differential shrinkage could impair the mechanical behavior, increase the permeability of concrete and act as a preferential path for aggressive species, hence leading to an overall decrease in durability and serviceability. It is of great interest to understand the drying shrinkage phenomenon in order to predict and even to control the strains of concrete. The question is whether the results obtained from laboratory samples are in accordance with the measurements on a real structure. Another question concerns the influence of reinforcement on drying shrinkage of concrete. As part of a global project with Andra (French National Radioactive Waste Management Agency), the present study aims to experimentally investigate the scale effect as well as the influence of reinforcement on the development of drying shrinkage of two high performance concretes (based on CEM I and CEM V cements, according to European standards). Various sizes of samples are chosen, from ordinary laboratory specimens up to real-scale specimens: prismatic specimens with different volume-to-surface (V/S) ratios, thin slices (thickness of 2 mm), cylinders with different sizes (37 and 160 mm in diameter), hollow cylinders, cylindrical columns (height of 1000 mm) and square columns (320×320×1000 mm). The square columns have been manufactured with different reinforcement rates and can be considered as mini-structures, to approximate the behavior of a real voussoir from the waste disposal facility. All the samples are kept, in a first stage, at 20°C and 50% of relative humidity (initial conditions in the tunnel) in a specific climatic chamber developed by the Laboratory of Mechanics of Lille. The mass evolution and the drying shrinkage are monitored regularly. The obtained results show that the specimen size has a great impact on water loss and drying shrinkage of concrete. The specimens with a smaller V/S ratio and a smaller size have a bigger drying shrinkage. The correlation between mass variation and drying shrinkage follows the same tendency for all specimens in spite of the size difference. However, the influence of reinforcement rate on drying shrinkage is not clear based on the present results. The second stage of conservation (50°C and 30% of relative humidity) could give additional results on these influences.Keywords: concrete, drying shrinkage, mass evolution, reinforcement, scale effect
Procedia PDF Downloads 183649 Creep Analysis and Rupture Evaluation of High Temperature Materials
Authors: Yuexi Xiong, Jingwu He
Abstract:
The structural components in an energy facility such as steam turbine machines are operated under high stress and elevated temperature in an endured time period and thus the creep deformation and creep rupture failure are important issues that need to be addressed in the design of such components. There are numerous creep models being used for creep analysis that have both advantages and disadvantages in terms of accuracy and efficiency. The Isochronous Creep Analysis is one of the simplified approaches in which a full-time dependent creep analysis is avoided and instead an elastic-plastic analysis is conducted at each time point. This approach has been established based on the rupture dependent creep equations using the well-known Larson-Miller parameter. In this paper, some fundamental aspects of creep deformation and the rupture dependent creep models are reviewed and the analysis procedures using isochronous creep curves are discussed. Four rupture failure criteria are examined from creep fundamental perspectives including criteria of Stress Damage, Strain Damage, Strain Rate Damage, and Strain Capability. The accuracy of these criteria in predicting creep life is discussed and applications of the creep analysis procedures and failure predictions of simple models will be presented. In addition, a new failure criterion is proposed to improve the accuracy and effectiveness of the existing criteria. Comparisons are made between the existing criteria and the new one using several examples materials. Both strain increase and stress relaxation form a full picture of the creep behaviour of a material under high temperature in an endured time period. It is important to bear this in mind when dealing with creep problems. Accordingly there are two sets of rupture dependent creep equations. While the rupture strength vs LMP equation shows how the rupture time depends on the stress level under load controlled condition, the strain rate vs rupture time equation reflects how the rupture time behaves under strain-controlled condition. Among the four existing failure criteria for rupture life predictions, the Stress Damage and Strain Damage Criteria provide the most conservative and non-conservative predictions, respectively. The Strain Rate and Strain Capability Criteria provide predictions in between that are believed to be more accurate because the strain rate and strain capability are more determined quantities than stress to reflect the creep rupture behaviour. A modified Strain Capability Criterion is proposed making use of the two sets of creep equations and therefore is considered to be more accurate than the original Strain Capability Criterion.Keywords: creep analysis, high temperature mateials, rapture evalution, steam turbine machines
Procedia PDF Downloads 290648 Corrosion Analysis of a 3-1/2” Production Tubing of an Offshore Oil and Gas Well
Authors: Suraj Makkar, Asis Isor, Jeetendra Gupta, Simran Bareja, Maushumi K. Talukdar
Abstract:
During the exploratory testing phase of an offshore oil and gas well, when the tubing string was pulled out after production testing, it was observed that there was visible corrosion/pitting in a few of the 3-1/2” API 5 CT L-80 Grade tubing. The area of corrosion was at the same location in all the tubing, i.e., just above the pin end. Since the corrosion was observed in the tubing within two months of their installation, it was a matter of concern, as it could lead to premature failures resulting in leakages and production loss and thus affecting the integrity of the asset. Therefore, the tubing was analysed to ascertain the mechanism of the corrosion occurring on its surface. During the visual inspection, it was observed that the corrosion was totally external, which was near the pin end, and no significant internal corrosion was observed. The chemical compositional analysis and mechanical properties (tensile and impact) show that the pipeline material was conforming to API 5 CT L-80 specifications. The metallographic analysis of the tubing revealed tempered martensitic microstructure. The grain size was observed to be different at the pin end as compared to the microstructure at base metal. The microstructures of the corroded area near threads reveal an oriented microstructure. The clearly oriented microstructure of the cold-worked zone near threads and the difference in microstructure represents inappropriate heat treatment after cold work. This was substantiated by hardness test results as well, which show higher hardness at the pin end in comparison to hardness at base metal. Scanning Electron Microscope (SEM) analysis revealed the presence of round and deep pits and cracks on the corroded surface of the tubing. The cracks were stress corrosion cracks in a corrosive environment arising out of the residual stress, which was not relieved after cold working, as mentioned above. Energy Dispersive Spectroscopy (EDS) analysis indicates the presence of mainly Fe₂O₃, Chlorides, Sulphides, and Silica in the corroded part indicating the interaction of the tubing with the well completion fluid and well bore environment. Thus it was concluded that residual stress after the cold working of male pins during threading and the corrosive environment acted in synergy to cause this pitting corrosion attack on the highly stressed zone along the circumference of the tubing just below the threaded area. Accordingly, the following suitable recommendations were given to avoid the recurrence of such corrosion problems in the wells. (i) After any kind of hot work/cold work, tubing should be normalized at full length to achieve uniform microstructure throughout its length. (ii) Heat treatment requirements (as per API 5 CT) should be part of technical specifications while at the procurement stage.Keywords: pin end, microstructure, grain size, stress corrosion cracks
Procedia PDF Downloads 80647 Enforceability of the Right to Education and Rights in Education for Refugees after the European Refugee Crisis
Authors: Kurt Willems
Abstract:
The right to education is a fundamental human right, which has been entrenched in many international and regional treaties and national constitutions. Nevertheless, practice shows that many obstacles impede easy access to quality education for refugees. Overall, the material effects of international human rights legislation on improving (irregular) migrants’ access to social rights in the European countries have remained limited due to the lack of guarantees on effective incorporation in the municipal legal order and due to the lack of effective enforcement mechanisms. After the recent refugee crisis in Europe, this issue has grown in importance. The presentation aims to give a brief overview of the most important issues impeding the effective enforceability of the right to education for refugees. I. Do refugees fall within the scope of application of the relevant human rights treaties and to which extent can they invoke human rights treaties in domestic courts to set aside domestic legislation? II. How is the justiciability of the right to education organized in those treaties? III. What is the legal answer to questions raised in practice when dealing with the influx of refugees in Europe: (i) can refugees be placed in separate schools or classes until they can follow the regular curriculum?; (ii) can higher school fees be asked from pupils without legal documents?; (iii) do refugees have a right to be taught in their own native language until they learn to speak the national language? To answer the above questions, the doctrinal and comparative legal method will be used. The normative framework, as interpreted within Europe, will be distilled from the recent and relevant international treaties and European law instruments (in particular the Convention on the Rights of the Child, the European Convention on human rights, the European Social Charter and the International Covenant on Economic, Social and Cultural Rights) and their underlying policy documents, the legal literature, the (limited) European jurisprudence, and the general comments to those treaties. The article is mainly descriptive in nature. Its aim is to serve as a summary of the legal provisions, case law and legal literature on the topic of the right to education for refugees. The research shows that the reasons for the delicate enforceability of the rights to and the rights in education are multifold. The research will categorize the different contributing factors under the following headings: (i) problems related to the justiciability of international law as such; (ii) problems specifically related to the educational field; (iii) problems related to policy issues in the refugee debate. By categorizing the reasons contributing to the difficult enforceability of the right to education and the rights in education for refugees, this research hopes to facilitate the search for solutions to this delicate problem.Keywords: right to education, refugees, discrimination, enforceability of human rights
Procedia PDF Downloads 240646 Occurrence of Half-Metallicity by Sb-Substitution in Non-Magnetic Fe₂TiSn
Authors: S. Chaudhuri, P. A. Bhobe
Abstract:
Fe₂TiSn is a non-magnetic full Heusler alloy with a small gap (~ 0.07 eV) at the Fermi level. The electronic structure is highly symmetric in both the spin bands and a small percentage of substitution of holes or electrons can push the system towards spin polarization. A stable 100% spin polarization or half-metallicity is very desirable in the field of spintronics, making Fe₂TiSn a highly attractive material. However, this composition suffers from an inherent anti-site disorder between Fe and Ti sites. This paper reports on the method adopted to control the anti-site disorder and the realization of the half-metallic ground state in Fe₂TiSn, achieved by chemical substitution. Here, Sb was substituted at Sn site to obtain Fe₂TiSn₁₋ₓSbₓ compositions with x = 0, 0.1, 0.25, 0.5 and 0.6. All prepared compositions with x ≤ 0.6 exhibit long-range L2₁ ordering and a decrease in Fe – Ti anti-site disorder. The transport and magnetic properties of Fe₂TiSn₁₋ₓSbₓ compositions were investigated as a function of temperature in the range, 5 K to 400 K. Electrical resistivity, magnetization, and Hall voltage measurements were carried out. All the experimental results indicate the presence of the half-metallic ground state in x ≥ 0.25 compositions. However, the value of saturation magnetization is small, indicating the presence of compensated magnetic moments. The observed magnetic moments' values are in close agreement with the Slater–Pauling rule in half-metallic systems. Magnetic interactions in Fe₂TiSn₁₋ₓSbₓ are understood from the local crystal structural perspective using extended X-ray absorption fine structure (EXAFS) spectroscopy. The changes in bond distances extracted from EXAFS analysis can be correlated with the hybridization between constituent atoms and hence the RKKY type magnetic interactions that govern the magnetic ground state of these alloys. To complement the experimental findings, first principle electronic structure calculations were also undertaken. The spin-polarized DOS complies with the experimental results for Fe₂TiSn₁₋ₓSbₓ. Substitution of Sb (an electron excess element) at Sn–site shifts the majority spin band to the lower energy side of Fermi level, thus making the system 100% spin polarized and inducing long-range magnetic order in an otherwise non-magnetic Fe₂TiSn. The present study concludes that a stable half-metallic system can be realized in Fe₂TiSn with ≥ 50% Sb – substitution at Sn – site.Keywords: antisite disorder, EXAFS, Full Heusler alloy, half metallic ferrimagnetism, RKKY interactions
Procedia PDF Downloads 139645 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach
Authors: Kanika Gupta, Ashok Kumar
Abstract:
Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database
Procedia PDF Downloads 170644 Distinguishing between Bacterial and Viral Infections Based on Peripheral Human Blood Tests Using Infrared Microscopy and Multivariate Analysis
Authors: H. Agbaria, A. Salman, M. Huleihel, G. Beck, D. H. Rich, S. Mordechai, J. Kapelushnik
Abstract:
Viral and bacterial infections are responsible for variety of diseases. These infections have similar symptoms like fever, sneezing, inflammation, vomiting, diarrhea and fatigue. Thus, physicians may encounter difficulties in distinguishing between viral and bacterial infections based on these symptoms. Bacterial infections differ from viral infections in many other important respects regarding the response to various medications and the structure of the organisms. In many cases, it is difficult to know the origin of the infection. The physician orders a blood, urine test, or 'culture test' of tissue to diagnose the infection type when it is necessary. Using these methods, the time that elapses between the receipt of patient material and the presentation of the test results to the clinician is typically too long ( > 24 hours). This time is crucial in many cases for saving the life of the patient and for planning the right medical treatment. Thus, rapid identification of bacterial and viral infections in the lab is of great importance for effective treatment especially in cases of emergency. Blood was collected from 50 patients with confirmed viral infection and 50 with confirmed bacterial infection. White blood cells (WBCs) and plasma were isolated and deposited on a zinc selenide slide, dried and measured under a Fourier transform infrared (FTIR) microscope to obtain their infrared absorption spectra. The acquired spectra of WBCs and plasma were analyzed in order to differentiate between the two types of infections. In this study, the potential of FTIR microscopy in tandem with multivariate analysis was evaluated for the identification of the agent that causes the human infection. The method was used to identify the infectious agent type as either bacterial or viral, based on an analysis of the blood components [i.e., white blood cells (WBC) and plasma] using their infrared vibrational spectra. The time required for the analysis and evaluation after obtaining the blood sample was less than one hour. In the analysis, minute spectral differences in several bands of the FTIR spectra of WBCs were observed between groups of samples with viral and bacterial infections. By employing the techniques of feature extraction with linear discriminant analysis (LDA), a sensitivity of ~92 % and a specificity of ~86 % for an infection type diagnosis was achieved. The present preliminary study suggests that FTIR spectroscopy of WBCs is a potentially feasible and efficient tool for the diagnosis of the infection type.Keywords: viral infection, bacterial infection, linear discriminant analysis, plasma, white blood cells, infrared spectroscopy
Procedia PDF Downloads 224643 Effect of Long-Term Boron Exposure on Liver Structure of Adult Male Albino Rats and a Possible Role of Vitamin C
Authors: Ola Abdel-Tawab Hussein
Abstract:
Background: Boron is a naturally occurring agent and an essential trace element of human, animals and higher plants. It is released in the form of boric acid (BA) that is water soluble and biolologically available. Its largest uses are in glass, detergents, agriculture, leather tanning industries, cosmetics, photographic materials, soaps and cleaners. Human consume daily few milligrams in the water, fruits and vegetables. High doses of boron had been recorded to be developmental and reproductive toxin in animals(Only few studies on human had investigated the health effects associated with exposure to boron. Vitamin C is a major water soluble non-enzymatic antioxidant, acts to overcome the oxidative stress. Aim of the work: However , the liver is exposed to toxic substances that are absorbed, degraded or conjugated there were little information exists about the effects of boron that it would specifically have in the liver tissue of experimental rats. So the present work aimed to study the effects of long-term boron ingestion on histological structural of the liver of adult male albino rats and to evaluate the protective role of vitamin C against induced changes. Material and Methods: 30 adult male albino rats were divided into 3 equal groups; Group I: control, Group II: recieved drinking water containing 55x10-6 gm boron/liter for 90 days and Group III: recieved vitamin C (200mg/Kg.B.W) orally concomitant with boron for the same period. liver specimens were processed for light and electron microscopic(TEM) study. Results: Examination of the liver sections of group II revealed foci of severe dilatation and congestion of central and portal veins with mononuclear cellular infiltration and hepatocellular vacuolation. Increased collagen deposition specially around the portal areas. Marked electrolucent areas in the cytoplasm, heterochromatic nuclei and destroyed organelles of the hepatocytes. Apoptotic cells were observed and decreased lipid content of ito cells. In Group III the co administration of vitamin C improved most of the structural changes of the hepatocytes, Ito cells, increased binucleated cells and decreased collagen fibers deposition. Conclusion: Thus, the long term exposure to boron, induced histological changes on the structure of liver. The co administration of vitamin C improved most of these structural changes.Keywords: boron, liver, vitamin C, rats
Procedia PDF Downloads 346642 Rethinking Pathways to Shared Prosperity for Forest Communities: A Case Study of Nigerian REDD+ Readiness Project
Authors: U. Isyaku, C. Upton, J. Dickinson
Abstract:
Critical institutional approach for understanding pathways to shared prosperity among forest communities enabled questioning the underlying rational choice assumptions that have dominated traditional institutional thinking in natural resources management. Common pool resources framing assumes that communities as social groups share collective interests and values towards achieving greater development. Hence, policies related to natural resources management in the global South prioritise economic prosperity by focusing on how to maximise material benefits and improve the livelihood options of resource dependent communities. Recent trends in commodification and marketization of ecosystem goods and services into tradable natural capital and incentivising conservation are structured in this paradigm. Several researchers however, have problematized this emerging market-based model because it undermines cultural basis for protecting natural ecosystems. By exploring how forest people’s motivations for conservation differ within the context of reducing emissions from deforestation and forest degradation (REDD+) project in Nigeria, we aim to provide an alternative approach to conceptualising prosperity beyond the traditional economic thinking. Through in depth empirical work over seven months with five communities in Nigeria’s Cross River State, Q methodology was used to uncover communities’ perspectives and meanings of forest values that underpin contemporary and historic conservation practices, expected benefits, and willingness to participate in the REDD+ process. Our study finds six discourses about forest and conservation values that transcend wealth creation, poverty reduction and livelihoods. We argue that communities’ decisions about forest conservation consist of a complex mixture of economic, emotional, moral, and ecological justice concerns that constitute new meanings and dimensions of prosperity. Prosperity is thus reconfigured as having socio-cultural and psychological pathways that could be derived through place identity and attachment, connectedness to nature, family ties, and ability to participate in everyday social life. We therefore suggest that natural resources policy making and development interventions should consider institutional arrangements that also include the psycho-cultural dimensions of prosperity among diverse community groups.Keywords: critical institutionalism, Q methodology, REDD+, shared prosperity
Procedia PDF Downloads 344641 Experimental Recovery of Gold, Silver and Palladium from Electronic Wastes Using Ionic Liquids BmimHSO4 and BmimCl as Solvents
Authors: Lisa Shambare, Jean Mulopo, Sehliselo Ndlovu
Abstract:
One of the major challenges of sustainable development is promoting an industry which is both ecologically durable and economically viable. This requires processes that are material and energy efficient whilst also being able to limit the production of waste and toxic effluents through effective methods of process synthesis and intensification. In South Africa and globally, both miniaturisation and technological advances have substantially increased the amount of electronic wastes (e-waste) generated annually. Vast amounts of e-waste are being generated yearly with only a minute quantity being recycled officially. The passion for electronic devices cannot ignore the scarcity and cost of mining the noble metal resources which contribute significantly to the efficiency of most electronic devices. It has hence become imperative especially in an African context that sustainable strategies which are environmentally friendly be developed for recycling of the noble metals from e-waste. This paper investigates the recovery of gold, silver and palladium from electronic wastes, which consists of a vast array of metals, using ionic liquids which have the potential of reducing the gaseous and aqueous emissions associated with existing hydrometallurgical and pyrometallurgical technologies while also maintaining the economy of the overall recycling scheme through solvent recovery. The ionic liquids 1-butyl-3-methyl imidazolium hydrogen sulphate (BmimHSO4) which behaves like a protic acid and was used in the present research for the selective leaching of gold and silver from e-waste. Different concentrations of the aqueous ionic liquid were used in the experiments ranging from 10% to 50%. Thiourea was used as the complexing agent in the investigation with Fe3+ as the oxidant. The pH of the reaction was maintained in the range of 0.8 to 1.5. The preliminary investigations conducted were successful in the leaching of silver and palladium at room temperature with optimum results being at 48hrs. The leaching results could not be explained because of the leaching of palladium with the absence of gold. Hence a conclusion could not be drawn and there was the need for further experiments to be run. The leaching of palladium was carried out with hydrogen peroxide as oxidant and 1-butyl-3-methyl imidazolium chloride (BmimCl) as the solvent. The experiments at carried out at a temperature of 60 degrees celsius and a very low pH. The chloride ion was used to complex with palladium metal. From the preliminary results, it could be concluded that pretreatment of the treatment e-waste was necessary to improve the efficiency of the metal recovery process. A conclusion could not be drawn for the leaching experiments.Keywords: BmimCl, BmimHSO4, gold, palladium, silver
Procedia PDF Downloads 289640 Calibration of 2D and 3D Optical Measuring Instruments in Industrial Environments at Submillimeter Range
Authors: Alberto Mínguez-Martínez, Jesús de Vicente y Oliva
Abstract:
Modern manufacturing processes have led to the miniaturization of systems and, as a result, parts at the micro-and nanoscale are produced. This trend seems to become increasingly important in the near future. Besides, as a requirement of Industry 4.0, the digitalization of the models of production and processes makes it very important to ensure that the dimensions of newly manufactured parts meet the specifications of the models. Therefore, it is possible to reduce the scrap and the cost of non-conformities, ensuring the stability of the production at the same time. To ensure the quality of manufactured parts, it becomes necessary to carry out traceable measurements at scales lower than one millimeter. Providing adequate traceability to the SI unit of length (the meter) to 2D and 3D measurements at this scale is a problem that does not have a unique solution in industrial environments. Researchers in the field of dimensional metrology all around the world are working on this issue. A solution for industrial environments, even if it is not complete, will enable working with some traceability. At this point, we believe that the study of the surfaces could provide us with a first approximation to a solution. Among the different options proposed in the literature, the areal topography methods may be the most relevant because they could be compared to those measurements performed using Coordinate Measuring Machines (CMM’s). These measuring methods give (x, y, z) coordinates for each point, expressing it in two different ways, either expressing the z coordinate as a function of x, denoting it as z(x), for each Y-axis coordinate, or as a function of the x and y coordinates, denoting it as z (x, y). Between others, optical measuring instruments, mainly microscopes, are extensively used to carry out measurements at scales lower than one millimeter because it is a non-destructive measuring method. In this paper, the authors propose a calibration procedure for the scales of optical measuring instruments, particularizing for a confocal microscope, using material standards easy to find and calibrate in metrology and quality laboratories in industrial environments. Confocal microscopes are measuring instruments capable of filtering the out-of-focus reflected light so that when it reaches the detector, it is possible to take pictures of the part of the surface that is focused. Varying and taking pictures at different Z levels of the focus, a specialized software interpolates between the different planes, and it could reconstruct the surface geometry into a 3D model. As it is easy to deduce, it is necessary to give traceability to each axis. As a complementary result, the roughness Ra parameter will be traced to the reference. Although the solution is designed for a confocal microscope, it may be used for the calibration of other optical measuring instruments by applying minor changes.Keywords: industrial environment, confocal microscope, optical measuring instrument, traceability
Procedia PDF Downloads 155639 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging
Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.Keywords: breast, machine learning, MRI, radiomics
Procedia PDF Downloads 267638 Enhancing African Students’ Learning Experience by Creating Multilingual Resources at a South African University of Technology
Authors: Lisa Graham, Kathleen Grant
Abstract:
South Africa is a multicultural country with eleven official languages, yet most of the formal education at institutions of higher education in the country is in English. It is well known that many students, irrespective of their home language, struggle to grasp difficult scientific concepts and the same is true for students enrolled in the Extended Curriculum Programme at the Cape Peninsula University of Technology (CPUT), studying biomedical sciences. Today we are fortunate in that there is a plethora of resources available to students to research and better understand subject matter online. For example, the students often use YouTube videos to supplement the formal education provided in our course. Unfortunately, most of this material is presented in English. The rationale behind this project lies in that it is well documented that students think and grasp concepts easier in their home language and addresses the fact that the lingua franca of instruction in the field of biomedical science is English. A project aimed at addressing the lack of available resources in most of the South African languages is planned, where students studying Bachelor of Health Science in Medical Laboratory Science will collaborate with those studying Film and Video Technology to create educational videos, explaining scientific concepts in their home languages. These videos will then be published on our own YouTube channel, thereby making them accessible to fellow students, future students and anybody with interest in the subject. Research will be conducted to determine the benefit of the project as well as the published videos to the student community. It is suspected that the students engaged in making the videos will benefit in such a way as to gain further understanding of their course content, a broader appreciation of the discipline, an enhanced sense of civic responsibility, as well as greater respect for the different languages and cultures in our classes. Indeed, an increase in student engagement has been shown to play a central role in student success, and it is well noted that deeper learning and more innovative solutions take place in collaborative groups. We aim to make a meaningful contribution towards the production and repository of knowledge in multilingual teaching and learning for the benefit of the diverse student population and staff. This would strengthen language development, multilingualism, and multiculturalism at CPUT and empower and promote African languages as languages of science and education at CPUT, in other institutions of higher learning, and in South Africa as a whole.Keywords: educational videos, multiculturalism, multilingualism, student engagement
Procedia PDF Downloads 155637 Laser Paint Stripping on Large Zones on AA 2024 Based Substrates
Authors: Selen Unaldi, Emmanuel Richaud, Matthieu Gervais, Laurent Berthe
Abstract:
Aircrafts are painted with several layers to guarantee their protection from external attacks. For aluminum AA 2024-T3 (metallic structural part of the plane), a protective primer is applied to ensure its corrosion protection. On top of this layer, the top coat is applied for aesthetic aspects. During the lifetime of an aircraft, top coat stripping has an essential role which should be operated as an average of every four years. However, since conventional stripping processes create hazardous disposals and need long hours of labor work, alternative methods have been investigated. Amongst them, laser stripping appears as one of the most promising techniques not only because of the reasons mentioned above but also its controllable and monitorable aspects. The application of a laser beam from the coated side provides stripping, but the depth of the process should be well controlled in order to prevent damage to a substrate and the anticorrosion primer. Apart from that, thermal effects should be taken into account on the painted layers. As an alternative, we worked on developing a process that includes the usage of shock wave propagation to create the stripping via mechanical effects with the application of the beam from the substrate side (back face) of the samples. Laser stripping was applied on thickness-specified samples with a thickness deviation of 10-20%. First, the stripping threshold is determined as a function of power density which is the first flight off of the top coats. After obtaining threshold values, the same power densities were applied to specimens to create large stripping zones with a spot overlap of 10-40%. Layer characteristics were determined on specimens in terms of physicochemical properties and thickness range both before and after laser stripping in order to validate the substrate material health and coating properties. The substrate health is monitored by measuring the roughness of the laser-impacted zones and free surface energy tests (both before and after laser stripping). Also, Hugoniot Elastic Limit (HEL) is determined from VISAR diagnostic on AA 2024-T3 substrates (for the back face surface deformations). In addition, the coating properties are investigated as a function of adhesion levels and anticorrosion properties (neutral salt spray test). The influence of polyurethane top-coat thickness is studied in order to verify the laser stripping process window for industrial aircraft applications.Keywords: aircraft coatings, laser stripping, laser adhesion tests, epoxy, polyurethane
Procedia PDF Downloads 78636 Life Cycle Carbon Dioxide Emissions from the Construction Phase of Highway Sector in China
Authors: Yuanyuan Liu, Yuanqing Wang, Di Li
Abstract:
Carbon dioxide (CO2) emissions mitigation from road construction activities is one of the potential pathways to deal with climate change due to its higher use of materials, machinery energy consumption, and high quantity of vehicle and equipment fuels for transportation and on-site construction activities. Aiming to assess the environmental impact of the road infrastructure construction activities and to identify hotspots of emissions sources, this study developed a life-cycle CO2 emissions assessment framework covering three stages of material production, to-site and on-site transportation under the guidance of the principle of LCA ISO14040. Then streamlined inventory analysis on sub-processes of each stage was conducted based on the budget files from cases of highway projects in China. The calculation results were normalized into functional unit represented as ton per km per lane. Then a comparison between the amount of emissions from each stage, and sub-process was made to identify the major contributor in the whole highway lifecycle. In addition, the calculating results were used to be compared with results in other countries for understanding the level of CO2 emissions associated with Chinese road infrastructure in the world. The results showed that materials production stage produces the most of the CO2 emissions (for more than 80%), and the production of cement and steel accounts for large quantities of carbon emissions. Life cycle CO2 emissions of fuel and electric energy associated with to-site and on-site transportation vehicle and equipment are a minor component of total life cycle CO2 emissions from highway project construction activities. Bridges and tunnels are dominant large carbon contributor compared to the road segments. The life cycle CO2 emissions of road segment in highway project in China are slightly higher than the estimation results of highways in European countries and USA, about 1500 ton per km per lane. In particularly, the life cycle CO2 emissions of road pavement in majority cities all over the world are about 500 ton per km per lane. However, there is obvious difference between the cities when the estimation on life cycle CO2 emissions of highway projects included bridge and tunnel. The findings of the study could offer decision makers a more comprehensive reference to understand the contribution of road infrastructure to climate change, especially understand the contribution from road infrastructure construction activities in China. In addition, the identified hotspots of emissions sources provide the insights of how to reduce road carbon emissions for development of sustainable transportation.Keywords: carbon dioxide emissions, construction activities, highway, life cycle assessment
Procedia PDF Downloads 269635 Functionalization of Carbon-Coated Iron Nanoparticles with Fluorescent Protein
Authors: A. G. Pershina, P. S. Postnikov, M. E. Trusova, D. O. Burlakova, A. E. Sazonov
Abstract:
Invention of magnetic-fluorescent nanocomposites is a rapidly developing area of research. The magnetic-fluorescent nanocomposite attractiveness is connected with the ability of simultaneous management and control of such nanocomposites by two independent methods based on different physical principles. These nanocomposites are applied for the solution of various essential scientific and experimental biomedical problems. The aim of this research is development of principle approach to nanobiohybrid structures with magnetic and fluorescent properties design. The surface of carbon-coated iron nanoparticles (Fe@C) were covalently modified by 4-carboxy benzenediazonium tosylate. Recombinant fluorescent protein TagGFP2 (Eurogen) was obtained in E. coli (Rosetta DE3) by standard laboratory techniques. Immobilization of TagGFP2 on the nanoparticles surface was provided by the carbodiimide activation. The amount of COOH-groups on the nanoparticle surface was estimated by elemental analysis (Elementar Vario Macro) and TGA-analysis (SDT Q600, TA Instruments. Obtained nanocomposites were analyzed by FTIR spectroscopy (Nicolet Thermo 5700) and fluorescence microscopy (AxioImager M1, Carl Zeiss). Amount of the protein immobilized on the modified nanoparticle surface was determined by fluorimetry (Cary Eclipse) and spectrophotometry (Unico 2800) with the help of preliminary obtained calibration plots. In the FTIR spectra of modified nanoparticles the adsorption band of –COOH group around 1700 cm-1 and bands in the region of 450-850 cm-1 caused by bending vibrations of benzene ring were observed. The calculated quantity of active groups on the surface was equal to 0,1 mmol/g of material. The carbodiimide activation of COOH-groups on nanoparticles surface results to covalent immobilization of TagGFP2 fluorescent protein (0.2 nmol/mg). The success of immobilization was proved by FTIR spectroscopy. Protein characteristic adsorption bands in the region of 1500-1600 cm-1 (amide I) were presented in the FTIR spectrum of nanocomposite. The fluorescence microscopy analysis shows that Fe@C-TagGFP2 nanocomposite possesses fluorescence properties. This fact confirms that TagGFP2 protein retains its conformation due to immobilization on nanoparticles surface. Magnetic-fluorescent nanocomposite was obtained as a result of unique design solution implementation – the fluorescent protein molecules were fixed to the surface of superparamagnetic carbon-coated iron nanoparticles using original diazonium salts.Keywords: carbon-coated iron nanoparticles, diazonium salts, fluorescent protein, immobilization
Procedia PDF Downloads 342634 Analyze the Properties of Different Surgical Sutures
Authors: Doaa H. Elgohary, Tamer F. Khalifa, Mona M. Salem, M. A. Saad, Ehab Haider Sherazy
Abstract:
Textiles have conquered new areas over the past three decades, including agriculture, transportation, filtration, military, and medicine. The use of textiles in the medical field has increased significantly in recent years and covers almost everything. Medical textiles represent a huge market as they are widely used not only in hospitals, hygiene, and healthcare but also in hotels and other environments where hygiene is required. However, not all fibers are suitable for the manufacture of medical textile products. Some special properties are required for the manufactured materials, e.g. Strength, elasticity, spinnability, etc. In addition to the usual properties of medical fibers, non-toxicity, sterilizability, biocompatibility, biodegradability, good absorbability, softness, and freedom from additives, etc., desirable properties include impurities. Stitching is one of the most common practices in the medical field. as it is a biomaterial device, either natural or synthetic, used to connect blood vessels and connect tissues. In addition to being very strong, suture material should easily dissolve in bodily fluids and lose strength as the tissue gains strength. In this work, a study to select the most used materials for sutures, it was found that silk, VICRYL and polypropylene were the most used materials in varying numbers. The research involved the analysis of 36 samples from three different materials (mostly commonly used), the tests were carried out on 36 imported samples for four different companies. Each company supplied three different materials (silk, VICRYL and polypropylene) with three different gauges (4, 3.5 and 3 metric). The results of the study were tabulated, presented, and discussed. Practical statistical science serves to support the practical analysis of experimental work products and the various relationships between variables to achieve the best sampling performance with the functional purpose generated for it. Analysis of the imported sutures shows that VICRYL sutures had the highest tensile strength, toughness, knot tensile strength and knot toughness, followed by polypropylene and silk. As yarn counts, weight and diameter increase, its tensile strength and toughness increase while its elongation and knot tension decrease. The multifilament yarn construction (silk and VICRYL) scores higher compared to the monofilament construction (polypropylene), resulting in increases in tenacity, toughness, knot tensile strength and knot toughness.Keywords: biodegradable yarns, braided sutures, irritation, knot tying, medical textiles, surgical sutures, wound healing
Procedia PDF Downloads 60633 Extraction and Quantification of Peramine Present in Dalaca pallens, a Pest of Grassland in Southtern Chile
Authors: Leonardo Parra, Daniel Martínez, Jorge Pizarro, Fernando Ortega, Manuel Chacón-Fuentes, Andrés Quiroz
Abstract:
Control of Dalaca pallens or blackworms, one of the most important hypogeous pest in grassland in southern Chile, is based on the use of broad-spectrum insecticides such as organophosphates and pyrethroids. However, the rapid development of insecticide resistance in field populations of this insect and public concern over the environmental impact of these insecticides has resulted in the search for other control methods. Specifically, the use of endophyte fungi for controlling pest has emerged as an interesting and promising strategy. Endophytes from ryegrass (Lolium perenne), establish a biotrophic relationship with the host, defined as mutualistic symbiosis. The plant-fungi association produces alkaloids where peramine is the main toxic substance against Listronotus bonariensis, the most important epigean pest of ryegrass. Nevertheless, the effect of peramina on others pest insects, such as D. pallens, to our knowledge has not been studied, and also its possible metabolization in the body of the larvae. Therefore, we addressed the following research question: Do larvae of D. pallens store peramine after consumption of ryegrass endophyte infected (E+)? For this, specimens of blackworms were fed with ryegrass plant of seven experimental lines and one commercial cultivar endophyte free (E-) sown at the Instituto de Investigaciones Agropecuarias Carillanca (Vilcún, Chile). Once the feeding period was over, ten larvae of each treatment were examined. Individuals were dissected, and their gut was removed to exclude any influence of remaining material. The rest of the larva's body was dried at 60°C by 24-48 h and ground into a fine powder using a mortar. 25 mg of dry powder was transferred to a microcentrifuge tube and extracted in 1 mL of a mixture of methanol:water:formic acid. Then, the samples were centrifuged at 16,000 rpm for 3 min, and the supernatant was colected and injected in the liquid chromatography of high resolution (HPLC). The results confirmed the presence of peramine in the larva's body of D. pallens. The insects that fed the experimental lines LQE-2 and LQE-6 were those where peramine was present in high proportion (0.205 and 0.199 ppm, respectively); while LQE-7 and LQE-3 obtained the lowest concentrations of the alkaloid (0.047 and 0.053 ppm, respectively). Peramine was not detected in the insects when the control cultivar Jumbo (E-) was tested. These results evidenced the storage and metabolism of peramine during consumption of the larvae. However, the effect of this alkaloid present in 'future ryegrass cultivars' (LQE-2 and LQE-6) on the performance and survival of blackworms must be studied and confirmed experimentally.Keywords: blackworms, HPLC, alkaloid, pest
Procedia PDF Downloads 304632 The Interaction of Lay Judges and Professional Judges in French, German and British Labour Courts
Authors: Susan Corby, Pete Burgess, Armin Hoeland, Helene Michel, Laurent Willemez
Abstract:
In German 1st instance labour courts, lay judges always sit with a professional judge and in British and French 1st instance labour courts, lay judges sometimes sit with a professional judge. The lay judges’ main contribution is their workplace knowledge, but they act in a juridical setting where legal norms prevail. Accordingly, the research question is: does the professional judge dominate the lay judges? The research, funded by the Hans-Böckler-Stiftung, is based on over 200 qualitative interviews conducted in France, Germany and Great Britain in 2016-17 with lay and professional judges. Each interview lasted an hour on average, was audio-recorded, transcribed and then analysed using MaxQDA. Status theories, which argue that external sources of (perceived) status are imported into the court, and complementary notions of informational advantage suggest professional judges might exercise domination and control. Furthermore, previous empirical research on British and German labour courts, now some 30 years old, found that professional judges dominated. More recent research on lay judges and professional judges in criminal courts also found professional judge domination. Our findings, however, are more nuanced and distinguish between the hearing and deliberations, and also between the attitudes of judges in the three countries. First, in Germany and Great Britain the professional judge has specialist knowledge and expertise in labour law. In contrast, French professional judges do not study employment law and may only seldom adjudicate on employment law cases. Second, although the professional judge chairs and controls the hearing when he/she sits with lay judges in all three countries, exceptionally in Great Britain lay judges have some latent power as they have to take notes systematically due to the lack of recording technology. Such notes can be material if a party complains of bias, or if there is an appeal. Third, as to labour court deliberations: in France, the professional judge alone determines the outcome of the case, but only if the lay judges have been unable to agree at a previous hearing, which only occurs in 20% of cases. In Great Britain and Germany, although the two lay judges and the professional judge have equal votes, the contribution of British lay judges’ workplace knowledge is less important than that of their German counterparts. British lay judges essentially only sit on discrimination cases where the law, the purview of the professional judge, is complex. They do not sit routinely on unfair dismissal cases where workplace practices are often a key factor in the decision. Also, British professional judges are less reliant on their lay judges than German professional judges. Whereas the latter are career judges, the former only become professional judges after having had several years’ experience in the law and many know, albeit indirectly through their clients, about a wide range of workplace practices. In conclusion, whether or if the professional judge dominates lay judges in labour courts varies by country, although this is mediated by the attitudes of the interactionists.Keywords: cross-national comparisons, labour courts, professional judges, lay judges
Procedia PDF Downloads 292631 Analysis of the Content of Sugars, Vitamin C, Preservatives, Synthetic Dyes, Sweeteners, Sodium and Potassium and Microbiological Purity in Selected Products Made From Fruit and Vegetables in Small Regional Factories and in Large Food Corporations
Authors: Katarzyna Miśkiewicz, Magdalena Lasoń-Rydel, Małgorzata Krępska, Katarzyna Sieczyńska, Iwona Masłowska-Lipowicz, Katarzyna Ławińska
Abstract:
The aim of the study was to analyse a selection of 12 pasteurised products made from fruit and vegetables, such as fruit juices, fruit drinks, jams, marmalades and jam produced by small regional factories as well as large food corporations. The research was carried out as part of the project "Innovative system of healthy and regional food distribution", funded by the Ministry of Education and Science (Poland), which aims to create an economically and organisationally strong agri-food industry in Poland through effective cooperation between scientific and socio-economic actors. The main activities of the project include support for the creation of new distribution channels for regional food products and their easy access to a wide group of potential customers while maintaining the highest quality standards. One of the key areas of the project is food quality analyses conducted to indicate the competitive advantage of regional products. Presented here are studies on the content of sugars, vitamin C, preservatives, synthetic colours, sweeteners, sodium and potassium, as well as studies on the microbiological purity of selected products made from fruit and vegetables. The composition of products made from fruit and vegetables varies greatly and depends on both the type of raw material and the way it is processed. Of the samples tested, fruit drinks contained the least amount of sugars, and jam and marmalade made by large producers and bought in large chain stores contained the most. However, the low sugar content of some fruit drinks is due to the presence of the sweetener sucralose in their composition. The vitamin C content of the samples varied, being higher in products where it was added during production. All products made in small local factories were free of food additives such as preservatives, sweeteners and synthetic colours, indicating their superiority over products made by large producers. Products made in small local factories were characterised by a relatively high potassium content. The microbiological purity of commercial products was confirmed - no Salmonella spp. were detected, and the number of mesophilic bacteria, moulds, yeasts, and β-glucuronidase-positive E. coli was below the limit of quantification.Keywords: fruit and vegetable products, sugars, food additives, HPLC, ICP-OES
Procedia PDF Downloads 94630 A Microwave and Millimeter-Wave Transmit/Receive Switch Subsystem for Communication Systems
Authors: Donghyun Lee, Cam Nguyen
Abstract:
Multi-band systems offer a great deal of benefit in modern communication and radar systems. In particular, multi-band antenna-array radar systems with their extended frequency diversity provide numerous advantages in detection, identification, locating and tracking a wide range of targets, including enhanced detection coverage, accurate target location, reduced survey time and cost, increased resolution, improved reliability and target information. An accurate calibration is a critical issue in antenna array systems. The amplitude and phase errors in multi-band and multi-polarization antenna array transceivers result in inaccurate target detection, deteriorated resolution and reduced reliability. Furthermore, the digital beam former without the RF domain phase-shifting is less immune to unfiltered interference signals, which can lead to receiver saturation in array systems. Therefore, implementing integrated front-end architecture, which can support calibration function with low insertion and filtering function from the farthest end of an array transceiver is of great interest. We report a dual K/Ka-band T/R/Calibration switch module with quasi-elliptic dual-bandpass filtering function implementing a Q-enhanced metamaterial transmission line. A unique dual-band frequency response is incorporated in the reception and calibration path of the proposed switch module utilizing the composite right/left-handed meta material transmission line coupled with a Colpitts-style negative generation circuit. The fabricated fully integrated T/R/Calibration switch module in 0.18-μm BiCMOS technology exhibits insertion loss of 4.9-12.3 dB and isolation of more than 45 dB in the reception, transmission and calibration mode of operation. In the reception and calibration mode, the dual-band frequency response centered at 24.5 and 35 GHz exhibits out-of-band rejection of more than 30 dB compared to the pass bands below 10.5 GHz and above 59.5 GHz. The rejection between the pass bands reaches more than 50 dB. In all modes of operation, the IP1-dB is between 4 and 11 dBm. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Keywords: microwaves, millimeter waves, T/R switch, wireless communications, wireless communications
Procedia PDF Downloads 160629 The Desirable Construction of Urbanity in Spaces for Public Use
Authors: Giselly Barros Rodrigues, Carlos Leite de Souza
Abstract:
In recent years, there has been a great discussion about urbanism, the right to the city, the search for the public space and the occupation and appropriation of people in the spaces of the city. This movement happens all over the world and also in the great Brazilian metropolises. The more human-friendly city - the desirable construction of urbanity - as well as the encouragement of walking or bicycling to the detriment of cars is one of the major issues addressed by urban planners and challenges in the process of reviewing regulatory frameworks. The fact is that even if there are public spaces or space for public use in private areas - it is essential that there be, besides a project focused on the people and the use of space, a good management not to generate excess of control and consequently the segregation between different ethnicities, classes or creed. With the insertion of the Strategic Master Plan of Sao Paulo (2014), there is great incentive for them to implement - in the private spaces - of mixed uses and active facades (Services and commerce in the basement of buildings), these incentives will generate a city for people in the medium and long term. This research seeks to discuss the extent to which these spaces are democratic, what their perceptions are in relation to the space of public use in private areas and why this perception may be the one that was originally idealized. For this study, we carried out bibliographic reviews where applied research were carried out in three case studies listed in Sao Paulo. Questionnaires were also applied to the actors who gave answers regarding their perceptions and how they were approached in the places analyzed. After analyzing the material, it was verified that in the three case studies analyzed, sitting on the floor is prohibited. In the two places in Paulista Avenue (Cetenco Plaza and Square of Mall Cidade Sao Paulo) there was no problem whatsoever in relation to the clothes or attitudes of the actors in the streets of Paulista Avenue in Sao Paulo city. Different from what happened in the Itaim neighborhood (Brascan Century Plaza), with more conservative characteristics, where the actors were heavily watched by security and observed by others due to their clothes and attitudes in that area. The city of Sao Paulo is slowly changing, people are increasingly looking for places of quality in public use in their daily lives. The Strategic Master Plan of Sao Paulo (2014) and the Legislation approved in 2016 envision a city more humane and people-oriented in the future. It is up to the private sector, the public, and society to work together so that this glimpse becomes an abundant reality in every city, generating quality of life and urbanity for all.Keywords: urbanity, space for public use, appropriation of space, segregation
Procedia PDF Downloads 237628 Hierarchical Zeolites as Potential Carriers of Curcumin
Authors: Ewelina Musielak, Agnieszka Feliczak-Guzik, Izabela Nowak
Abstract:
Based on the latest data, it is expected that the substances of therapeutic interest used will be as natural as possible. Therefore, active substances with the highest possible efficacy and low toxicity are sought. Among natural substances with therapeutic effects, those of plant origin stand out. Curcumin isolated from the Curcuma longa plant has proven to be particularly important from a medical point of view. Due to its ability to regulate many important transcription factors, cytokines, and protein kinases, curcumin has found use as an anti-inflammatory, antioxidant, antiproliferative, antiangiogenic, and anticancer agent. The unfavorable properties of curcumin, such as low solubility, poor bioavailability, and rapid degradation under neutral or alkaline pH conditions, limit its clinical application. These problems can be solved by combining curcumin with suitable carriers such as hierarchical zeolites. This is a new class of materials that exhibit several advantages. Hierarchical zeolites used as drug carriers enable delayed release of the active ingredient and promote drug transport to the desired tissues and organs. In addition, hierarchical zeolites play an important role in regulating micronutrient levels in the body and have been used successfully in cancer diagnosis and therapy. To apply curcumin to hierarchical zeolites synthesized from commercial FAU zeolite, solutions containing curcumin, carrier and acetone were prepared. The prepared mixtures were then stirred on a magnetic stirrer for 24 h at room temperature. The curcumin-filled hierarchical zeolites were drained into a glass funnel, where they were washed three times with acetone and distilled water, after which the obtained material was air-dried until completely dry. In addition, the effect of piperine addition to zeolite carrier containing a sufficient amount of curcumin was studied. The resulting products were weighed and the percentage of pure curcumin in the hierarchical zeolite was calculated. All the synthesized materials were characterized by several techniques: elemental analysis, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, Fourier transform infrared (FT-IR), N2 adsorption, and X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The aim of the presented study was to improve the biological activity of curcumin by applying it to hierarchical zeolites based on FAU zeolite. The results showed that the loading efficiency of curcumin into hierarchical zeolites based on commercial FAU-type zeolite is enhanced by modifying the zeolite carrier itself. The hierarchical zeolites proved to be very good and efficient carriers of plant-derived active ingredients such as curcumin.Keywords: carriers of active substances, curcumin, hierarchical zeolites, incorporation
Procedia PDF Downloads 98627 Additive Manufacturing of Microstructured Optical Waveguides Using Two-Photon Polymerization
Authors: Leonnel Mhuka
Abstract:
Background: The field of photonics has witnessed substantial growth, with an increasing demand for miniaturized and high-performance optical components. Microstructured optical waveguides have gained significant attention due to their ability to confine and manipulate light at the subwavelength scale. Conventional fabrication methods, however, face limitations in achieving intricate and customizable waveguide structures. Two-photon polymerization (TPP) emerges as a promising additive manufacturing technique, enabling the fabrication of complex 3D microstructures with submicron resolution. Objectives: This experiment aimed to utilize two-photon polymerization to fabricate microstructured optical waveguides with precise control over geometry and dimensions. The objective was to demonstrate the feasibility of TPP as an additive manufacturing method for producing functional waveguide devices with enhanced performance. Methods: A femtosecond laser system operating at a wavelength of 800 nm was employed for two-photon polymerization. A custom-designed CAD model of the microstructured waveguide was converted into G-code, which guided the laser focus through a photosensitive polymer material. The waveguide structures were fabricated using a layer-by-layer approach, with each layer formed by localized polymerization induced by non-linear absorption of the laser light. Characterization of the fabricated waveguides included optical microscopy, scanning electron microscopy, and optical transmission measurements. The optical properties, such as mode confinement and propagation losses, were evaluated to assess the performance of the additive manufactured waveguides. Conclusion: The experiment successfully demonstrated the additive manufacturing of microstructured optical waveguides using two-photon polymerization. Optical microscopy and scanning electron microscopy revealed the intricate 3D structures with submicron resolution. The measured optical transmission indicated efficient light propagation through the fabricated waveguides. The waveguides exhibited well-defined mode confinement and relatively low propagation losses, showcasing the potential of TPP-based additive manufacturing for photonics applications. The experiment highlighted the advantages of TPP in achieving high-resolution, customized, and functional microstructured optical waveguides. Conclusion: his experiment substantiates the viability of two-photon polymerization as an innovative additive manufacturing technique for producing complex microstructured optical waveguides. The successful fabrication and characterization of these waveguides open doors to further advancements in the field of photonics, enabling the development of high-performance integrated optical devices for various applicationsKeywords: Additive Manufacturing, Microstructured Optical Waveguides, Two-Photon Polymerization, Photonics Applications
Procedia PDF Downloads 100626 Hydrogen Induced Fatigue Crack Growth in Pipeline Steel API 5L X65: A Combined Experimental and Modelling Approach
Authors: H. M. Ferreira, H. Cockings, D. F. Gordon
Abstract:
Climate change is driving a transition in the energy sector, with low-carbon energy sources such as hydrogen (H2) emerging as an alternative to fossil fuels. However, the successful implementation of a hydrogen economy requires an expansion of hydrogen production, transportation and storage capacity. The costs associated with this transition are high but can be partly mitigated by adapting the current oil and natural gas networks, such as pipeline, an important component of the hydrogen infrastructure, to transport pure or blended hydrogen. Steel pipelines are designed to withstand fatigue, one of the most common causes of pipeline failure. However, it is well established that some materials, such as steel, can fail prematurely in service when exposed to hydrogen-rich environments. Therefore, it is imperative to evaluate how defects (e.g. inclusions, dents, and pre-existing cracks) will interact with hydrogen under cyclic loading and, ultimately, to what extent hydrogen induced failure will limit the service conditions of steel pipelines. This presentation will explore how the exposure of API 5L X65 to a hydrogen-rich environment and cyclic loads will influence its susceptibility to hydrogen induced failure. That evaluation will be performed by a combination of several techniques such as hydrogen permeation testing (ISO 17081:2014), fatigue crack growth (FCG) testing (ISO 12108:2018 and AFGROW modelling), combined with microstructural and fractographic analysis. The development of a FCG test setup coupled with an electrochemical cell will be discussed, along with the advantages and challenges of measuring crack growth rates in electrolytic hydrogen environments. A detailed assessment of several electrolytic charging conditions will also be presented, using hydrogen permeation testing as a method to correlate the different charging settings to equivalent hydrogen concentrations and effective diffusivity coefficients, not only on the base material but also on the heat affected zone and weld of the pipelines. The experimental work is being complemented with AFGROW, a useful FCG modelling software that has helped inform testing parameters and which will also be developed to ultimately help industry experts perform structural integrity analysis and remnant life characterisation of pipeline steels under representative conditions. The results from this research will allow to conclude if there is an acceleration of the crack growth rate of API 5L X65 under the influence of a hydrogen-rich environment, an important aspect that needs to be rectified instandards and codes of practice on pipeline integrity evaluation and maintenance.Keywords: AFGROW, electrolytic hydrogen charging, fatigue crack growth, hydrogen, pipeline, steel
Procedia PDF Downloads 105625 Investigation of Polypropylene Composite Films With Carbon Nanotubes and the Role of β Nucleating Agents for the Improvement of Their Water Vapor Permeability
Authors: Glykeria A. Visvini, George N. Mathioudakis, Amaia Soto Beobide, Aris E. Giannakas, George A. Voyiatzis
Abstract:
Polymeric nanocomposites have generated considerable interest in both academic research and industry because their properties can be tailored by adjusting the type & concentration of nano-inclusions, resulting in complementary and adaptable characteristics. The exceptional and/or unique properties of the nanocomposites, including the high mechanical strength and stiffness, the ease of processing, and their lightweight nature, are attributed to the high surface area, the electrical and/or thermal conductivity of the nano-fillers, which make them appealing materials for a wide range of engineering applications. Polymeric «breathable» membranes enabling water vapor permeability (WVP) can be designed either by using micro/nano-fillers with the ability to interrupt the continuity of the polymer phase generating micro/nano-porous structures or/and by creating micro/nano-pores into the composite material by uniaxial/biaxial stretching. Among the nanofillers, carbon nanotubes (CNTs) exhibit particular high WVP and for this reason, they have already been proposed for gas separation membranes. In a similar context, they could prove to be promising alternative/complementary filler nano-materials, for the development of "breathable" products. Polypropylene (PP) is a commonly utilized thermoplastic polymer matrix in the development of composite films, due to its easy processability and low price, combined with its good chemical & physical properties. PP is known to present several crystalline phases (α, β and γ), depending on the applied treatment process, which have a significant impact on its final properties, particularly in terms of WVP. Specifically, the development of the β-phase in PP in combination with stretching is anticipated to modify the crystalline behavior and extend the microporosity of the polymer matrix exhibiting enhanced WVP. The primary objective of this study is to develop breathable nano-carbon based (functionalized MWCNTs) PP composite membranes, potentially also avoiding the stretching process. This proposed alternative is expected to have a better performance/cost ratio over current stretched PP/CaCO3 composite benchmark membranes. The focus is to investigate the impact of both β-nucleator(s) and nano-carbon fillers on water vapor transmission rate properties of relevant PP nanocomposites.Keywords: carbon nanotubes, nanocomposites, nucleating agents, polypropylene, water vapor permeability
Procedia PDF Downloads 73624 High-Performance Thin-layer Chromatography (HPTLC) Analysis of Multi-Ingredient Traditional Chinese Medicine Supplement
Authors: Martin Cai, Khadijah B. Hashim, Leng Leo, Edmund F. Tian
Abstract:
Analysis of traditional Chinese medicinal (TCM) supplements has always been a laborious task, particularly in the case of multi‐ingredient formulations. Traditionally, herbal extracts are analysed using one or few markers compounds. In the recent years, however, pharmaceutical companies are introducing health supplements of TCM active ingredients to cater to the needs of consumers in the fast-paced society in this age. As such, new problems arise in the aspects of composition identification as well as quality analysis. In most cases of products or supplements formulated with multiple TCM herbs, the chemical composition, and nature of each raw material differs greatly from the others in the formulation. This results in a requirement for individual analytical processes in order to identify the marker compounds in the various botanicals. Thin-layer Chromatography (TLC) is a simple, cost effective, yet well-regarded method for the analysis of natural products, both as a Pharmacopeia-approved method for identification and authentication of herbs, and a great analytical tool for the discovery of chemical compositions in herbal extracts. Recent technical advances introduced High-Performance TLC (HPTLC) where, with the help of automated equipment and improvements on the chromatographic materials, both the quality and reproducibility are greatly improved, allowing for highly standardised analysis with greater details. Here we report an industrial consultancy project with ONI Global Pte Ltd for the analysis of LAC Liver Protector, a TCM formulation aimed at improving liver health. The aim of this study was to identify 4 key components of the supplement using HPTLC, following protocols derived from Chinese Pharmacopeia standards. By comparing the TLC profiles of the supplement to the extracts of the herbs reported in the label, this project proposes a simple and cost-effective analysis of the presence of the 4 marker compounds in the multi‐ingredient formulation by using 4 different HPTLC methods. With the increasing trend of small and medium-sized enterprises (SMEs) bringing natural products and health supplements into the market, it is crucial that the qualities of both raw materials and end products be well-assured for the protection of consumers. With the technology of HPTLC, science can be incorporated to help SMEs with their quality control, thereby ensuring product quality.Keywords: traditional Chinese medicine supplement, high performance thin layer chromatography, active ingredients, product quality
Procedia PDF Downloads 280