Search results for: enhanced learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9696

Search results for: enhanced learning

1716 An Investigation on Smartphone-Based Machine Vision System for Inspection

Authors: They Shao Peng

Abstract:

Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.

Keywords: automated visual inspection, deep learning, machine vision, mobile application

Procedia PDF Downloads 122
1715 Evaluation of Tensile Strength of Natural Fibres Reinforced Epoxy Composites Using Fly Ash as Filler Material

Authors: Balwinder Singh, Veerpaul Kaur Mann

Abstract:

A composite material is formed by the combination of two or more phases or materials. Natural minerals-derived Basalt fiber is a kind of fiber being introduced in the polymer composite industry due to its good mechanical properties similar to synthetic fibers and low cost, environment friendly. Also, there is a rising trend towards the use of industrial wastes as fillers in polymer composites with the aim of improving the properties of the composites. The mechanical properties of the fiber-reinforced polymer composites are influenced by various factors like fiber length, fiber weight %, filler weight %, filler size, etc. Thus, a detailed study has been done on the characterization of short-chopped Basalt fiber-reinforced polymer matrix composites using fly ash as filler. Taguchi’s L9 orthogonal array has been used to develop the composites by considering fiber length (6, 9 and 12 mm), fiber weight % (25, 30 and 35 %) and filler weight % (0, 5 and 10%) as input parameters with their respective levels and a thorough analysis on the mechanical characteristics (tensile strength and impact strength) has been done using ANOVA analysis with the help of MINITAB14 software. The investigation revealed that fiber weight is the most significant parameter affecting tensile strength, followed by fiber length and fiber weight %, respectively, while impact characterization showed that fiber length is the most significant factor, followed by fly ash weight, respectively. Introduction of fly ash proved to be beneficial in both the characterization with enhanced values upto 5% fly ash weight. The present study on the natural fibres reinforced epoxy composites using fly ash as filler material to study the effect of input parameters on the tensile strength in order to maximize tensile strength of the composites. Fabrication of composites based on Taguchi L9 orthogonal array design of experiments by using three factors fibre type, fibre weight % and fly ash % with three levels of each factor. The Optimization of composition of natural fibre reinforces composites using ANOVA for obtaining maximum tensile strength on fabricated composites revealed that the natural fibres along with fly ash can be successfully used with epoxy resin to prepare polymer matrix composites with good mechanical properties. Paddy- Paddy fibre gives high elasticity to the fibre composite due to presence of approximately hexagonal structure of cellulose present in paddy fibre. Coir- Coir fibre gives less tensile strength than paddy fibre as Coir fibre is brittle in nature when it pulls breakage occurs showing less tensile strength. Banana- Banana fibre has the least tensile strength in comparison to the paddy & coir fibre due to less cellulose content. Higher fibre weight leads to reduction in tensile strength due to increased nuclei of air pockets. Increasing fly ash content reduces tensile strength due to nonbonding of fly ash particles with natural fibre. Fly ash is also not very strong as compared to the epoxy resin leading to reduction in tensile strength.

Keywords: tensile strength and epoxy resin. basalt Fiber, taguchi, polymer matrix, natural fiber

Procedia PDF Downloads 47
1714 Whole Coding Genome Inter-Clade Comparison to Predict Global Cancer-Protecting Variants

Authors: Lamis Naddaf, Yuval Tabach

Abstract:

In this research, we identified the missense genetic variants that have the potential to enhance resistance against cancer. Such field has not been widely explored, as researchers tend to investigate mutations that cause diseases, in response to the suffering of patients, rather than those mutations that protect from them. In conjunction with the genomic revolution, and the advances in genetic engineering and synthetic biology, identifying the protective variants will increase the power of genotype-phenotype predictions and can have significant implications on improved risk estimation, diagnostics, prognosis and even for personalized therapy and drug discovery. To approach our goal, we systematically investigated the sites of the coding genomes and picked up the alleles that showed a correlation with the species’ cancer resistance. We predicted 250 protecting variants (PVs) with a 0.01 false discovery rate and more than 20 thousand PVs with a 0.25 false discovery rate. Cancer resistance in Mammals and reptiles was significantly predicted by the number of PVs a species has. Moreover, Genes enriched with the protecting variants are enriched in pathways relevant to tumor suppression like pathways of Hedgehog signaling and silencing, which its improper activation is associated with the most common form of cancer malignancy. We also showed that the PVs are more abundant in healthy people compared to cancer patients within different human races.

Keywords: comparative genomics, machine learning, cancer resistance, cancer-protecting alleles

Procedia PDF Downloads 95
1713 Agricultural Education and Research in India: Challenges and Way Forward

Authors: Kiran Kumar Gellaboina, Padmaja Kaja

Abstract:

Agricultural Education and Research in India needs a transformation to serve the needs of the farmers and that of the nation. The fact that Agriculture and allied activities act as main source of livelihood for more than 70% population of rural India reinforces its importance in administrative and policy arena. As per Census 2011 of India it provides employment to approximately 56.6 % of labour. India has achieved significant growth in agriculture, milk, fish, oilseeds and fruits and vegetables owing to green, white, blue and yellow revolutions which have brought prosperity to farmers. Many factors are responsible for these achievement viz conducive government policies, receptivity of the farmers and also establishment of higher agricultural education institutions. The new breed of skilled human resources were instrumental in generating new technologies, and in its assessment, refinement and finally its dissemination to the farming community through extension methods. In order to sustain, diversify and realize the potential of agriculture sectors, it is necessary to develop skilled human resources. Agricultural human resource development is a continuous process undertaken by agricultural universities. The Department of Agricultural Research and Education (DARE) coordinates and promotes agricultural research & education in India. In India, agricultural universities were established on ‘land grant’ pattern of USA which helped incorporation of a number of diverse subjects in the courses as also provision of hands-on practical exposure to the student. The State Agricultural Universities (SAUs) established through the legislative acts of the respective states and with major financial support from them leading to administrative and policy controls. It has been observed that pace and quality of technology generation and human resource development in many of the SAUs has gone down. The reason for this slackening are inadequate state funding, reduced faculty strength, inadequate faculty development programmes, lack of modern infrastructure for education and research etc. Establishment of new state agricultural universities and new faculties/colleges without providing necessary financial and faculty support has aggrieved the problem. The present work highlights some of the key issues affecting agricultural education and research in India and the impact it would have on farm productivity and sustainability. Secondary data pertaining to budgetary spend on agricultural education and research will be analyzed. This paper will study the trends in public spending on agricultural education and research and the per capita income of farmers in India. This paper tries to suggest that agricultural education and research has a key role in equipping the human resources for enhanced agricultural productivity and sustainable use of natural resources. Further, a total re-orientation of agricultural education with emphasis on other agricultural related social sciences is needed for effective agricultural policy research.

Keywords: agriculture, challenges, education, research

Procedia PDF Downloads 232
1712 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features

Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari

Abstract:

An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.

Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)

Procedia PDF Downloads 445
1711 Clinical Validation of C-PDR Methodology for Accurate Non-Invasive Detection of Helicobacter pylori Infection

Authors: Suman Som, Abhijit Maity, Sunil B. Daschakraborty, Sujit Chaudhuri, Manik Pradhan

Abstract:

Background: Helicobacter pylori is a common and important human pathogen and the primary cause of peptic ulcer disease and gastric cancer. Currently H. pylori infection is detected by both invasive and non-invasive way but the diagnostic accuracy is not up to the mark. Aim: To set up an optimal diagnostic cut-off value of 13C-Urea Breath Test to detect H. pylori infection and evaluate a novel c-PDR methodology to overcome of inconclusive grey zone. Materials and Methods: All 83 subjects first underwent upper-gastrointestinal endoscopy followed by rapid urease test and histopathology and depending on these results; we classified 49 subjects as H. pylori positive and 34 negative. After an overnight, fast patients are taken 4 gm of citric acid in 200 ml water solution and 10 minute after ingestion of the test meal, a baseline exhaled breath sample was collected. Thereafter an oral dose of 75 mg 13C-Urea dissolved in 50 ml water was given and breath samples were collected upto 90 minute for 15 minute intervals and analysed by laser based high precisional cavity enhanced spectroscopy. Results: We studied the excretion kinetics of 13C isotope enrichment (expressed as δDOB13C ‰) of exhaled breath samples and found maximum enrichment around 30 minute of H. pylori positive patients, it is due to the acid mediated stimulated urease enzyme activity and maximum acidification happened within 30 minute but no such significant isotopic enrichment observed for H. pylori negative individuals. Using Receiver Operating Characteristic (ROC) curve an optimal diagnostic cut-off value, δDOB13C ‰ = 3.14 was determined at 30 minute exhibiting 89.16% accuracy. Now to overcome grey zone problem we explore percentage dose of 13C recovered per hour, i.e. 13C-PDR (%/hr) and cumulative percentage dose of 13C recovered, i.e. c-PDR (%) in exhaled breath samples for the present 13C-UBT. We further explored the diagnostic accuracy of 13C-UBT by constructing ROC curve using c-PDR (%) values and an optimal cut-off value was estimated to be c-PDR = 1.47 (%) at 60 minute, exhibiting 100 % diagnostic sensitivity , 100 % specificity and 100 % accuracy of 13C-UBT for detection of H. pylori infection. We also elucidate the gastric emptying process of present 13C-UBT for H. pylori positive patients. The maximal emptying rate found at 36 minute and half empting time of present 13C-UBT was found at 45 minute. Conclusions: The present study exhibiting the importance of c-PDR methodology to overcome of grey zone problem in 13C-UBT for accurate determination of infection without any risk of diagnostic errors and making it sufficiently robust and novel method for an accurate and fast non-invasive diagnosis of H. pylori infection for large scale screening purposes.

Keywords: 13C-Urea breath test, c-PDR methodology, grey zone, Helicobacter pylori

Procedia PDF Downloads 300
1710 Experiences and Aspirations of Hearing Impaired Learners in Inclusive Classrooms

Authors: Raymon P. Española

Abstract:

Hearing impaired students are admitted to regular high schools in the context of inclusive education. In this setting, several academic difficulties and social struggles are disregarded by many educators. The study aimed to describe the aspirations and lived experiences in mainstream classrooms of hearing impaired students. In the research process, the participants were interviewed using sign language. Thematic analysis of interview responses was done, supplemented by interviews with teachers and classroom observations. The study revealed four patterns of experiences: academic difficulties, coping mechanisms, identification with hearing peers, and impression management. This means that these learners were struggling in inclusive classrooms, where identification with and modeling the positive qualities of hearing peers were done to cope with academic difficulties and alter negative impressions about them. By implication, these learners tended to socially immerse themselves rather than resort to isolation. Along with this tendency was the aspiration for achievement as they were eager to finish post-secondary technical-vocational education. This means aspiring for continuing social immersion into the mainstream. All these findings provide insights to K-12 educators to increase the use of collaborative techniques and experiential learning strategies, as well as to adequately address the special educational needs of these students.

Keywords: descriptive, experiences and aspirations of hearing impaired learners, inclusive classrooms, Surigao City Philippines

Procedia PDF Downloads 408
1709 Automated Human Balance Assessment Using Contactless Sensors

Authors: Justin Tang

Abstract:

Balance tests are frequently used to diagnose concussions on the sidelines of sporting events. Manual scoring, however, is labor intensive and subjective, and many concussions go undetected. This study institutes a novel approach to conducting the Balance Error Scoring System (BESS) more quantitatively using Microsoft’s gaming system Kinect, which uses a contactless sensor and several cameras to receive data and estimate body limb positions. Using a machine learning approach, Visual Gesture Builder, and a deterministic approach, MATLAB, we tested whether the Kinect can differentiate between “correct” and erroneous stances of the BESS. We created the two separate solutions by recording test videos to teach the Kinect correct stances and by developing a code using Java. Twenty-two subjects were asked to perform a series of BESS tests while the Kinect was collecting data. The Kinect recorded the subjects and mapped key joints onto their bodies to obtain angles and measurements that are interpreted by the software. Through VGB and MATLAB, the videos are analyzed to enumerate the number of errors committed during testing. The resulting statistics demonstrate a high correlation between manual scoring and the Kinect approaches, indicating the viability of the use of remote tracking devices in conducting concussion tests.

Keywords: automated, concussion detection, contactless sensors, microsoft kinect

Procedia PDF Downloads 316
1708 The Relationship between Organizational Silence and Voice with the Quality of Work Life among Employees of the Youth and Sports Departments of Tehran Province

Authors: Soodabeh Dehghan, Siavash Hamidzadeh, Naqshbandi Seyyed Salahedin, Ali Mohammad Safania

Abstract:

The present research with the aim of the relationship between organizational silence and organizational voice with quality of work-life among employees of the sport and youth departments of Tehran Province was done. The statistical population of this research includes all employees of the sport and youth departments of Tehran province, and considering the not very large number of society, the sample and society were considered to be the same, and the sample was considered as the whole number. To measure each of these variables, a questionnaire was used. The research questionnaire was presented in four sections. The results showed that, since the extension of the process of organizational silence is usually done by managers, their attitude and attitudes toward this phenomenon are prioritized and also because silence reduces learning due to lack of knowledge sharing, makes it less effective and makes changes more difficult, it is necessary to take steps to break the silence and to further urge the staff (employees) to express their beliefs (organizational voices) and to share them in the organization's fate individuals, whose beliefs are respected and so called taken into account in the organization, would be dependent on the organization and feel obliged to remain with the organization during the hardships. This affects employees' quality of work life and their satisfaction too much.

Keywords: organizational silence, organizational voice, quality of work life, the sports and youth departments of Tehran province

Procedia PDF Downloads 146
1707 Predicting Destination Station Based on Public Transit Passenger Profiling

Authors: Xuyang Song, Jun Yin

Abstract:

The smart card has been an extremely universal tool in public transit. It collects a large amount of data on buses, urban railway transit, and ferries and provides possibilities for passenger profiling. This paper combines offline analysis of passenger profiling and real-time prediction to propose a method that can accurately predict the destination station in real-time when passengers tag on. Firstly, this article constructs a static database of user travel characteristics after identifying passenger travel patterns based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The dual travel passenger habits are identified: OD travel habits and D station travel habits. Then a rapid real-time prediction algorithm based on Transit Passenger Profiling is proposed, which can predict the destination of in-board passengers. This article combines offline learning with online prediction, providing a technical foundation for real-time passenger flow prediction, monitoring and simulation, and short-term passenger behavior and demand prediction. This technology facilitates the efficient and real-time acquisition of passengers' travel destinations and demand. The last, an actual case was simulated and demonstrated feasibility and efficiency.

Keywords: travel behavior, destination prediction, public transit, passenger profiling

Procedia PDF Downloads 18
1706 Novel Framework for MIMO-Enhanced Robust Selection of Critical Control Factors in Auto Plastic Injection Moulding Quality Optimization

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

Apparent quality defects such as warpage, shrinkage, weld line, etc. are such an irresistible phenomenon in mass production of auto plastic appearance parts. These frequently occurred manufacturing defects should be satisfied concurrently so as to achieve a final product with acceptable quality standards. Determining the significant control factors that simultaneously affect multiple quality characteristics can significantly improve the optimization results by eliminating the deviating effect of the so-called ineffective outliers. Hence, a robust quantitative approach needs to be developed upon which major control factors and their level can be effectively determined to help improve the reliability of the optimal processing parameter design. Hence, the primary objective of current study was to develop a systematic methodology for selection of significant control factors (SCF) relevant to multiple quality optimization of auto plastic appearance part. Auto bumper was used as a specimen with the most identical quality and production characteristics to APAP group. A preliminary failure modes and effect analysis (FMEA) was conducted to nominate a database of pseudo significant significant control factors prior to the optimization phase. Later, CAE simulation Moldflow analysis was implemented to manipulate four rampant plastic injection quality defects concerned with APAP group including warpage deflection, volumetric shrinkage, sink mark and weld line. Furthermore, a step-backward elimination searching method (SESME) has been developed for systematic pre-optimization selection of SCF based on hierarchical orthogonal array design and priority-based one-way analysis of variance (ANOVA). The development of robust parameter design in the second phase was based on DOE module powered by Minitab v.16 statistical software. Based on the F-test (F 0.05, 2, 14) one-way ANOVA results, it was concluded that for warpage deflection, material mixture percentage was the most significant control factor yielding a 58.34% of contribution while for the other three quality defects, melt temperature was the most significant control factor with a 25.32%, 84.25%, and 34.57% contribution for sin mark, shrinkage and weld line strength control. Also, the results on the he least significant control factors meaningfully revealed injection fill time as the least significant factor for both warpage and sink mark with respective 1.69% and 6.12% contribution. On the other hand, for shrinkage and weld line defects, the least significant control factors were holding pressure and mold temperature with a 0.23% and 4.05% overall contribution accordingly.

Keywords: plastic injection moulding, quality optimization, FMEA, ANOVA, SESME, APAP

Procedia PDF Downloads 346
1705 Learn Better to Earn Better: Importance of CPD in Dentistry

Authors: Junaid Ahmed, Nandita Shenoy

Abstract:

Maintaining lifelong knowledge and skills is essential for safe clinical practice. Continuing Professional Development (CPD) is an established method that can facilitate lifelong learning. It focuses on maintaining or developing knowledge, skills and relationships to ensure competent practice.To date, relatively little has been done to comprehensively and systematically synthesize evidence to identify subjects of interest among practising dentist. Hence the aim of our study was to identify areas in clinical practice that would be favourable for continuing professional dental education amongst practicing dentists. Participants of this study consisted of the practicing dental surgeons of Mangalore, a city in Dakshina Kannada, Karnataka. 95% of our practitioners felt that regular updating as a one day program once in 3-6 months is required, to keep them abreast in clinical practice. 60% of subjects feel that CPD programs enrich their theoretical knowledge and helps in patient care. 27% of them felt that CPD programs should be related to general dentistry. Most of them felt that CPD programs should not be charged nominally between one to two thousand rupees. The acronym ‘CPD’ should be seen in a broader view in which professionals continuously enhance not only their knowledge and skills, but also their thinking,understanding and maturity; they grow not only as professionals, but also as persons; their development is not restricted to their work roles, but may also extend to new roles and responsibilities.

Keywords: continuing professional development, competent practice, dental education, practising dentist

Procedia PDF Downloads 259
1704 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP

Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis

Abstract:

The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.

Keywords: chatbot, depression diagnosis, LSTM model, natural language process

Procedia PDF Downloads 68
1703 Demotivation-Reducing Strategies Employed by Turkish EFL Learners in L2 Writing

Authors: kaveh Jalilzadeh, Maryam Rastgari

Abstract:

Motivation for learning a foreign language is needed for learners of any foreign language to effectively learn language skills. However, there are some factors that lead to the learners’ demotivation. Therefore, teachers of foreign languages, most notably English language which turned out to be an international language for academic and business purposes, need to be well aware of the demotivation sources and know how to reduce learners’ demotivation. This study is an attempt to explore demotivation-reducing strategies employed by Turkish EFL learners in L2 writing. The researchers used a qualitative case study and employed semi-structured interviews to collect data. The informants recruited in this study were 20 English writing lecturers who were selected through purposive sampling among university lecturers/instructors at the state and non-state universities in Istanbul and Ankara. Interviews were transcribed verbatim, and MAXQDA software (version 2022) was used for performing coding and thematic analysis of the data. Findings revealed that Turkish EFL teachers use 18 strategies to reduce language learners’ demotivation. The most frequently reported strategies were: writing in a group, writing about interesting topics, writing about new topics, writing about familiar topics, writing about simple topics, and writing about relevant topics. The findings have practical implications for writing teachers and learners of the English language.

Keywords: phenomenological study, emotional vulnerability, motivation, digital Settings

Procedia PDF Downloads 69
1702 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel

Abstract:

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function

Procedia PDF Downloads 433
1701 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph

Procedia PDF Downloads 14
1700 Implementing Search-Based Activities in Mathematics Instruction, Grounded in Intuitive Reasoning

Authors: Zhanna Dedovets

Abstract:

Fostering a mathematical style of thinking is crucial for cultivating intellectual personalities capable of thriving in modern society. Intuitive thinking stands as a cornerstone among the components of mathematical cognition, playing a pivotal role in grasping mathematical truths across various disciplines. This article delves into the exploration of leveraging search activities rooted in students' intuitive thinking, particularly when tackling geometric problems. Emphasizing both student engagement with the task and their active involvement in the search process, the study underscores the importance of heuristic procedures and the freedom for students to chart their own problem-solving paths. Spanning several years (2019-2023) at the Physics and Mathematics Lyceum of Dushanbe, the research engaged 17 teachers and 78 high school students. After assessing the initial levels of intuitive thinking in both control and experimental groups, the experimental group underwent training following the authors' methodology. Subsequent analysis revealed a significant advancement in thinking levels among the experimental group students. The methodological approaches and teaching materials developed through this process offer valuable resources for mathematics educators seeking to enhance their students' learning experiences effectively.

Keywords: teaching of mathematics, intuitive thinking, heuristic procedures, geometric problem, students.

Procedia PDF Downloads 45
1699 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants

Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann

Abstract:

Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.

Keywords: automation, data collection, performance monitoring, recycling, refrigerators

Procedia PDF Downloads 162
1698 Importance of Positive Education: A Focus on the Importance of Character Strength Building

Authors: Hajra Hussain

Abstract:

Positive education, the inclusion of social, emotional and intellectual skills across a curriculum, is fundamental to the optimal functioning of young people in any society because it combines the best teaching practices with the principles of positive psychology. While learning institutions foster academic skills, little attention is being paid to the identification and development of character strengths and their integration into teaching. There is an increasing recognition of the important role education plays in equipping today’s youth with 21st century social skills. For youth to succeed in this highly competitive environment, there is a need for positive education that is focused on character strengths such as the growth of social, emotional and intellectual skills that promote the flourishing of well-rounded individuals. Character strength programs and awareness are a necessity if the human capital within a region is to be competitive, productive and happy. The Counselling & Wellbeing Centre at Amity University Dubai has consistently implemented Character Strength awareness workshops and has found that such workshops have increased student life satisfaction due to individual awareness of signature strengths. A positive education/positive psychology framework with its key focus on the development of character strengths can be fundamental to individual's confidence and self-awareness; thus allowing both optimum flourishing and functioning.

Keywords: positive psychology, positive education, strengths, youth, happiness

Procedia PDF Downloads 271
1697 Survey of Related Field for Artificial Intelligence Window Development

Authors: Young Kwon Yang, Bo Rang Park, Hyo Eun Lee, Tea Won Kim, Eun Ji Choi, Jin Chul Park

Abstract:

To develop an artificial intelligence based automatic ventilation system, recent research trends were analyzed and analyzed. This research method is as follows. In the field of architecture and window technology, the use of artificial intelligence, the existing study of machine learning model and the theoretical review of the literature were carried out. This paper collected journals such as Journal of Energy and Buildings, Journal of Renewable and Sustainable Energy Reviews, and articles published on Web-sites. The following keywords were searched for articles from 2000 to 2016. We searched for the above keywords mainly in the title, keyword, and abstract. As a result, the global artificial intelligence market is expected to grow at a CAGR of 14.0% from USD127bn in 2015 to USD165bn in 2017. Start-up investments in artificial intelligence increased from the US $ 45 million in 2010 to the US $ 310 million in 2015, and the number of investments increased from 6 to 54. Although AI is making efforts to advance to advanced countries, the level of technology is still in its infant stage. Especially in the field of architecture, artificial intelligence (AI) is very rare. Based on the data of this study, it is expected that the application of artificial intelligence and the application of architectural field will be revitalized through the activation of artificial intelligence in the field of architecture and window.

Keywords: artificial intelligence, window, fine dust, thermal comfort, ventilation system

Procedia PDF Downloads 273
1696 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-Nearest Neighbours Algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing colour moments on the RGB space. This compact descriptor, Colour Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, category search, relevance feedback, query point movement, standard Rocchio’s formula, adaptive shifting query, feature weighting, original KNN, incremental KNN

Procedia PDF Downloads 278
1695 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients

Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim

Abstract:

The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.

Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter

Procedia PDF Downloads 144
1694 English Language Performance and Emotional Intelligence of Senior High School Students of Pit-Laboratory High School

Authors: Sonia Arradaza-Pajaron

Abstract:

English as a second language is widely spoken in the Philippines. In fact, it is used as a medium of instruction in school. However, Filipino students, in general, are still not proficient in the use of the language. Since it plays a very crucial role in the learning and comprehension of some subjects in the school where important key concepts and in English, it is imperative to look into other factors that may affect such concern. This study may post an answer to the said concern because it aimed to investigate the association between a psychological construct, known as emotional intelligence, and the English language performance of the 55 senior high school students. The study utilized a descriptive correlational method to determine the significant relationship of variables with preliminary data, like GPA in English subject as baseline information of their performance. Results revealed that the respondents had an average GPA in the English subject; however, improving from their first-year high school level to the fourth year. Their English performance resulted to an above average level with a notable higher performance in the speaking test than in the written. Further, a strong correlation between English performance and emotional intelligence was manifested. Based on the findings, it can be concluded that students with higher emotional intelligence their English language performance is expected to be the same. It can be said further that when students’ emotional intelligence (EI components) is facilitated well through various classroom activities, a better English performance would just be spontaneous among them.

Keywords: English language performance, emotional intelligence, EI components, emotional literacy, emotional quotient competence, emotional quotient outcomes, values and beliefs

Procedia PDF Downloads 448
1693 Using the Delphi Method to Determine the Change in Knowledge and Skills of Professional Quantity Surveyors as a Result of COVID-19 Pandemic

Authors: Veronica Kah Jo Wong, Yoke Mui Lim, Nurul Sakina Mokhtar Azizi

Abstract:

The impact on the construction industry in Malaysia is unprecedented, as the government implemented a lockdown to restrict human movement in an effort to stop COVID-19 from spreading. Quantity surveyor (QS), as one of the key construction professionals, found that the working practices and environments for quantity surveyors today have changed due to the current pandemic. The QS profession must deal not only with changes in project issues but also with a different working environment in which most people are required to work from home and follow the standard operating procedures. Therefore, QS should be flexible, agile, and have the capability to adapt to the current working practices by strengthening their competencies. Adapting to the current and recovering environment of COVID-19 may result in the emergence of a new competence such as skill and knowledge for QS in order to maintain the quality of performance in the delivery of their professional services. Thus, this paper's objective is to investigate the changes in knowledge and skills in quantity surveyors. The data will be collected through interviews with registered professional QS to gain better insights that are specific in this industry, and the findings will be verified using the Delphi method. It is hoped that new knowledge and skill will be found from the study and will not only contribute to the betterment of the professional QS but also in guiding higher learning institutions to incorporate the new competencies into their curriculum.

Keywords: competency, COVID-19 pandemic, Malaysia, quantity surveying

Procedia PDF Downloads 127
1692 The Effects of a Mathematics Remedial Program on Mathematics Success and Achievement among Beginning Mathematics Major Students: A Regression Discontinuity Analysis

Authors: Kuixi Du, Thomas J. Lipscomb

Abstract:

The proficiency in Mathematics skills is fundamental to success in the STEM disciplines. In the US, beginning college students who are placed in remedial/developmental Mathematics courses frequently struggle to achieve academic success. Therefore, Mathematics remediation in college has become an important concern, and providing Mathematics remediation is a prevalent way to help the students who may not be fully prepared for college-level courses. Programs vary, however, and the effectiveness of a particular remedial Mathematics program must be empirically demonstrated. The purpose of this study was to apply the sharp regression discontinuity (RD) technique to determine the effectiveness of the Jack Leaps Summer (JLS) Mathematic remediation program in supporting improved Mathematics learning outcomes among newly admitted Mathematics students in the South Dakota State University. The researchers studied the newly admitted Fall 2019 cohort of Mathematics majors (n=423). The results indicated that students whose pretest score was lower than the cut-off point and who were assigned to the JLS program experienced significantly higher scores on the post-test (Math 101 final score). Based on these results, there is evidence that the JLS program is effective in meeting its primary objective.

Keywords: causal inference, mathematisc remedial program evaluation, quasi-experimental research design, regression discontinuity design, cohort studies

Procedia PDF Downloads 95
1691 Intelligent Building as a Pragmatic Approach towards Achieving a Sustainable Environment

Authors: Zahra Hamedani

Abstract:

Many wonderful technological developments in recent years has opened up the possibility of using intelligent buildings for a number of important applications, ranging from minimizing resource usage as well as increasing building efficiency to maximizing comfort, adaption to inhabitants and responsiveness to environmental changes. The concept of an intelligent building refers to the highly embedded, interactive environment within which by exploiting the use of artificial intelligence provides the ability to know its configuration, anticipate the optimum dynamic response to prevailing environmental stimuli, and actuate the appropriate physical reaction to provide comfort and efficiency. This paper contains a general identification of the intelligence paradigm and its impacts on the architecture arena, that with examining the performance of artificial intelligence, a mechanism to analyze and finally for decision-making to control the environment will be described. This mechanism would be a hierarchy of the rational agents which includes decision-making, information, communication and physical layers. This multi-agent system relies upon machine learning techniques for automated discovery, prediction and decision-making. Then, the application of this mechanism regarding adaptation and responsiveness of intelligent building will be provided in two scales of environmental and user. Finally, we review the identifications of sustainability and evaluate the potentials of intelligent building systems in the creation of sustainable architecture and environment.

Keywords: artificial intelligence, intelligent building, responsiveness, adaption, sustainability

Procedia PDF Downloads 409
1690 Impact of Climatic Hazards on the Jamuna River Fisheries and Coping and Adaptation Strategies

Authors: Farah Islam, Md. Monirul Islam, Mosammat Salma Akter, Goutam Kumar Kundu

Abstract:

The continuous variability of climate and the risk associated with it have a significant impact on the fisheries leading to a global concern for about half a billion fishery-based livelihoods. Though in the context of Bangladesh mounting evidence on the impacts of climate change on fishery-based livelihoods or their socioeconomic conditions are present, the country’s inland fisheries sector remains in a negligible corner as compared to the coastal areas which are spotted on the highlight due to its higher vulnerability to climatic hazards. The available research on inland fisheries, particularly river fisheries, has focussed mainly on fish production, pollution, fishing gear, fish biodiversity and livelihoods of the fishers. This study assesses the impacts of climate variability and changes on the Jamuna (a transboundary river called Brahmaputra in India) River fishing communities and their coping and adaptation strategies. This study has used primary data collected from Kalitola Ghat and Debdanga fishing communities of the Jamuna River during May, August and December 2015 using semi-structured interviews, oral history interviews, key informant interviews, focus group discussions and impact matrix as well as secondary data. This study has found that both communities are exposed to storms, floods and land erosions which impact on fishery-based livelihood assets, strategies, and outcomes. The impact matrix shows that human and physical capitals are more affected by climate hazards which in turn affect financial capital. Both communities have been responding to these exposures through multiple coping and adaptation strategies. The coping strategies include making dam with soil, putting jute sac on the yard, taking shelter on boat or embankment, making raised platform or ‘Kheua’ and involving with temporary jobs. While, adaptation strategies include permanent migration, change of livelihood activities and strategies, changing fishing practices and making robust houses. The study shows that migration is the most common adaptation strategy for the fishers which resulted in mostly positive outcomes for the migrants. However, this migration has impacted negatively on the livelihoods of existing fishers in the communities. In sum, the Jamuna river fishing communities have been impacted by several climatic hazards and they have traditionally coped with or adapted to the impacts which are not sufficient to maintain sustainable livelihoods and fisheries. In coming decades, this situation may become worse as predicted by latest scientific research and an enhanced level of response would be needed.

Keywords: climatic hazards, impacts and adaptation, fisherfolk, the Jamuna River

Procedia PDF Downloads 316
1689 Support Provided by Teachers to Learners With Special Education Needs in Selected Amathole West District Primary Schools South Africa

Authors: Toyin Mary Adewumi, Cina Mosito

Abstract:

Part of enabling learners with special education needs (SEN) to succeed is providing them with adequate support. Support is all activities in a school that enhance its capacity to respond to diversity by making learning contexts and lessons accessible to all learners. The paper reports findings of support provided by teachers to learners with SEN and the pockets of good practice found in the support provided by teachers to these learners in schools in the Amathole West District, Eastern Cape. A purposeful sample, comprising eight teachers, eight principals in eight schools, including one provincial and two district education officials, was selected. Thematic analysis was used for analyzing data gathered through semi-structured interviews. The results established that despite the challenges such as lack of qualifications and training in special education needs, learners with SEN received varied support from teachers which include extra exercises, extra time, special attention during break times or after school hours and homework. The study reveals pockets of good practice in some selected primary schools particularly in the poverty-stricken locations in the Amathole West District. This paper recommends adequate training for teachers for the support of learners with SEN.

Keywords: good practice, learner, special education needs, inclusion, support

Procedia PDF Downloads 131
1688 The Conceptual and Procedural Knowledge of Rational Numbers in Primary School Teachers

Authors: R. M. Kashim

Abstract:

The study investigates the conceptual and procedural knowledge of rational number in primary school teachers, specifically, the primary school teachers level of conceptual knowledge about rational number and the primary school teachers level of procedural knowledge about rational numbers. The study was carried out in Bauchi metropolis in Bauchi state of Nigeria. A Conceptual and Procedural Knowledge Test was used as the instrument for data collection, 54 mathematics teachers in Bauchi primary schools were involved in the study. The collections were analyzed using mean and standard deviation. The findings revealed that the primary school mathematics teachers in Bauchi metropolis posses a low level of conceptual knowledge of rational number and also possess a high level of Procedural knowledge of rational number. It is therefore recommended that to be effective, teachers teaching mathematics most posses a deep understanding of both conceptual and procedural knowledge. That way the most knowledgeable teachers in mathematics deliver highly effective rational number instructions. Teachers should not ignore the mathematical concept aspect of rational number teaching. This is because only the procedural aspect of Rational number is highlighted during instructions; this often leads to rote - learning of procedures without understanding the meanings. It is necessary for teachers to learn rational numbers teaching method that focus on both conceptual knowledge and procedural knowledge teaching.

Keywords: conceptual knowledge, primary school teachers, procedural knowledge, rational numbers

Procedia PDF Downloads 325
1687 Analyzing Temperature and Pressure Performance of a Natural Air-Circulation System

Authors: Emma S. Bowers

Abstract:

Perturbations in global environments and temperatures have heightened the urgency of creating cost-efficient, energy-neutral building techniques. Structural responses to this thermal crisis have included designs (including those of the building standard PassivHaus) with airtightness, window placement, insulation, solar orientation, shading, and heat-exchange ventilators as potential solutions or interventions. Limitations in the predictability of the circulation of cooled air through the ambient temperature gradients throughout a structure are one of the major obstacles facing these enhanced building methods. A diverse range of air-cooling devices utilizing varying technologies is implemented around the world. Many of them worsen the problem of climate change by consuming energy. Using natural ventilation principles of air buoyancy and density to circulate fresh air throughout a building with no energy input can combat these obstacles. A unique prototype of an energy-neutral air-circulation system was constructed in order to investigate potential temperature and pressure gradients related to the stack effect (updraft of air through a building due to changes in air pressure). The stack effect principle maintains that since warmer air rises, it will leave an area of low pressure that cooler air will rush in to fill. The result is that warmer air will be expelled from the top of the building as cooler air is directed through the bottom, creating an updraft. Stack effect can be amplified by cooling the air near the bottom of a building and heating the air near the top. Using readily available, mostly recyclable or biodegradable materials, an insulated building module was constructed. A tri-part construction model was utilized: a subterranean earth-tube heat exchanger constructed of PVC pipe and placed in a horizontally oriented trench, an insulated, airtight cube aboveground to represent a building, and a solar chimney (painted black to increase heat in the out-going air). Pressure and temperature sensors were placed at four different heights within the module as well as outside, and data was collected for a period of 21 days. The air pressures and temperatures over the course of the experiment were compared and averaged. The promise of this design is that it represents a novel approach which directly addresses the obstacles of air flow and expense, using the physical principle of stack effect to draw a continuous supply of fresh air through the structure, using low-cost and readily available materials (and zero manufactured energy). This design serves as a model for novel approaches to creating temperature controlled buildings using zero energy and opens the door for future research into the effects of increasing module scale, increasing length and depth of the earth tube, and shading the building. (Model can be provided).

Keywords: air circulation, PassivHaus, stack effect, thermal gradient

Procedia PDF Downloads 153