Search results for: efficiency improvement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10152

Search results for: efficiency improvement

2232 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks

Authors: Mehrdad Shafiei Dizaji, Hoda Azari

Abstract:

The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.

Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven

Procedia PDF Downloads 17
2231 Exploring the Potential of Phase Change Materials in Construction Environments

Authors: A. Ait Ahsene F., B. Boughrara S.

Abstract:

The buildings sector accounts for a significant portion of global energy consumption, with much of this energy used to heat and cool indoor spaces. In this context, the integration of innovative technologies such as phase change materials (PCM) holds promising potential to improve the energy efficiency and thermal comfort of buildings. This research topic explores the benefits and challenges associated with the use of PCMs in buildings, focusing on their ability to store and release thermal energy to regulate indoor temperature. We investigated the different types of PCM available, their thermal properties, and their potential applications in various climate zones and building types. To evaluate and compare the performance of PCMs, our methodology includes a series of laboratory and field experiments. In the laboratory, we measure the thermal storage capacity, melting and solidification temperatures, latent heat, and thermal conductivity of various PCMs. These measurements make it possible to quantify the capacity of each PCM to store and release thermal energy, as well as its capacity to transfer this energy through the construction materials. Additionally, field studies are conducted to evaluate the performance of PCMs in real-world environments. We install PCM systems in real buildings and monitor their operation over time, measuring energy savings, occupant thermal comfort, and material durability. These empirical data allow us to compare the effectiveness of different types of PCMs under real-world use conditions. By combining the results of laboratory and field experiments, we provide a comprehensive analysis of the advantages and limitations of PCMs in buildings, as well as recommendations for their effective application in practice.

Keywords: energy saving, phase change materials, material sustainability, buildings sector

Procedia PDF Downloads 25
2230 Interactive Teaching and Learning Resources for Bilingual Education

Authors: Sarolta Lipóczi, Ildikó Szabó

Abstract:

The use of ICT in European Schools has increased over the last decade but there is still room for improvement. Also interactive technology is often used below its technical and pedagogical potentials. The pedagogical potential of interactive technology in classrooms has not yet reached classrooms in different countries and in a substantial way. To develop these materials cooperation between educational researchers and teachers from different backgrounds is necessary. INTACT project brings together experts from science education, mathematics education, social science education and foreign language education – with a focus on bilingual education – and teachers in secondary and primary schools to develop a variety of pedagogically qualitative interactive teaching and learning resources. Because of the backgrounds of the consortium members INTACT project focuses on the areas of science, mathematics and social sciences. To combine these two features (science/math and foreign language) the project focuses on bilingual education. A big issue supported by ‘interactiveness’ is social and collaborative learning. The easy way to communicate and collaborate offered by web 2.0 tools, mobile devices connected to the learning material allows students to work and learn together. There will be a wide range of possibilities for school co-operations at regional, national and also international level that allows students to communicate and cooperate with other students beyond the classroom boarders while using these interactive teaching materials. Opening up the learning scenario enhance the social, civic and cultural competences of the students by advocating their social skills and improving their cultural appreciation for other nations in Europe. To enable teachers to use the materials in indented ways descriptions of successful learning scenarios (i.e. using design patterns) will be provided as well. These materials and description will be made available to teachers by teacher trainings, teacher journals, booklets and online materials. The resources can also be used in different settings including the use of a projector and a touchpad or other technical interactive devices for the input i.e. mobile phones. Kecskemét College as a partner of INTACT project has developed two teaching and learning resources in the area of foreign language teaching. This article introduces these resources as well.

Keywords: bilingual educational settings, international cooperation, interactive teaching and learning resources, work across culture

Procedia PDF Downloads 386
2229 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity

Authors: Dawoon Choi, Jian Li, Yunhyun Cho

Abstract:

Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.

Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity

Procedia PDF Downloads 207
2228 Comparing the Embodied Carbon Impacts of a Passive House with the BC Energy Step Code Using Life Cycle Assessment

Authors: Lorena Polovina, Maddy Kennedy-Parrott, Mohammad Fakoor

Abstract:

The construction industry accounts for approximately 40% of total GHG emissions worldwide. In order to limit global warming to 1.5 degrees Celsius, ambitious reductions in the carbon intensity of our buildings are crucial. Passive House presents an opportunity to reduce operational carbon by as much as 90% compared to a traditional building through improving thermal insulation, limiting thermal bridging, increasing airtightness and heat recovery. Up until recently, Passive House design was mainly concerned with meeting the energy demands without considering embodied carbon. As buildings become more energy-efficient, embodied carbon becomes more significant. The main objective of this research is to calculate the embodied carbon impact of a Passive House and compare it with the BC Energy Step Code (ESC). British Columbia is committed to increasing the energy efficiency of buildings through the ESC, which is targeting net-zero energy-ready buildings by 2032. However, there is a knowledge gap in the embodied carbon impacts of more energy-efficient buildings, in particular Part 3 construction. In this case study, life cycle assessments (LCA) are performed on Part 3, a multi-unit residential building in Victoria, BC. The actual building is not constructed to the Passive House standard; however, the building envelope and mechanical systems are designed to comply with the Passive house criteria, as well as Steps 1 and 4 of the BC Energy Step Code (ESC) for comparison. OneClick LCA is used to perform the LCA of the case studies. Several strategies are also proposed to minimize the total carbon emissions of the building. The assumption is that there will not be significant differences in embodied carbon between a Passive House and a Step 4 building due to the building envelope.

Keywords: embodied carbon, energy modeling, energy step code, life cycle assessment

Procedia PDF Downloads 136
2227 Clinical Outcomes of Toric Implantable Collamer Lens (T-ICL) and Toric Implantable Phakic Contact Lens (IPCL) for Correction of High Myopia with Astigmatism: Comparative Study

Authors: Mohamed Salah El-Din Mahmoud, Heba Radi Atta Allah

Abstract:

Background: Our study assesses the safety profile and efficacy of toric Implantable Collamer Lens (T-ICL) and toric implantable phakic contact lens (IPCL) for the correction of high myopia with astigmatism. Methods: A prospective interventional randomized comparative study included 60 myopic eyes divided into 2 groups, group A including 30 eyes that were implanted with T-ICL, and group B including 30 eyes that were implanted with toric IPCL. The refractive results, visual acuity, corneal endothelial cell count, and intraocular pressure (IOP) were evaluated at baseline and at 1, 6, and 9 months post-surgery. Any complications either during or after surgery were assessed. Results: A significant reduction in both spherical and cylindrical refractive errors with good predictability was reported in both groups compared with preoperative values. Regarding the predictability, In T-ICL group (A), the median spherical and cylindrical errors were significantly improved from (-10 D & -4.5 D) pre-operatively to (-0.25 D & - 0.3 D) at the end of 9 months follow up period. Similarly, in the toric IPCL group (B), the median spherical and cylindrical errors were significantly improved from (-11 D & -4.5 D) pre-operatively to (-0.25 D & - 0.3 D) at the end of 9 months follow up period. A statistically significant improvement of UCDVA at 9 months postoperatively was found in both groups, as median preoperative Log Mar UCDVA was 1.1 and 1.3 in groups A and B respectively, which was significantly improved to 0.2 in both groups at the end of follow-up period. Regarding IOP, no significant difference was found between both groups, either pre-operatively or during the postoperative period. Regarding the endothelial count, no significant differences were found during the pre-operative and postoperative follow-up periods between the two groups. Fortunately, no intra or postoperative complications as cataract, keratitis or lens decentration had occurred. Conclusions: Toric IPCL is a suitable alternative to T-ICL for the management of high myopia with astigmatism, especially in developing countries, as it is cheaper and easier for implantation than T-ICL. However, data over longer follow-up periods are needed to confirm its safety and stability.

Keywords: T-ICL, Toric IPCL, IOP, corneal endothelium

Procedia PDF Downloads 142
2226 The Application of Transcranial Direct Current Stimulation (tDCS) Combined with Traditional Physical Therapy to Address Upper Limb Function in Chronic Stroke: A Case Study

Authors: Najmeh Hoseini

Abstract:

Strokerecovery happens through neuroplasticity, which is highly influenced by the environment, including neuro-rehabilitation. Transcranial direct current stimulation (tDCS) may enhance recovery by modulating neuroplasticity. With tDCS, weak direct currents are applied noninvasively to modify excitability in the cortical areas under its electrodes. Combined with functional activities, this may facilitate motor recovery in neurologic disorders such as stroke. The purpose of this case study was to examine the effect of tDCS combined with 30 minutes of traditional physical therapy (PT)on arm function following a stroke. A 29-year-old male with chronic stroke involving the left middle cerebral artery territory went through the treatment protocol. Design The design included 5 weeks of treatment: 1 week of traditional PT, 2 weeks of sham tDCS combined with traditional PT, and 2 weeks of tDCS combined with traditional PT. PT included functional electrical stimulation (FES) of wrist extensors followed by task-specific functional training. Dual hemispheric tDCS with 1 mA intensity was applied on the sensorimotor cortices for the first 20 min of the treatment combined with FES. Assessments before and after each treatment block included Modified Ashworth Scale, ChedokeMcmaster Arm and Hand inventory, Action Research Arm Test (ARAT), and the Box and Blocks Test. Results showed reduced spasticity in elbow and wrist flexors only after tDCS combination weeks (+1 to 0). The patient demonstrated clinically meaningful improvements in gross motor and fine motor control over the duration of the study; however, components of the ARAT that require fine motor control improved the greatest during the experimental block. Average time improvement compared to baseline was26.29 s for tDCS combination weeks, 18.48 s for sham tDCS, and 6.83 for PT standard of care weeks. Combining dual hemispheric tDCS with the standard of care PT demonstrated improvements in hand dexterity greater than PT alone in this patient case.

Keywords: tDCS, stroke, case study, physical therapy

Procedia PDF Downloads 86
2225 Enhancing Signal Reception in a Mobile Radio Network Using Adaptive Beamforming Antenna Arrays Technology

Authors: Ugwu O. C., Mamah R. O., Awudu W. S.

Abstract:

This work is aimed at enhancing signal reception on a mobile radio network and minimizing outage probability in a mobile radio network using adaptive beamforming antenna arrays. In this research work, an empirical real-time drive measurement was done in a cellular network of Globalcom Nigeria Limited located at Ikeja, the headquarters of Lagos State, Nigeria, with reference base station number KJA 004. The empirical measurement includes Received Signal Strength and Bit Error Rate which were recorded for exact prediction of the signal strength of the network as at the time of carrying out this research work. The Received Signal Strength and Bit Error Rate were measured with a spectrum monitoring Van with the help of a Ray Tracer at an interval of 100 meters up to 700 meters from the transmitting base station. The distance and angular location measurements from the reference network were done with the help Global Positioning System (GPS). The other equipment used were transmitting equipment measurements software (Temsoftware), Laptops and log files, which showed received signal strength with distance from the base station. Results obtained were about 11% from the real-time experiment, which showed that mobile radio networks are prone to signal failure and can be minimized using an Adaptive Beamforming Antenna Array in terms of a significant reduction in Bit Error Rate, which implies improved performance of the mobile radio network. In addition, this work did not only include experiments done through empirical measurement but also enhanced mathematical models that were developed and implemented as a reference model for accurate prediction. The proposed signal models were based on the analysis of continuous time and discrete space, and some other assumptions. These developed (proposed) enhanced models were validated using MATLAB (version 7.6.3.35) program and compared with the conventional antenna for accuracy. These outage models were used to manage the blocked call experience in the mobile radio network. 20% improvement was obtained when the adaptive beamforming antenna arrays were implemented on the wireless mobile radio network.

Keywords: beamforming algorithm, adaptive beamforming, simulink, reception

Procedia PDF Downloads 22
2224 Determining Design Parameters for Sizing of Hydronic Heating Systems in Concrete Thermally Activated Building Systems

Authors: Rahmat Ali, Inamullah Khan, Amjad Naseer, Abid A. Shah

Abstract:

Hydronic Heating and Cooling systems in concrete slab based buildings are increasingly becoming a popular substitute to conventional heating and cooling systems. In exploring the materials, techniques employed, and their relative performance measures, a fair bit of uncertainty exists. This research has identified the simplest method of determining the thermal field of a single hydronic pipe when acting as a part of a concrete slab, based on which the spacing and positioning of pipes for a best thermal performance and surface temperature control are determined. The pipe material chosen is the commonly used PEX pipe, which has an all-around performance and thermal characteristics with a thermal conductivity of 0.5W/mK. Concrete Test samples were constructed and their thermal fields tested under varying input conditions. Temperature sensing devices were embedded into the wet concrete at fixed distances from the pipe and other touch sensing temperature devices were employed for determining the extent of the thermal field and validation studies. In the first stage, it was found that the temperature along a specific distance was the same and that heat dissipation occurred in well-defined layers. The temperature obtained in concrete was then related to the different control parameters including water supply temperature. From the results, the temperature of water required for a specific temperature rise in concrete is determined. The thermally effective area is also determined which is then used to calculate the pipe spacing and positioning for the desired level of thermal comfort.

Keywords: thermally activated building systems, concrete slab temperature, thermal field, energy efficiency, thermal comfort, pipe spacing

Procedia PDF Downloads 324
2223 Analyzing the Shearing-Layer Concept Applied to Urban Green System

Authors: S. Pushkar, O. Verbitsky

Abstract:

Currently, green rating systems are mainly utilized for correctly sizing mechanical and electrical systems, which have short lifetime expectancies. In these systems, passive solar and bio-climatic architecture, which have long lifetime expectancies, are neglected. Urban rating systems consider buildings and services in addition to neighborhoods and public transportation as integral parts of the built environment. The main goal of this study was to develop a more consistent point allocation system for urban building standards by using six different lifetime shearing layers: Site, Structure, Skin, Services, Space, and Stuff, each reflecting distinct environmental damages. This shearing-layer concept was applied to internationally well-known rating systems: Leadership in Energy and Environmental Design (LEED) for Neighborhood Development, BRE Environmental Assessment Method (BREEAM) for Communities, and Comprehensive Assessment System for Building Environmental Efficiency (CASBEE) for Urban Development. The results showed that LEED for Neighborhood Development and BREEAM for Communities focused on long-lifetime-expectancy building designs, whereas CASBEE for Urban Development gave equal importance to the Building and Service Layers. Moreover, although this rating system was applied using a building-scale assessment, “Urban Area + Buildings” focuses on a short-lifetime-expectancy system design, neglecting to improve the architectural design by considering bio-climatic and passive solar aspects.

Keywords: green rating system, urban community, sustainable design, standardization, shearing-layer concept, passive solar architecture

Procedia PDF Downloads 564
2222 A Vehicle Detection and Speed Measurement Algorithm Based on Magnetic Sensors

Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras

Abstract:

Cooperative intelligent transport systems (C-ITS) can greatly improve safety and efficiency in road transport by enabling communication, not only between vehicles themselves but also between vehicles and infrastructure. For that reason, traffic surveillance systems on the road are of great importance. This paper focuses on the development of an on-road unit comprising several magnetic sensors for real-time vehicle detection, movement direction, and speed measurement calculations. Magnetic sensors can feel and measure changes in the earth’s magnetic field. Vehicles are composed of many parts with ferromagnetic properties. Depending on sensors’ sensitivity, changes in the earth’s magnetic field caused by passing vehicles can be detected and analyzed in order to extract information on the properties of moving vehicles. In this paper, we present a prototype algorithm for real-time, high-accuracy, vehicle detection, and speed measurement, which can be implemented as a portable, low-cost, and non-invasive to existing infrastructure solution with the potential to replace existing high-cost implementations. The paper describes the algorithm and presents results from its preliminary lab testing in a close to real condition environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).

Keywords: magnetic sensors, vehicle detection, speed measurement, traffic surveillance system

Procedia PDF Downloads 111
2221 Application of Electro-Optical Hybrid Cables in Horizontal Well Production Logging

Authors: Daofan Guo, Dong Yang

Abstract:

For decades, well logging with coiled tubing has relied solely on surface data such as pump pressure, wellhead pressure, depth counter, and weight indicator readings. While this data serves the oil industry well, modern smart logging utilizes real-time downhole information, which automatically increases operational efficiency and optimizes intervention qualities. For example, downhole pressure, temperature, and depth measurement data can be transmitted through the electro-optical hybrid cable in the coiled tubing to surface operators on a real-time base. This paper mainly introduces the unique structural features and various applications of the electro-optical hybrid cables which were deployed into downhole with the help of coiled tubing technology. Fiber optic elements in the cable enable optical communications and distributed measurements, such as distributed temperature and acoustic sensing. The electrical elements provide continuous surface power for downhole tools, eliminating the limitations of traditional batteries, such as temperature, operating time, and safety concerns. The electrical elements also enable cable telemetry operation of cable tools. Both power supply and signal transmission were integrated into an electro-optical hybrid cable, and the downhole information can be captured by downhole electrical sensors and distributed optical sensing technologies, then travels up through an optical fiber to the surface, which greatly improves the accuracy of measurement data transmission.

Keywords: electro-optical hybrid cable, underground photoelectric composite cable, seismic cable, coiled tubing, real-time monitoring

Procedia PDF Downloads 129
2220 Extreme Value Theory Applied in Reliability Analysis: Case Study of Diesel Generator Fans

Authors: Jelena Vucicevic

Abstract:

Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. In this paper, the results for the reliability of diesel generator fans were calculated through Extreme Value Theory. The Extreme Value Theory is not widely used in the engineering field. Its usage is well known in other areas such as hydrology, meteorology, finance. The significance of this theory is in the fact that unlike the other statistical methods it is focused on rare and extreme values, and not on average. It should be noted that this theory is not designed exclusively for extreme events, but for extreme values in any event. Therefore, this is a great opportunity to apply the theory and test if it could be applied in this situation. The significance of the work is the calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know the time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. The results achieved in this method will show the approximation of time for which the fans will work as they should, and the percentage of probability of fans working more than certain estimated time. Extreme Value Theory can be applied not only for rare and extreme events, but for any event that has values which we can consider as extreme.

Keywords: extreme value theory, lifetime, reliability analysis, statistic, time to failure

Procedia PDF Downloads 320
2219 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network

Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin

Abstract:

The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.

Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake

Procedia PDF Downloads 51
2218 Production of Hydrophilic PVC Surfaces with Microwave Treatment for its Separation from Mixed Plastics by Froth Floatation

Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thanh Truc, Byeong-Kyu Lee

Abstract:

Organic polymeric materials (plastics) are widely used in our daily life and various industrial fields. The separation of waste plastics is important for its feedstock and mechanical recycling. One of the major problems in incineration for thermal recycling or heat melting for material recycling is the polyvinyl chloride (PVC) contained in waste plastics. This is due to the production of hydrogen chloride, chlorine gas, dioxins, and furans originated from PVC. Therefore, the separation of PVC from waste plastics is necessary before recycling. The separation of heavy polymers (PVC 1.42, PMMA 1.12, PC 1.22 and PET 1.27 g/cm3 ) from light ones (PE and PP 0.99 g/cm3) can be achieved on the basis of their density. However it is difficult to separate PVC from other heavy polymers basis of density. There are no simple and inexpensive techniques to separate PVC from others. If hydrophobic the PVC surface is selectively changed into hydrophilic, where other polymers still have hydrophobic surface, flotation process can separate PVC from others. In the present study, the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment after alkaline/acid washing and with activated carbon was studied as the pre-treatment of its separation by the following froth flotation. In presence of activated carbon as absorbent, the microwave treatment could selectively increase the hydrophilicity of the PVC surface (i.e. PVC contact angle decreased about 19o) among other plastics mixture. At this stage, 100% PVC separation from other plastics could be achieved by the combination of the pre- microwave treatment with activated carbon and the following froth floatation. The hydrophilization of PVC by surface analysis would be due to the hydrophilic groups produced by microwave treatment with activated carbon. The effect of optimum condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated.

Keywords: Hydrophilic, PVC, contact angle, additive, microwave, froth floatation, waste plastics

Procedia PDF Downloads 611
2217 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 26
2216 Growth and Nutrient Utilization of Some Citrus Peels and Vitamin Premix as Additives in Clarias Gariepinus Diets

Authors: Eunice Oluwayemisi Adeparusi, Mary Adedolapo Ijadeyila

Abstract:

The study was carried out at the Federal University of Technology, Akure, Nigeria, West Africa. Seven set of diets were prepared comprising of two sets. The first set consisted of a combination of three diets from a combination of two different citrus peels from Orange (Citrus sinesis), Tangerine (Citrus tangerina / Citrus reticulata) and Tangelo (Citrus tangelo a hybrid of Citrus reticulata and Citrus maxima) at 50:50 while the other three consisted f50:50. Diet with 100% vitamin premix served as the control. Air-dried citrus peels were added in a 40% crude protein diet for the juveniles (4.49±0.05g) Clarias gariepinus. The experiment was carried out for a period of 56 days in triplicate trials. Fish were randomly distributed into twenty-one tanks at ten fish per tanks. The feed was extruded and fed to satiation twice daily. The result shows that fish fed Tangelo and Tangerine (TGL-TGR) had the best growth response in terms of final weight, specific growth rate, feed conversion ratio and feed utilization efficiency when compared with other diets. The FCR of fish in the diet ranges from 0.93-1.62. Fish fed the mixture of Orange peel and Vitamin-mineral premix (ORG-VIT) and those on Tangelo and Vitamin-mineral premix (TGL-VIT) had higher survival rate. There were significant differences (P<0.05) in the mean final weight, weight gain and specific growth rate. The result shows that citrus peels enhance the growth performance and feed utilization of the juvenile of African mud catfish, thereby reducing the cost of fish production.

Keywords: African mud catfish, growth, citrus peels, vitamin-mineral premix, nutrient utilization, additives

Procedia PDF Downloads 70
2215 Study of Methods to Reduce Carbon Emissions in Structural Engineering

Authors: Richard Krijnen, Alan Wang

Abstract:

As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.

Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design

Procedia PDF Downloads 26
2214 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things

Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker

Abstract:

Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.

Keywords: CUSUM, evidence theory, kl divergence, quickest change detection, time series data

Procedia PDF Downloads 320
2213 Cost-Effectiveness of Forest Restoration in Nepal: A Case from Leasehold Forestry Initiatives

Authors: Sony Baral, Bijendra Basnyat, Kalyan Gauli

Abstract:

Forests are depleted throughout the world in the 1990s, and since then, various efforts have been undertaken for the restoration of the forest. A government of Nepal promoted various community based forest management in which leasehold forestry was the one introduce in 1990s, aiming to restore degraded forests land. However, few attempts have been made to systematically evaluate its cost effectiveness. Hence the study assesses the cost effectiveness of leasehold forestry intervention in the mid-hill district of Nepal following the cost and benefit analysis approach. The study followed quasi-experimental design and collected costs and benefits information from 320 leasehold forestry groups (with intervention) and 154 comparison groups (without intervention) through household survey, forest inventory and then validated with the stakeholders’ consultative workshop. The study found that both the benefits and costs from intervention outweighed without situation. The members of leasehold forestry groups were generating multiple benefits from the forests, such as firewood, grasses, fodder, and fruits, whereas those from comparison groups were mostly getting a single benefit. Likewise, extent of soil carbon is high in leasehold forests. Average expense per unit area is high in intervention sites due to high government investment for capacity building. Nevertheless, positive net present value and internal rate of return was observed for both situations. However, net present value from intervention, i.e., leasehold forestry, is almost double compared to comparison sites, revealing that community are getting higher benefits from restoration. The study concludes that leasehold forestry is a highly cost-effective intervention that contributes towards forest restoration that brings multiple benefits to rural poor.

Keywords: cost effectiveness, economic efficiency, intervention, restoration, leasehold forestry, nepal

Procedia PDF Downloads 88
2212 The Golden Bridge for Better Farmers Life

Authors: Giga Rahmah An-Nafisah, Lailatus Syifa Kamilah

Abstract:

Agriculture today, especially in Indonesia have globally improved. Since the election of the new president, who in the program of work priority the food self-sufficiency. Many ways and attempts have been planned carefully. All this is done to maximize agricultural production for the future. But if we look from another side, there is something missing. Yes! Improvement of life safety of the farmers, useless we fix all agricultural processing systems to maximize agricultural output, but the Hero of agriculture itself it does not change towards a better life. Yes, broker or middleman system agriculture results. Broker system or middleman this is the real problem facing farmers for their welfare. How come? As much as agriculture result, but if farmers were sell into middlemen with very low prices, then there will be no progress for their welfare. Broker system who do the actual middlemen should not happen in the current agricultural system, because the agriculture condition currently being concern, they would still be able to reap a profit as much as possible, no matter how miserable farmers manage the farm and currently face import competition this cannot be avoided anymore. This phenomenon is already visible plain sight all, who see it. Why? Because farmers those who fell victim cannot do anything to change this system. It is true, if only these middlemen who want to receive it for the sale of agricultural products, or arguably the only system that is the bridge realtor economic life of the farmers. The problem is that we should strive for the welfare of the heroes of our food. A golden bridge that could save them that, are the government. Why? Because the government can more easily with the powers to stop this broker system compared to other parties. The government supposed to be a bridge connecting the farmers with consumers or the people themselves. Yes, with improved broker system becomes: buy agricultural produce with highest prices to farmers and selling of agricultural products with lowest price to the consumer or the people themselves. And then the next question about the fate of middlemen? The system indirectly realtor is like system corruption. Why? Because the definition of corruption is an activity that is detrimental to the victim without being noticed by anyone continue to enrich himself and his victim's life miserable. Government may transfer performance of the middlemen into the idea of a new bridge that is done by the government itself. The government could lift them into this new bridge system employs them to remain a distributor of agricultural products themselves, but under the new policy made by the government to keep improving the welfare of farmers. This idea is made is not going to have much effect would improve the welfare of farmers, but most/least this idea will bring around many people for helping conscience farmers to the government, through the daily chatter, as well as celebrity gossip can quickly know too many people.

Keywords: broker system, farmers live, government, agricultural economics

Procedia PDF Downloads 282
2211 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings

Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi

Abstract:

Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.

Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden

Procedia PDF Downloads 77
2210 Development of Peaceful Wellbeing in Executive Practitioners through Mindfulness-Based Practices

Authors: Narumon Jiwattanasuk, Phrakrupalad Pannavoravat, Pataraporn Sirikanchana

Abstract:

Mindfulness has become a perspective addressing positive wellbeing these days. The aims of this paper are to analyze the problems of executive meditation practitioners at the Buddhamahametta Foundation in Thailand and to provide recommendations on the process to develop peaceful wellbeing in executive meditation practitioners by applying the principles of the four foundations of mindfulness. This study is particularly focused on executives because there is not much research focusing on the well-being development of executives, and the researcher recognizes that executives can be an example within their organizations. This would be a significant influence on their employees and their families to be interested in practicing mindfulness. This improvement will then grow from an individual to the surrounding community such as family, workplace, society, and the nation. This would lead to happiness at the national level, which is the expectation of this research. The paper highlights mindfulness practices that can be performed on a daily basis. This study is qualitative research, and there are 10 key participants who are executives from various sectors such as hospitality, healthcare, retail, power energy, and so on. Three mindfulness-based courses were conducted over a period of 8 months, and in-depth interviews were done before the first course as well as at the end of every course. In total, four in-depth interviews were conducted. The information collected from the interviews was analyzed in order to create the process to develop peaceful well-being. Focus group discussions with the mindfulness specialists were conducted to help develop the mindfulness program as well. As a result of this research, it is found that the executives faced the following problems: stress, negative thinking loops, losing temper, seeking acceptance, worry about uncontrollable external factors, unable to control their words, and weight gain. The cultivation of the four foundations of mindfulness can develop peaceful wellbeing. The results showed that after the key informant executives attended the mindfulness courses and practiced mindfulness regularly, they have developed peaceful well-being in all aspects such as physical, psychological, behavioral, and intellectual by applying 12 mindfulness-based activities. The development of wellbeing, in the conclusion of this study, also includes various tools to support the continuing practice, including the handout of guided mindfulness practice, VDO clips about mindfulness practice, the online dhamma channel, and mobile applications to support regular mindfulness-based practices.

Keywords: executive, mindfulness activities, stress, wellbeing

Procedia PDF Downloads 111
2209 Structural Morphing on High Performance Composite Hydrofoil to Postpone Cavitation

Authors: Fatiha Mohammed Arab, Benoit Augier, Francois Deniset, Pascal Casari, Jacques Andre Astolfi

Abstract:

For the top high performance foiling yachts, cavitation is often a limiting factor for take-off and top speed. This work investigates solutions to delay the onset of cavitation thanks to structural morphing. The structural morphing is based on compliant leading and trailing edge, with effect similar to flaps. It is shown here that the commonly accepted effect of flaps regarding the control of lift and drag forces can also be used to postpone the inception of cavitation. A numerical and experimental study is conducted in order to assess the effect of the geometric parameters of hydrofoil on their hydrodynamic performances and in cavitation inception. The effect of a 70% trailing edge and a 30% leading edge of NACA 0012 is investigated using Xfoil software at a constant Reynolds number 106. The simulations carried out for a range flaps deflections and various angles of attack. So, the result showed that the lift coefficient increase with the increase of flap deflection, but also with the increase of angle of attack and enlarged the bucket cavitation. To evaluate the efficiency of the Xfoil software, a 2D analysis flow over a NACA 0012 with leading and trailing edge flap was studied using Fluent software. The results of the two methods are in a good agreement. To validate the numerical approach, a passive adaptive composite model is built and tested in the hydrodynamic tunnel at the Research Institute of French Naval Academy. The model shows the ability to simulate the effect of flap by a LE and TE structural morphing due to hydrodynamic loading.

Keywords: cavitation, flaps, hydrofoil, panel method, xfoil

Procedia PDF Downloads 166
2208 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant

Authors: Lucero Luciano, Cesar Celis, Jose Ramos

Abstract:

Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.

Keywords: desalination, design and integration, polygeneration systems, renewable energy

Procedia PDF Downloads 117
2207 Combined Mindfulness and Exercise Intervention for Depressive and Insomnia Symptoms in Chinese Students: A Pilot Randomized Controlled Trial

Authors: Xinli Chi, Xiaoqi Wei

Abstract:

Background: Body-mind theory refers to the concept that the mind and body are interconnected; in this case, combining aerobic exercise and mindfulness-based training may be beneficial for mind-body health; however, there is limited evidence regarding their effects and potential mechanisms among Chinese university students. Therefore, the current study aims to examine the preliminary effects and feasibility of the combined intervention on depressive and insomnia symptoms, as well as to explore the underlying mechanisms. Methods: This is a two-arm pilot study of a randomized, controlled trial. Sixty-one Chinese university students were randomly allocated to 8-week combined intervention group (aerobic exercise plus mindfulness, N = 36) or control group (N = 36). In addition, 8 participants in combined intervention group were later volunteer to engage in semi-structured interview. The Self-Rating Depression Scale (SDS) and the Youth Self-Rating Insomnia Scales (YSIS) were used to measure depressive and insomnia symptoms, respectively. The intervention outcome and feasibility were tested by repeated-measures ANOVA, mediation model, and qualitative analysis. Results: The study included 31 participants in the intervention group and 30 participants in the control group, all of whom completed pre-test and post-test questionnaires. The results of the repeated-measures ANOVA showed that the combined intervention was effective in reducing depressive and insomnia symptoms among university students. Moreover, the mediation analysis suggested that improvement in insomnia symptoms might be a significant mechanism for the combined intervention. Qualitative analysis identified two main themes: “Helpful aspects of mind-body state” (including 7 sub-themes) and “Factors that influence the training effects” (including 3 sub-themes). Conclusions: The study confirmed the preliminary effect and feasibility of the combined intervention of mindfulness and aerobic exercise, while also exploring the potential mechanisms underlying this effect. Additionally, qualitative data provided valuable insights for optimizing future protocols.

Keywords: combined intervention, mindfulness, aerobic exercise, depressive symptoms, insomnia symptoms

Procedia PDF Downloads 87
2206 Industry 4.0 Adoption, Control Mechanism and Sustainable Performance of Healthcare Supply Chains under Disruptive Impact

Authors: Edward Nartey

Abstract:

Although the boundaries of sustainable performance and growth in the field of service supply chains (SCs) have been broadened by scholars in recent years, research on the impact and promises of Industry 4.0 Destructive Technologies (IDTs) on sustainability performance under disruptive events is still scarce. To mitigate disruptions in the SC and improve efficiency by identifying areas for cost savings, organizations have resorted to investments in digitalization, automation, and control mechanisms in recent years. However, little is known about the sustainability implications for IDT adoption and controls in service SCs, especially during disruptive events. To investigate this paradox, survey data were sought from 223 public health managers across Ghana and analyzed via covariance-based structural equations modelling. The results showed that both formal and informal control have a positive and significant relationship with IDT adoption. In addition, formal control has a significant and positive relationship with environmental and economic sustainability but an insignificant relationship with social sustainability. Furthermore, informal control positively impacts economic performance but has an insignificant relationship with social and environmental sustainability. While the findings highlight the prevalence of the IDTs being initiated by Ghanaian public health institutions (PHIs), this study concludes that the installed control systems in these organizations are inadequate for promoting sustainable SC behaviors under destructive events. Thus, in crisis situations, PHIs need to redesign their control systems to facilitate IDT integration towards sustainability issues in SCs.

Keywords: industry 4.0 destructive technologies, formal control, informal control, sustainable supply chain performance, public health organizations

Procedia PDF Downloads 50
2205 Evaluation System of Spatial Potential Under Bridges in High Density Urban Areas of Chongqing Municipality and Applied Research on Suitability

Authors: Xvelian Qin

Abstract:

Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability.

Keywords: space under bridge, potential evaluation, high density urban area, updated using

Procedia PDF Downloads 65
2204 Comparative Parametric and Emission Characteristics of Single Cylinder Spark Ignition Engine Using Gasoline, Ethanol, and H₂O as Micro Emulsion Fuels

Authors: Ufaith Qadri, M Marouf Wani

Abstract:

In this paper, the performance and emission characteristics of a Single Cylinder Spark Ignition engine have been investigated. The research is based on micro emulsion application as fuel in a gasoline engine. We have analyzed many micro emulsion compositions in various proportions, for predicting the performance of the Spark Ignition engine. This new technology of fuel modifications is emerging very rapidly as lot of research is going on in the field of micro emulsion fuels in Compression Ignition engines, but the micro emulsion fuel used in a Gasoline engine is very rare. The use of micro emulsion as fuel in a Spark Ignition engine is virtually unexplored. So, our main goal is to see the performance and emission characteristics of micro emulsions as fuel, in Spark Ignition engines, and finding which composition is more efficient. In this research, we have used various micro emulsion fuels whose composition varies for all the three blends, and their performance and emission characteristic were predicted in AVL Boost software. Conventional Gasoline fuel 90%, 80% and 85% were blended with co-surfactant Ethanol in different compositions, and water was used as an additive for making it crystal clear transparent micro emulsion fuel, which is thermodynamically stable. By comparing the performances of engines, the power has shown similarity for micro emulsion fuel and conventional Gasoline fuel. On the other hand, Torque and BMEP shows increase for all the micro emulsion fuels. Micro emulsion fuel shows higher thermal efficiency and lower Specific Fuel Consumption for all the compositions as compared to the Gasoline fuel. Carbon monoxide and Hydro carbon emissions were also measured. The result shows that emissions decrease for all the composition of micro emulsion fuels, and proved to be the most efficient fuel both in terms of performance and emission characteristics.

Keywords: AVL Boost, emissions, microemulsions, performance, Spark Ignition (SI) engine

Procedia PDF Downloads 252
2203 Absorption and Carrier Transport Properties of Doped Hematite

Authors: Adebisi Moruf Ademola

Abstract:

Hematite (Fe2O3),commonly known as ‘rust’ which usually surfaced on metal when exposed to some climatic materials. This emerges as a promising candidate for photoelectrochemical (PEC) water splitting due to its favorable physiochemical properties of the narrow band gap (2.1–2.2 eV), chemical stability, nontoxicity, abundance, and low cost. However, inherent limitations such as short hole diffusion length (2–4 nm), high charge recombination rate, and slow oxygen evolution reaction kinetics inhibit the PEC performances of a-Fe2O3 photoanodes. As such, given the narrow bandgap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for a-Fe2O3 photoanodes and metal ion doping as an effective way to promote charge transfer by increasing donor density and improving the electronic conductivity of a-Fe2O3. Hematite attracts enormous efforts with a number of metal ions (Ti, Zr, Sn, Pt ,etc.) as dopants. A facile deposition-annealing process showed greatly enhanced PEC performance due to the increased donor density and reduced electron-hole recombination at the time scale beyond a few picoseconds. Zr doping was also found to enhance the PEC performance of a-Fe2O3 nanorod arrays by reducing the rate of electron-hole recombination. Slow water oxidation reaction kinetics, another main factor limiting the PEC water splitting efficiency of aFe2O3 as photoanodes, was previously found to be effectively improved by surface treatment.

Keywords: deposition-annealing, hematite, metal ion doping, nanorod

Procedia PDF Downloads 214