Search results for: multiple input multiple output
201 Viability of Permaculture Principles to Sustainable Agriculture Enterprises in Malta
Authors: Byron Baron
Abstract:
Malta is a Mediterranean archipelago presenting a combination of environmental conditions which are less suitable for agriculture. This has resulted in a heavy dependence on agricultural chemicals, as well as over-extraction of groundwater, compounded by concomitant destruction of natural habitat surrounding the land areas used for agriculture. Such prolonged intensive land use has resulted in even greater degradation of Maltese soils. This study was thus designed with the goal of assessing the viability of implementing a sustainable agricultural system based on permaculture practices compared to the traditional local practices applied for intensive farming. The permaculture model was implemented over a period of two years for a number of locally-grown staple crops. The tangible targets included improved soil health, reduced water consumption, increased reliance on renewable energy, increased wild plant and insect diversity, and sustained crop yield. To achieve this in the permaculture test area, numerous practices were introduced. In line with permaculture principles land, tillage was reduced, only natural fertilisers were used, no herbicides or pesticides were used, irrigation was linked to a desalination system with sensors for monitoring soil parameters, mulching was practiced, and a photovoltaic system was installed. Furthermore, areas for wild plants were increased and controlled only by trimming, not mowing. A variety of environmental parameters were measured at regular intervals as well as crop yield (in kilos of produce) in order to quantify if any improvements in crop output and environmental conditions were obtained. The results obtained show a very slight improvement in overall soil health due to the brevity of the test period. Water consumption was reduced by over 50% with no apparent losses or ill effects on the crops. Renewable energy was sufficient to provide all electric power on-site, so apart from the initial investment costs, there were no limitations. Moreover, surrounding the commercial crops with borders of wild plants whilst only taking up less than 15% of the total land area assisted pollination, increased animal visitors, and did not give rise to any pest infestations. The conclusion from this study was that whilst results are promising, more detailed and long-term studies are required to understand the full extent of the implications brought about by such a transition, which hints towards the untapped potential of investing in the available resources on the island with the goal of improving the balance between economic prosperity and ecological sustainability.Keywords: agronomic measures, ecological amplification, sustainability, permaculture
Procedia PDF Downloads 97200 Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car
Authors: Erik Vassøy Olsen, Hirpa G. Lemu
Abstract:
Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat race car they have designed and built. The design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has a direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from the University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the above-mentioned requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of a possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with an equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions.Keywords: composite material, Formula student, ION racing, monocoque design, structural equivalence
Procedia PDF Downloads 501199 Design, Simulation and Construction of 2.4GHz Microstrip Patch Antenna for Improved Wi-Fi Reception
Authors: Gabriel Ugalahi, Dominic S. Nyitamen
Abstract:
This project seeks to improve Wi-Fi reception by utilizing the properties of directional microstrip patch antennae. Where there is a dense population of Wi-Fi signal, several signal sources transmitting on the same frequency band and indeed channel constitutes interference to each other. The time it takes for request to be received, resolved and response given between a user and the resource provider is increased considerably. By deploying a directional patch antenna with a narrow bandwidth, the range of frequency received is reduced and should help in limiting the reception of signal from unwanted sources. A rectangular microstrip patch antenna (RMPA) is designed to operate at the Industrial Scientific and Medical (ISM) band (2.4GHz) commonly used in Wi-Fi network deployment. The dimensions of the antenna are calculated and these dimensions are used to generate a model on Advanced Design System (ADS), a microwave simulator. Simulation results are then analyzed and necessary optimization is carried out to further enhance the radiation quality so as to achieve desired results. Impedance matching at 50Ω is also obtained by using the inset feed method. Final antenna dimensions obtained after simulation and optimization are then used to implement practical construction on an FR-4 double sided copper clad printed circuit board (PCB) through a chemical etching process using ferric chloride (Fe2Cl). Simulation results show an RMPA operating at a centre frequency of 2.4GHz with a bandwidth of 40MHz. A voltage standing wave ratio (VSWR) of 1.0725 is recorded on a return loss of -29.112dB at input port showing an appreciable match in impedance to a source of 50Ω. In addition, a gain of 3.23dBi and directivity of 6.4dBi is observed during far-field analysis. On deployment, signal reception from wireless devices is improved due to antenna gain. A test source with a received signal strength indication (RSSI) of -80dBm without antenna installed on the receiver was improved to an RSSI of -61dBm. In addition, the directional radiation property of the RMPA prioritizes signals by pointing in the direction of a preferred signal source thus, reducing interference from undesired signal sources. This was observed during testing as rotation of the antenna on its axis resulted to the gain of signal in-front of the patch and fading of signals away from the front.Keywords: advanced design system (ADS), inset feed, received signal strength indicator (RSSI), rectangular microstrip patch antenna (RMPA), voltage standing wave ratio (VSWR), wireless fidelity (Wi-Fi)
Procedia PDF Downloads 222198 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition
Authors: M. Beusink, E. W. C. Coenen
Abstract:
The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures
Procedia PDF Downloads 233197 An Empirical Analysis of Farmers Field Schools and Effect on Tomato Productivity in District Malakand Khyber Pakhtunkhwa-Pakistan
Authors: Mahmood Iqbal, Khalid Nawab, Tachibana Satoshi
Abstract:
Farmer Field School (FFS) is constantly aims to assist farmers to determine and learn about field ecology and integrated crop management. The study was conducted to examine the change in productivity of tomato crop in the study area; to determine increase in per acre yield of the crop, and find out reduction in per acre input cost. A study of tomato crop was conducted in ten villages namely Jabban, Bijligar Colony, Palonow, Heroshah, Zara Maira, Deghar Ghar, Sidra Jour, Anar Thangi, Miangano Korona and Wartair of district Malakand. From each village 15 respondents were selected randomly on the basis of identical allocation making sample size of 150 respondents. The research was based on primary as well as secondary data. Primary data was collected from farmers while secondary data were taken from Agriculture Extension Department Dargai, District Malakand. Interview schedule was planned and each farmer was interviewed personally. The study was based on comparison of cost, yield and income of tomato before and after FFS. Paired t-test and Statistical Package for Social Sciences (SPSS) was used for analysis; outcome of the study show that integrated pest management project has brought a positive change in the attitude of farmers of the project area through FFS approach. In district Malakand 66.0% of the respondents were between the age group of 31-50 years, 11.3% of respondents had primary level of education, 12.7% of middle level, 28.7% metric level, 3.3% of intermediate level and 2.0% of graduate level of education while 42.0% of respondents were illiterate and have no education. Average land holding size of farmers was 6.47 acres, cost of seed, crop protection from insect pest and crop protection from diseases was reduced by Rs. 210.67, Rs. 2584.43 and Rs. 3044.16 respectively, the cost of fertilizers and cost of farm yard manure was increased by Rs.1548.87 and Rs. 1151.40 respectively while tomato yield was increased by 1585.03 kg/acre from 7663.87 to 9248.90 kg/acre. The role of FFS initiate by integrated pest management project through department of agriculture extension for the development of agriculture was worth mentioning. It has brought enhancement in crop yield of tomato and their income through FFS approach. On the basis of results of the research studies, integrated pest management project should spread their developmental activities for maximum participation of the complete rural masses through participatory FFS approach.Keywords: agriculture, Farmers field schools, extension education, tomato
Procedia PDF Downloads 613196 Optimization of Ultrasound-Assisted Extraction of Oil from Spent Coffee Grounds Using a Central Composite Rotatable Design
Authors: Malek Miladi, Miguel Vegara, Maria Perez-Infantes, Khaled Mohamed Ramadan, Antonio Ruiz-Canales, Damaris Nunez-Gomez
Abstract:
Coffee is the second consumed commodity worldwide, yet it also generates colossal waste. Proper management of coffee waste is proposed by converting them into products with higher added value to achieve sustainability of the economic and ecological footprint and protect the environment. Based on this, a study looking at the recovery of coffee waste is becoming more relevant in recent decades. Spent coffee grounds (SCG's) resulted from brewing coffee represents the major waste produced among all coffee industry. The fact that SCGs has no economic value be abundant in nature and industry, do not compete with agriculture and especially its high oil content (between 7-15% from its total dry matter weight depending on the coffee varieties, Arabica or Robusta), encourages its use as a sustainable feedstock for bio-oil production. The bio-oil extraction is a crucial step towards biodiesel production by the transesterification process. However, conventional methods used for oil extraction are not recommended due to their high consumption of energy, time, and generation of toxic volatile organic solvents. Thus, finding a sustainable, economical, and efficient extraction technique is crucial to scale up the process and to ensure more environment-friendly production. Under this perspective, the aim of this work was the statistical study to know an efficient strategy for oil extraction by n-hexane using indirect sonication. The coffee waste mixed Arabica and Robusta, which was used in this work. The temperature effect, sonication time, and solvent-to-solid ratio on the oil yield were statistically investigated as dependent variables by Central Composite Rotatable Design (CCRD) 23. The results were analyzed using STATISTICA 7 StatSoft software. The CCRD showed the significance of all the variables tested (P < 0.05) on the process output. The validation of the model by analysis of variance (ANOVA) showed good adjustment for the results obtained for a 95% confidence interval, and also, the predicted values graph vs. experimental values confirmed the satisfactory correlation between the model results. Besides, the identification of the optimum experimental conditions was based on the study of the surface response graphs (2-D and 3-D) and the critical statistical values. Based on the CCDR results, 29 ºC, 56.6 min, and solvent-to-solid ratio 16 were the better experimental conditions defined statistically for coffee waste oil extraction using n-hexane as solvent. In these conditions, the oil yield was >9% in all cases. The results confirmed the efficiency of using an ultrasound bath in extracting oil as a more economical, green, and efficient way when compared to the Soxhlet method.Keywords: coffee waste, optimization, oil yield, statistical planning
Procedia PDF Downloads 119195 Co-Creation of an Entrepreneurship Living Learning Community: A Case Study of Interprofessional Collaboration
Authors: Palak Sadhwani, Susie Pryor
Abstract:
This paper investigates interprofessional collaboration (IPC) in the context of entrepreneurship education. Collaboration has been found to enhance problem solving, leverage expertise, improve resource allocation, and create organizational efficiencies. However, research suggests that successful collaboration is hampered by individual and organizational characteristics. IPC occurs when two or more professionals work together to solve a problem or achieve a common objective. The necessity for this form of collaboration is particularly prevalent in cross-disciplinary fields. In this study, we utilize social exchange theory (SET) to examine IPC in the context of an entrepreneurship living learning community (LLC) at a large university in the Western United States. Specifically, we explore these research questions: How are rules or norms established that govern the collaboration process? How are resources valued and distributed? How are relationships developed and managed among and between parties? LLCs are defined as groups of students who live together in on-campus housing and share similar academic or special interests. In 2007, the Association of American Colleges and Universities named living communities a high impact practice (HIP) because of their capacity to enhance and give coherence to undergraduate education. The entrepreneurship LLC in this study was designed to offer first year college students the opportunity to live and learn with like-minded students from diverse backgrounds. While the university offers other LLC environments, the target residents for this LLC are less easily identified and are less apparently homogenous than residents of other LLCs on campus (e.g., Black Scholars, LatinX, Women in Science and Education), creating unique challenges. The LLC is a collaboration between the university’s College of Business & Public Administration and the Department of Housing and Residential Education (DHRE). Both parties are contributing staff, technology, living and learning spaces, and other student resources. This paper reports the results an ethnographic case study which chronicles the start-up challenges associated with the co-creation of the LLC. SET provides a general framework for examining how resources are valued and exchanged. In this study, SET offers insights into the processes through which parties negotiate tensions resulting from approaching this shared project from very different perspectives and cultures in a novel project environment. These tensions occur due to a variety of factors, including team formation and management, allocation of resources, and differing output expectations. The results are useful to both scholars and practitioners of entrepreneurship education and organizational management. They suggest probably points of conflict and potential paths towards reconciliation.Keywords: case study, ethnography, interprofessional collaboration, social exchange theory
Procedia PDF Downloads 140194 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 94193 Open Space Use in University Campuses with User Requirements Analysis: The Case of Eskişehir Osmangazi University Meşelik Campus
Authors: Aysen Celen Ozturk, Hatice Dulger
Abstract:
University may be defined as a teaching institution consisting of faculties, institutes, colleges, and units that have undergraduate and graduate education, scientific research and publications. It has scientific autonomy and public legal personality. Today, universities are not only the institutions in which students and lecturers experience education, training and scientific work. They also offer social, cultural and artistic activities that strengthen the link with the city. This also incorporates all city users into the campus borders. Thus, universities contribute to social and individual development of the country by providing science, art, socio-cultural development, communication and socialization with people of different cultural and social backgrounds. Moreover, universities provide an active social life, where the young population is the majority. This enables the sense of belonging to the users to develop, to increase the interaction between academicians and students, and to increase the learning / producing community by continuing academic sharing environments outside the classrooms. For this reason, besides academic spaces in university campuses, the users also need closed and open spaces where they can socialize, spend time together and relax. Public open spaces are the most important social spaces that individuals meet, express themselves and share. Individuals belonging to different socio-cultural structures and ethnic groups maintain their social experiences with the physical environment they are in, the outdoors, and their actions and sharing in these spaces. While university campuses are being designed for their individual and social development roles, user needs must be determined correctly and design should be realized in this direction. While considering that requirements may change over time, user satisfaction should be questioned at certain periods and new arrangements should be made in existing applications in the direction of current demands. This study aims to determine the user requirements through the case of Eskişehir Osmangazi University, Meşelik Campus / Turkey. Post Occupancy Evaluation (POE) questionnaire, cognitive mapping and deep interview methods are used in the research process. All these methods show that the students, academicians and other officials in the Meşelik Campus of Eskişehir Osmangazi University find way finding elements insufficient and are in need of efficient landscape design and social spaces. This study is important in terms of determining the needs of the users as a design input. This will help improving the quality of common space in Eskişehir Osmangazi University and in other similar universities.Keywords: university campuses, public open space, user requirement, post occupancy evaluation
Procedia PDF Downloads 243192 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning
Authors: Hossein Havaeji, Tony Wong, Thien-My Dao
Abstract:
1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning
Procedia PDF Downloads 122191 Eco-Nanofiltration Membranes: Nanofiltration Membrane Technology Utilization-Based Fiber Pineapple Leaves Waste as Solutions for Industrial Rubber Liquid Waste Processing and Fertilizer Crisis in Indonesia
Authors: Andi Setiawan, Annisa Ulfah Pristya
Abstract:
Indonesian rubber plant area reached 2.9 million hectares with productivity reached 1.38 million. High rubber productivity is directly proportional to the amount of waste produced rubber processing industry. Rubber industry would produce a negative impact on the rubber industry in the form of environmental pollution caused by waste that has not been treated optimally. Rubber industrial wastewater containing high-nitrogen compounds (nitrate and ammonia) and phosphate compounds which cause water pollution and odor problems due to the high ammonia content. On the other hand, demand for NPK fertilizers in Indonesia continues to increase from year to year and in need of ammonia and phosphate as raw material. Based on domestic demand, it takes a year to 400,000 tons of ammonia and Indonesia imports 200,000 tons of ammonia per year valued at IDR 4.2 trillion. As well, the lack of phosphoric acid to be imported from Jordan, Morocco, South Africa, the Philippines, and India as many as 225 thousand tons per year. During this time, the process of wastewater treatment is generally done with a rubber on the tank to contain the waste and then precipitated, filtered and the rest released into the environment. However, this method is inefficient and thus require high energy costs because through many stages before producing clean water that can be discharged into the river. On the other hand, Indonesia has the potential of pineapple fruit can be harvested throughout the year in all of Indonesia. In 2010, production reached 1,406,445 tons of pineapple in Indonesia or about 9.36 percent of the total fruit production in Indonesia. Increased productivity is directly proportional to the amount of pineapple waste pineapple leaves are kept continuous and usually just dumped in the ground or disposed of with other waste at the final disposal. Through Eco-Nanofiltration Membrane-Based Fiber Pineapple leaves Waste so that environmental problems can be solved efficiently. Nanofiltration is a process that uses pressure as a driving force that can be either convection or diffusion of each molecule. Nanofiltration membranes that can split water to nano size so as to separate the waste processed residual economic value that N and P were higher as a raw material for the manufacture of NPK fertilizer to overcome the crisis in Indonesia. The raw materials were used to manufacture Eco-Nanofiltration Membrane is cellulose from pineapple fiber which processed into cellulose acetate which is biodegradable and only requires a change of the membrane every 6 months. Expected output target is Green eco-technology so with nanofiltration membranes not only treat waste rubber industry in an effective, efficient and environmentally friendly but also lowers the cost of waste treatment compared to conventional methods.Keywords: biodegradable, cellulose diacetate, fertilizers, pineapple, rubber
Procedia PDF Downloads 446190 Harvesting Value-added Products Through Anodic Electrocatalytic Upgrading Intermediate Compounds Utilizing Biomass to Accelerating Hydrogen Evolution
Authors: Mehran Nozari-Asbemarz, Italo Pisano, Simin Arshi, Edmond Magner, James J. Leahy
Abstract:
Integrating electrolytic synthesis with renewable energy makes it feasible to address urgent environmental and energy challenges. Conventional water electrolyzers concurrently produce H₂ and O₂, demanding additional procedures in gas separation to prevent contamination of H₂ with O₂. Moreover, the oxygen evolution reaction (OER), which is sluggish and has a low overall energy conversion efficiency, does not deliver a significant value product on the electrode surface. Compared to conventional water electrolysis, integrating electrolytic hydrogen generation from water with thermodynamically more advantageous aqueous organic oxidation processes can increase energy conversion efficiency and create value-added compounds instead of oxygen at the anode. One strategy is to use renewable and sustainable carbon sources from biomass, which has a large annual production capacity and presents a significant opportunity to supplement carbon sourced from fossil fuels. Numerous catalytic techniques have been researched in order to utilize biomass economically. Because of its safe operating conditions, excellent energy efficiency, and reasonable control over production rate and selectivity using electrochemical parameters, electrocatalytic upgrading stands out as an appealing choice among the numerous biomass refinery technologies. Therefore, we propose a broad framework for coupling H2 generation from water splitting with oxidative biomass upgrading processes. Four representative biomass targets were considered for oxidative upgrading that used a hierarchically porous CoFe-MOF/LDH @ Graphite Paper bifunctional electrocatalyst, including glucose, ethanol, benzyl, furfural, and 5-hydroxymethylfurfural (HMF). The potential required to support 50 mA cm-2 is considerably lower than (~ 380 mV) the potential for OER. All four compounds can be oxidized to yield liquid byproducts with economic benefit. The electrocatalytic oxidation of glucose to the value-added products, gluconic acid, glucuronic acid, and glucaric acid, was examined in detail. The cell potential for combined H₂ production and glucose oxidation was substantially lower than for water splitting (1.44 V(RHE) vs. 1.82 V(RHE) for 50 mA cm-2). In contrast, the oxidation byproduct at the anode was significantly more valuable than O₂, taking advantage of the more favorable glucose oxidation in comparison to the OER. Overall, such a combination of HER and oxidative biomass valorization using electrocatalysts prevents the production of potentially explosive H₂/O₂mixtures and produces high-value products at both electrodes with lower voltage input, thereby increasing the efficiency and activity of electrocatalytic conversion.Keywords: biomass, electrocatalytic, glucose oxidation, hydrogen evolution
Procedia PDF Downloads 96189 A 1H NMR-Linked PCR Modelling Strategy for Tracking the Fatty Acid Sources of Aldehydic Lipid Oxidation Products in Culinary Oils Exposed to Simulated Shallow-Frying Episodes
Authors: Martin Grootveld, Benita Percival, Sarah Moumtaz, Kerry L. Grootveld
Abstract:
Objectives/Hypotheses: The adverse health effect potential of dietary lipid oxidation products (LOPs) has evoked much clinical interest. Therefore, we employed a 1H NMR-linked Principal Component Regression (PCR) chemometrics modelling strategy to explore relationships between data matrices comprising (1) aldehydic LOP concentrations generated in culinary oils/fats when exposed to laboratory-simulated shallow frying practices, and (2) the prior saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) contents of such frying media (FM), together with their heating time-points at a standard frying temperature (180 oC). Methods: Corn, sunflower, extra virgin olive, rapeseed, linseed, canola, coconut and MUFA-rich algae frying oils, together with butter and lard, were heated according to laboratory-simulated shallow-frying episodes at 180 oC, and FM samples were collected at time-points of 0, 5, 10, 20, 30, 60, and 90 min. (n = 6 replicates per sample). Aldehydes were determined by 1H NMR analysis (Bruker AV 400 MHz spectrometer). The first (dependent output variable) PCR data matrix comprised aldehyde concentration scores vectors (PC1* and PC2*), whilst the second (predictor) one incorporated those from the fatty acid content/heating time variables (PC1-PC4) and their first-order interactions. Results: Structurally complex trans,trans- and cis,trans-alka-2,4-dienals, 4,5-epxy-trans-2-alkenals and 4-hydroxy-/4-hydroperoxy-trans-2-alkenals (group I aldehydes predominantly arising from PUFA peroxidation) strongly and positively loaded on PC1*, whereas n-alkanals and trans-2-alkenals (group II aldehydes derived from both MUFA and PUFA hydroperoxides) strongly and positively loaded on PC2*. PCR analysis of these scores vectors (SVs) demonstrated that PCs 1 (positively-loaded linoleoylglycerols and [linoleoylglycerol]:[SFA] content ratio), 2 (positively-loaded oleoylglycerols and negatively-loaded SFAs), 3 (positively-loaded linolenoylglycerols and [PUFA]:[SFA] content ratios), and 4 (exclusively orthogonal sampling time-points) all powerfully contributed to aldehydic PC1* SVs (p 10-3 to < 10-9), as did all PC1-3 x PC4 interaction ones (p 10-5 to < 10-9). PC2* was also markedly dependent on all the above PC SVs (PC2 > PC1 and PC3), and the interactions of PC1 and PC2 with PC4 (p < 10-9 in each case), but not the PC3 x PC4 contribution. Conclusions: NMR-linked PCR analysis is a valuable strategy for (1) modelling the generation of aldehydic LOPs in heated cooking oils and other FM, and (2) tracking their unsaturated fatty acid (UFA) triacylglycerol sources therein.Keywords: frying oils, lipid oxidation products, frying episodes, chemometrics, principal component regression, NMR Analysis, cytotoxic/genotoxic aldehydes
Procedia PDF Downloads 171188 Comparative Analysis of Simulation-Based and Mixed-Integer Linear Programming Approaches for Optimizing Building Modernization Pathways Towards Decarbonization
Authors: Nico Fuchs, Fabian Wüllhorst, Laura Maier, Dirk Müller
Abstract:
The decarbonization of building stocks necessitates the modernization of existing buildings. Key measures for this include reducing energy demands through insulation of the building envelope, replacing heat generators, and installing solar systems. Given limited financial resources, it is impractical to modernize all buildings in a portfolio simultaneously; instead, prioritization of buildings and modernization measures for a given planning horizon is essential. Optimization models for modernization pathways can assist portfolio managers in this prioritization. However, modeling and solving these large-scale optimization problems, often represented as mixed-integer problems (MIP), necessitates simplifying the operation of building energy systems particularly with respect to system dynamics and transient behavior. This raises the question of which level of simplification remains sufficient to accurately account for realistic costs and emissions of building energy systems, ensuring a fair comparison of different modernization measures. This study addresses this issue by comparing a two-stage simulation-based optimization approach with a single-stage mathematical optimization in a mixed-integer linear programming (MILP) formulation. The simulation-based approach serves as a benchmark for realistic energy system operation but requires a restriction of the solution space to discrete choices of modernization measures, such as the sizing of heating systems. After calculating the operation of different energy systems in terms of the resulting final energy demands in simulation models on a first stage, the results serve as input for a second stage MILP optimization, where the design of each building in the portfolio is optimized. In contrast to the simulation-based approach, the MILP-based approach can capture a broader variety of modernization measures due to the efficiency of MILP solvers but necessitates simplifying the building energy system operation. Both approaches are employed to determine the cost-optimal design and dimensioning of several buildings in a portfolio to meet climate targets within limited yearly budgets, resulting in a modernization pathway for the entire portfolio. The comparison reveals that the MILP formulation successfully captures design decisions of building energy systems, such as the selection of heating systems and the modernization of building envelopes. However, the results regarding the optimal dimensioning of heating technologies differ from the results of the two-stage simulation-based approach, as the MILP model tends to overestimate operational efficiency, highlighting the limitations of the MILP approach.Keywords: building energy system optimization, model accuracy in optimization, modernization pathways, building stock decarbonization
Procedia PDF Downloads 34187 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator
Authors: Jaeyoung Lee
Abstract:
Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network
Procedia PDF Downloads 129186 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data
Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour
Abstract:
Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.Keywords: physical activity, machine learning, under 5s, disability, accelerometer
Procedia PDF Downloads 210185 Working Memory and Phonological Short-Term Memory in the Acquisition of Academic Formulaic Language
Authors: Zhicheng Han
Abstract:
This study examines the correlation between knowledge of formulaic language, working memory (WM), and phonological short-term memory (PSTM) in Chinese L2 learners of English. This study investigates if WM and PSTM correlate differently to the acquisition of formulaic language, which may be relevant for the discourse around the conceptualization of formulas. Connectionist approaches have lead scholars to argue that formulas are form-meaning connections stored whole, making PSTM significant in the acquisitional process as it pertains to the storage and retrieval of chunk information. Generativist scholars, on the other hand, argued for active participation of interlanguage grammar in the acquisition and use of formulaic language, where formulas are represented in the mind but retain the internal structure built around a lexical core. This would make WM, especially the processing component of WM an important cognitive factor since it plays a role in processing and holding information for further analysis and manipulation. The current study asked L1 Chinese learners of English enrolled in graduate programs in China to complete a preference raking task where they rank their preference for formulas, grammatical non-formulaic expressions, and ungrammatical phrases with and without the lexical core in academic contexts. Participants were asked to rank the options in order of the likeliness of them encountering these phrases in the test sentences within academic contexts. Participants’ syntactic proficiency is controlled with a cloze test and grammar test. Regression analysis found a significant relationship between the processing component of WM and preference of formulaic expressions in the preference ranking task while no significant correlation is found for PSTM or syntactic proficiency. The correlational analysis found that WM, PSTM, and the two proficiency test scores have significant covariates. However, WM and PSTM have different predictor values for participants’ preference for formulaic language. Both storage and processing components of WM are significantly correlated with the preference for formulaic expressions while PSTM is not. These findings are in favor of the role of interlanguage grammar and syntactic knowledge in the acquisition of formulaic expressions. The differing effects of WM and PSTM suggest that selective attention to and processing of the input beyond simple retention play a key role in successfully acquiring formulaic language. Similar correlational patterns were found for preferring the ungrammatical phrase with the lexical core of the formula over the ones without the lexical core, attesting to learners’ awareness of the lexical core around which formulas are constructed. These findings support the view that formulaic phrases retain internal syntactic structures that are recognized and processed by the learners.Keywords: formulaic language, working memory, phonological short-term memory, academic language
Procedia PDF Downloads 62184 The Use of Stroke Journey Map in Improving Patients' Perceived Knowledge in Acute Stroke Unit
Authors: C. S. Chen, F. Y. Hui, B. S. Farhana, J. De Leon
Abstract:
Introduction: Stroke can lead to long-term disability, affecting one’s quality of life. Providing stroke education to patient and family members is essential to optimize stroke recovery and prevent recurrent stroke. Currently, nurses conduct stroke education by handing out pamphlets and explaining their contents to patients. However, this is not always effective as nurses have varying levels of knowledge and depth of content discussed with the patient may not be consistent. With the advancement of information technology, health education is increasingly being disseminated via electronic software and studies have shown this to have benefitted patients. Hence, a multi-disciplinary team consisting of doctors, nurses and allied health professionals was formed to create the stroke journey map software to deliver consistent and concise stroke education. Research Objectives: To evaluate the effectiveness of using a stroke journey map software in improving patients’ perceived knowledge in the acute stroke unit during hospitalization. Methods: Patients admitted to the acute stroke unit were given stroke journey map software during patient education. The software consists of 31 interactive slides that are brightly coloured and 4 videos, based on input provided by the multi-disciplinary team. Participants were then assessed with pre-and-post survey questionnaires before and after viewing the software. The questionnaire consists of 10 questions with a 5-point Likert scale which sums up to a total score of 50. The inclusion criteria are patients diagnosed with ischemic stroke and are cognitively alert and oriented. This study was conducted between May 2017 to October 2017. Participation was voluntary. Results: A total of 33 participants participated in the study. The results demonstrated that the use of a stroke journey map as a stroke education medium was effective in improving patients’ perceived knowledge. A comparison of pre- and post-implementation data of stroke journey map revealed an overall mean increase in patients’ perceived knowledge from 24.06 to 40.06. The data is further broken down to evaluate patients’ perceived knowledge in 3 domains: (1) Understanding of disease process; (2) Management and treatment plans; (3) Post-discharge care. Each domain saw an increase in mean score from 10.7 to 16.2, 6.9 to 11.9 and 6.6 to 11.7 respectively. Project Impact: The implementation of stroke journey map has a positive impact in terms of (1) Increasing patient’s perceived knowledge which could contribute to greater empowerment of health; (2) Reducing need for stroke education material printouts making it environmentally friendly; (3) Decreasing time nurses spent on giving education resulting in more time to attend to patients’ needs. Conclusion: This study has demonstrated the benefit of using stroke journey map as a platform for stroke education. Overall, it has increased patients’ perceived knowledge in understanding their disease process, the management and treatment plans as well as the discharge process.Keywords: acute stroke, education, ischemic stroke, knowledge, stroke
Procedia PDF Downloads 161183 The Lonely Entrepreneur: Antecedents and Effects of Social Isolation on Entrepreneurial Intention and Output
Authors: Susie Pryor, Palak Sadhwani
Abstract:
The purpose of this research is to provide the foundations for a broad research agenda examining the role loneliness plays in entrepreneurship. While qualitative research in entrepreneurship incidentally captures the existence of loneliness as a part of the lived reality of entrepreneurs, to the authors’ knowledge, no academic work has to date explored this construct in this context. Moreover, many individuals reporting high levels of loneliness (women, ethnic minorities, immigrants, low income, low education) reflect those who are currently driving small business growth in the United States. Loneliness is a persistent state of emotional distress which results from feelings of estrangement and rejection or develops in the absence of social relationships and interactions. Empirical work finds links between loneliness and depression, suicide and suicide ideation, anxiety, hostility and passiveness, lack of communication and adaptability, shyness, poor social skills and unrealistic social perceptions, self-doubts, fear of rejection, and negative self-evaluation. Lonely individuals have been found to exhibit lower levels of self-esteem, higher levels of introversion, lower affiliative tendencies, less assertiveness, higher sensitivity to rejection, a heightened external locus of control, intensified feelings of regret and guilt over past events and rigid and overly idealistic goals concerning the future. These characteristics are likely to impact entrepreneurs and their work. Research identifies some key dangers of loneliness. Loneliness damages human love and intimacy, can disturb and distract individuals from channeling creative and effective energies in a meaningful way, may result in the formation of premature, poorly thought out and at times even irresponsible decisions, and produce hard and desensitized individuals, with compromised health and quality of life concerns. The current study utilizes meta-analysis and text analytics to distinguish loneliness from other related constructs (e.g., social isolation) and categorize antecedents and effects of loneliness across subpopulations. This work has the potential to materially contribute to the field of entrepreneurship by cleanly defining constructs and providing foundational background for future research. It offers a richer understanding of the evolution of loneliness and related constructs over the life cycle of entrepreneurial start-up and development. Further, it suggests preliminary avenues for exploration and methods of discovery that will result in knowledge useful to the field of entrepreneurship. It is useful to both entrepreneurs and those work with them as well as academics interested in the topics of loneliness and entrepreneurship. It adopts a grounded theory approach.Keywords: entrepreneurship, grounded theory, loneliness, meta-analysis
Procedia PDF Downloads 112182 Molecular Modeling and Prediction of the Physicochemical Properties of Polyols in Aqueous Solution
Authors: Maria Fontenele, Claude-Gilles Dussap, Vincent Dumouilla, Baptiste Boit
Abstract:
Roquette Frères is a producer of plant-based ingredients that employs many processes to extract relevant molecules and often transforms them through chemical and physical processes to create desired ingredients with specific functionalities. In this context, Roquette encounters numerous multi-component complex systems in their processes, including fibers, proteins, and carbohydrates, in an aqueous environment. To develop, control, and optimize both new and old processes, Roquette aims to develop new in silico tools. Currently, Roquette uses process modelling tools which include specific thermodynamic models and is willing to develop computational methodologies such as molecular dynamics simulations to gain insights into the complex interactions in such complex media, and especially hydrogen bonding interactions. The issue at hand concerns aqueous mixtures of polyols with high dry matter content. The polyols mannitol and sorbitol molecules are diastereoisomers that have nearly identical chemical structures but very different physicochemical properties: for example, the solubility of sorbitol in water is 2.5 kg/kg of water, while mannitol has a solubility of 0.25 kg/kg of water at 25°C. Therefore, predicting liquid-solid equilibrium properties in this case requires sophisticated solution models that cannot be based solely on chemical group contributions, knowing that for mannitol and sorbitol, the chemical constitutive groups are the same. Recognizing the significance of solvation phenomena in polyols, the GePEB (Chemical Engineering, Applied Thermodynamics, and Biosystems) team at Institut Pascal has developed the COSMO-UCA model, which has the structural advantage of using quantum mechanics tools to predict formation and phase equilibrium properties. In this work, we use molecular dynamics simulations to elucidate the behavior of polyols in aqueous solution. Specifically, we employ simulations to compute essential metrics such as radial distribution functions and hydrogen bond autocorrelation functions. Our findings illuminate a fundamental contrast: sorbitol and mannitol exhibit disparate hydrogen bond lifetimes within aqueous environments. This observation serves as a cornerstone in elucidating the divergent physicochemical properties inherent to each compound, shedding light on the nuanced interplay between their molecular structures and water interactions. We also present a methodology to predict the physicochemical properties of complex solutions, taking as sole input the three-dimensional structure of the molecules in the medium. Finally, by developing knowledge models, we represent some physicochemical properties of aqueous solutions of sorbitol and mannitol.Keywords: COSMO models, hydrogen bond, molecular dynamics, thermodynamics
Procedia PDF Downloads 42181 Transducers for Measuring Displacements of Rotating Blades in Turbomachines
Authors: Pavel Prochazka
Abstract:
The study deals with transducers for measuring vibration displacements of rotating blade tips in turbomachines. In order to prevent major accidents with extensive economic consequences, it shows an urgent need for every low-pressure steam turbine stage being equipped with modern non-contact measuring system providing information on blade loading, damage and residual lifetime under operation. The requirement of measuring vibration and static characteristics of steam turbine blades, therefore, calls for the development and operational verification of both new types of sensors and measuring principles and methods. The task is really demanding: to measure displacements of blade tips with a resolution of the order of 10 μm by speeds up to 750 m/s, humidity 100% and temperatures up to 200 °C. While in gas turbines are used primarily capacitive and optical transducers, these transducers cannot be used in steam turbines. The reason is moisture vapor, droplets of condensing water and dirt, which disable the function of sensors. Therefore, the most feasible approach was to focus on research of electromagnetic sensors featuring promising characteristics for given blade materials in a steam environment. Following types of sensors have been developed and both experimentally and theoretically studied in the Institute of Thermodynamics, Academy of Sciences of the Czech Republic: eddy-current, Hall effect, inductive and magnetoresistive. Eddy-current transducers demand a small distance of 1 to 2 mm and change properties in the harsh environment of steam turbines. Hall effect sensors have relatively low sensitivity, high values of offset, drift, and especially noise. Induction sensors do not require any supply current and have a simple construction. The magnitude of the sensors output voltage is dependent on the velocity of the measured body and concurrently on the varying magnetic induction, and they cannot be used statically. Magnetoresistive sensors are formed by magnetoresistors arranged into a Wheatstone bridge. Supplying the sensor from a current source provides better linearity. The MR sensors can be used permanently for temperatures up to 200 °C at lower values of the supply current of about 1 mA. The frequency range of 0 to 300 kHz is by an order higher comparing to the Hall effect and induction sensors. The frequency band starts at zero frequency, which is very important because the sensors can be calibrated statically. The MR sensors feature high sensitivity and low noise. The symmetry of the bridge arrangement leads to a high common mode rejection ratio and suppressing disturbances, which is important, especially in industrial applications. The MR sensors feature high sensitivity, high common mode rejection ratio, and low noise, which is important, especially in industrial applications. Magnetoresistive transducers provide a range of excellent properties indicating their priority for displacement measurements of rotating blades in turbomachines.Keywords: turbines, blade vibration, blade tip timing, non-contact sensors, magnetoresistive sensors
Procedia PDF Downloads 129180 Analyzing Temperature and Pressure Performance of a Natural Air-Circulation System
Authors: Emma S. Bowers
Abstract:
Perturbations in global environments and temperatures have heightened the urgency of creating cost-efficient, energy-neutral building techniques. Structural responses to this thermal crisis have included designs (including those of the building standard PassivHaus) with airtightness, window placement, insulation, solar orientation, shading, and heat-exchange ventilators as potential solutions or interventions. Limitations in the predictability of the circulation of cooled air through the ambient temperature gradients throughout a structure are one of the major obstacles facing these enhanced building methods. A diverse range of air-cooling devices utilizing varying technologies is implemented around the world. Many of them worsen the problem of climate change by consuming energy. Using natural ventilation principles of air buoyancy and density to circulate fresh air throughout a building with no energy input can combat these obstacles. A unique prototype of an energy-neutral air-circulation system was constructed in order to investigate potential temperature and pressure gradients related to the stack effect (updraft of air through a building due to changes in air pressure). The stack effect principle maintains that since warmer air rises, it will leave an area of low pressure that cooler air will rush in to fill. The result is that warmer air will be expelled from the top of the building as cooler air is directed through the bottom, creating an updraft. Stack effect can be amplified by cooling the air near the bottom of a building and heating the air near the top. Using readily available, mostly recyclable or biodegradable materials, an insulated building module was constructed. A tri-part construction model was utilized: a subterranean earth-tube heat exchanger constructed of PVC pipe and placed in a horizontally oriented trench, an insulated, airtight cube aboveground to represent a building, and a solar chimney (painted black to increase heat in the out-going air). Pressure and temperature sensors were placed at four different heights within the module as well as outside, and data was collected for a period of 21 days. The air pressures and temperatures over the course of the experiment were compared and averaged. The promise of this design is that it represents a novel approach which directly addresses the obstacles of air flow and expense, using the physical principle of stack effect to draw a continuous supply of fresh air through the structure, using low-cost and readily available materials (and zero manufactured energy). This design serves as a model for novel approaches to creating temperature controlled buildings using zero energy and opens the door for future research into the effects of increasing module scale, increasing length and depth of the earth tube, and shading the building. (Model can be provided).Keywords: air circulation, PassivHaus, stack effect, thermal gradient
Procedia PDF Downloads 154179 Techno Economic Analysis for Solar PV and Hydro Power for Kafue Gorge Power Station
Authors: Elvis Nyirenda
Abstract:
This research study work was done to evaluate and propose an optimum measure to enhance the uptake of clean energy technologies such as solar photovoltaics, the study also aims at enhancing the country’s energy mix from the overdependence on hydro power which is susceptible to droughts and climate change challenges The country in the years 2015 - 2016 and 2018 - 2019 had received rainfall below average due to climate change and a shift in the weather pattern; this resulted in prolonged power outages and load shedding for more than 10 hours per day. ZESCO Limited, the utility company that owns infrastructure in the generation, transmission, and distribution of electricity (state-owned), is seeking alternative sources of energy in order to reduce the over-dependence on hydropower stations. One of the alternative sources of energy is Solar Energy from the sun. However, solar power is intermittent in nature and to smoothen the load curve, investment in robust energy storage facilities is of great importance to enhance security and reliability of electricity supply in the country. The methodology of the study looked at the historical performance of the Kafue gorge upper power station and utilised the hourly generation figures as input data for generation modelling in Homer software. The average yearly demand was derived from the available data on the system SCADA. The two dams were modelled as natural battery with the absolute state of charging and discharging determined by the available water resource and the peak electricity demand. The software Homer Energy System is used to simulate the scheme incorporating a pumped storage facility and Solar photovoltaic systems. The pumped hydro scheme works like a natural battery for the conservation of water, with the only losses being evaporation and water leakages from the dams and the turbines. To address the problem of intermittency on the solar resource and the non-availability of water for hydropower generation, the study concluded that utilising the existing Hydro power stations, Kafue Gorge upper and Kafue Gorge Lower to work conjunctively with Solar energy will reduce power deficits and increase the security of supply for the country. An optimum capacity of 350MW of solar PV can be integrated while operating Kafue Gorge power station in both generating and pumping mode to enable efficient utilisation of water at Kafue Gorge upper Dam and Kafue Gorge Lower dam.Keywords: hydropower, solar power systems, energy storage, photovoltaics, solar irradiation, pumped hydro storage system, supervisory control and data acquisition, Homer energy
Procedia PDF Downloads 117178 Tuberculosis Outpatient Treatment in the Context of Reformation of the Health Care System
Authors: Danylo Brindak, Viktor Liashko, Olexander Chepurniy
Abstract:
Despite considerable experience in implementation of the best international approaches and services within response to epidemy of multi-drug resistant tuberculosis, the results of situation analysis indicate the presence of faults in this area. In 2014, Ukraine (for the first time) was included in the world’s five countries with the highest level of drug-resistant tuberculosis. The effectiveness of its treatment constitutes only 35% in the country. In this context, the increase in allocation of funds to control the epidemic of multidrug-resistant tuberculosis does not produce perceptible positive results. During 2001-2016, only the Global Fund to fight AIDS, Tuberculosis, and Malaria allocated to Ukraine more than USD 521,3 million for programs of tuberculosis and HIV/AIDS control. However, current conditions in post-Semashko system create little motivation for rational use of resources or cost control at inpatient TB facilities. There is no motivation to reduce overdue hospitalization and to target resources to priority sectors of modern tuberculosis control, including a model of care focused on the patient. In the presence of a line-item budget at medical institutions, based on the input factors as the ratios of beds and staff, there is a passive disposal of budgetary funds by health care institutions and their employees who have no motivation to improve quality and efficiency of service provision. Outpatient treatment of tuberculosis is being implemented in Ukraine since 2011 and has many risks, namely creation of parallel systems, low consistency through dependence on funding for the project, reduced the role of the family doctor, the fragmentation of financing, etc. In terms of reforming approaches to health system financing, which began in Ukraine in late 2016, NGO Infection Control in Ukraine conducted piloting of a new, motivating method of remuneration of employees in primary health care. The innovative aspect of this funding mechanism is cost according to results of treatment. The existing method of payment on the basis of the standard per inhabitant (per capita ratio) was added with motivating costs according to results of work. The effectiveness of such treatment of TB patients at the outpatient stage is 90%, while in whole on the basis of a current system the effectiveness of treatment of newly diagnosed pulmonary TB with positive swab is around 60% in the country. Even though Ukraine has 5.24 TB beds per 10 000 citizens. Implemented pilot model of ambulatory treatment will be used for the creation of costs system according to results of activities, the integration of TB and primary health and social services and their focus on achieving results, the reduction of inpatient treatment of tuberculosis.Keywords: health care reform, multi-drug resistant tuberculosis, outpatient treatment efficiency, tuberculosis
Procedia PDF Downloads 147177 Sustainable Solid Waste Management Solutions for Asian Countries Using the Potential in Municipal Solid Waste of Indian Cities
Authors: S. H. Babu Gurucharan, Priyanka Kaushal
Abstract:
Majority of the world's population is expected to live in the Asia and Pacific region by 2050 and thus their cities will generate the maximum waste. India, being the second populous country in the world, is an ideal case study to identify a solution for Asian countries. Waste minimisation and utilisation have always been part of the Indian culture. During rapid urbanisation, our society lost the art of waste minimisation and utilisation habits. Presently, Waste is not considered as a resource, thus wasting an opportunity to tap resources. The technologies in vogue are not suited for effective treatment of large quantities of generated solid waste, without impacting the environment and the population. If not treated efficiently, Waste can become a silent killer. The article is trying to highlight the Indian municipal solid waste scenario as a key indicator of Asian waste management and recommend sustainable waste management and suggest effective solutions to treat the Solid Waste. The methods followed during the research were to analyse the solid waste data on characteristics of solid waste generated in Indian cities, then evaluate the current technologies to identify the most suitable technology in Indian conditions with minimal environmental impact, interact with the technology technical teams, then generate a technical process specific to Indian conditions and further examining the environmental impact and advantages/ disadvantages of the suggested process. The most important finding from the study was the recognition that most of the current municipal waste treatment technologies being employed, operate sub-optimally in Indian conditions. Therefore, the study using the available data, generated heat and mass balance of processes to arrive at the final technical process, which was broadly divided into Waste processing, Waste Treatment, Power Generation, through various permutations and combinations at each stage to ensure that the process is techno-commercially viable in Indian conditions. Then environmental impact was arrived through secondary sources and a comparison of environmental impact of different technologies was tabulated. The major advantages of the suggested process are the effective use of waste for resource generation both in terms of maximised power output or conversion to eco-friendly products like biofuels or chemicals using advanced technologies, minimum environmental impact and the least landfill requirement. The major drawbacks are the capital, operations and maintenance costs. The existing technologies in use in Indian municipalities have their own limitations and the shortlisted technology is far superior to other technologies in vogue. Treatment of Municipal Solid Waste with an efficient green power generation is possible through a combination of suitable environment-friendly technologies. A combination of bio-reactors and plasma-based gasification technology is most suitable for Indian Waste and in turn for Asian waste conditions.Keywords: calorific value, gas fermentation, landfill, municipal solid waste, plasma gasification, syngas
Procedia PDF Downloads 184176 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques
Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo
Abstract:
Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.Keywords: air pollution, air quality modelling, data mining, particulate matter
Procedia PDF Downloads 258175 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 154174 The Political Economy of Media Privatisation in Egypt: State Mechanisms and Continued Control
Authors: Mohamed Elmeshad
Abstract:
During the mid-1990's Egypt had become obliged to implement the Economic Reform and Structural Adjustment Program that included broad economic liberalization, expansion of the private sector and a contraction the size of government spending. This coincided as well with attempts to appear more democratic and open to liberalizing public space and discourse. At the same time, economic pressures and the proliferation of social media access and activism had led to increased pressure to open a mediascape and remove it from the clutches of the government, which had monopolized print and broadcast mass media for over 4 decades by that point. However, the mechanisms that governed the privatization of mass media allowed for sustained government control, even through the prism of ostensibly privately owned newspapers and television stations. These mechanisms involve barriers to entry from a financial and security perspective, as well as operational capacities of distribution and access to means of production. The power dynamics between mass media establishments and the state were moulded during this period in a novel way. Power dynamics within media establishments had also formed under such circumstances. The changes in the country's political economy itself somehow mirrored these developments. This paper will examine these dynamics and shed light on the political economy of Egypt's newly privatized mass media in the early 2000's especially. Methodology: This study will rely on semi-structured interviews from individuals involved with these changes from the perspective of the media organizations. It also will map out the process of media privatization by looking at the administrative, operative and legislative institutions and contexts in order to attempt to draw conclusions on methods of control and the role of the state during the process of privatization. Finally, a brief discourse analysis will be necessary in order to aptly convey how these factors ultimately reflected on media output. Findings and conclusion: The development of Egyptian private, “independent” mirrored the trajectory of transitions in the country’s political economy. Liberalization of the economy meant that a growing class of business owners would explore opportunities that such new markets would offer. However the regime’s attempts to control access to certain forms of capital, especially in sectors such as the media affected the structure of print and broadcast media, as well as the institutions that would govern them. Like the process of liberalisation, much of the regime’s manoeuvring with regards to privatization of media had been haphazardly used to indirectly expand the regime and its ruling party’s ability to retain influence, while creating a believable façade of openness. In this paper, we will attempt to uncover these mechanisms and analyse our findings in ways that explain how the manifestations prevalent in the context of a privatizing media space in a transitional Egypt provide evidence of both the intentions of this transition, and the ways in which it was being held back.Keywords: business, mass media, political economy, power, privatisation
Procedia PDF Downloads 227173 Improving Teaching in English-Medium Instruction Classes at Japanese Universities through Needs-Based Professional Development Workshops
Authors: Todd Enslen
Abstract:
In order to attract more international students to study for undergraduate degrees in Japan, many universities have been developing English-Medium Instruction degree programs. This means that many faculty members must now teach their courses in English, which raises a number of concerns. A common misconception of English-Medium Instruction (EMI) is that teaching in English is simply a matter of translating materials. Since much of the teaching in Japan still relies on a more traditional, teachercentered, approach, continuing with this style in an EMI environment that targets international students can cause a clash between what is happening and what students expect in the classroom, not to mention what the Scholarship of Teaching and Learning (SoTL) has shown is effective teaching. A variety of considerations need to be taken into account in EMI classrooms such as varying English abilities of the students, modifying input material, and assuring comprehension through interactional checks. This paper analyzes the effectiveness of the English-Medium Instruction (EMI) undergraduate degree programs in engineering, agriculture, and science at a large research university in Japan by presenting the results from student surveys regarding the areas where perceived improvements need to be made. The students were the most dissatisfied with communication with their teachers in English, communication with Japanese students in English, adherence to only English being used in the classes, and the quality of the education they received. In addition, the results of a needs analysis survey of Japanese teachers having to teach in English showed that they believed they were most in need of English vocabulary and expressions to use in the classroom and teaching methods for teaching in English. The result from the student survey and the faculty survey show similar concerns between the two groups. By helping the teachers to understand student-centered teaching and the benefits for learning that it provides, teachers may begin to incorporate more student-centered approaches that in turn help to alleviate the dissatisfaction students are currently experiencing. Through analyzing the current environment in Japanese higher education against established best practices in teaching and EMI, three areas that need to be addressed in professional development workshops were identified. These were “culture” as it relates to the English language, “classroom management techniques” and ways to incorporate them into classes, and “language” issues. Materials used to help faculty better understand best practices as they relate to these specific areas will be provided to help practitioners begin the process of helping EMI faculty build awareness of better teaching practices. Finally, the results from faculty development workshops participants’ surveys will show the impact that these workshops can have. Almost all of the participants indicated that they learned something new and would like to incorporate the ideas from the workshop into their teaching. In addition, the vast majority of the participants felt the workshop provided them with new information, and they would like more workshops like these.Keywords: English-medium instruction, materials development, professional development, teaching effectiveness
Procedia PDF Downloads 89172 Solar Electric Propulsion: The Future of Deep Space Exploration
Authors: Abhishek Sharma, Arnab Banerjee
Abstract:
The research is intended to study the solar electric propulsion (SEP) technology for planetary missions. The main benefits of using solar electric propulsion for such missions are shorter flight times, more frequent target accessibility and the use of a smaller launch vehicle than that required by a comparable chemical propulsion mission. Energized by electric power from on-board solar arrays, the electrically propelled system uses 10 times less propellant than conventional chemical propulsion system, yet the reduced fuel mass can provide vigorous power which is capable of propelling robotic and crewed missions beyond the Lower Earth Orbit (LEO). The various thrusters used in the SEP are gridded ion thrusters and the Hall Effect thrusters. The research is solely aimed to study the ion thrusters and investigate the complications related to it and what can be done to overcome the glitches. The ion thrusters are used because they are found to have a total lower propellant requirement and have substantially longer time. In the ion thrusters, the anode pushes or directs the incoming electrons from the cathode. But the anode is not maintained at a very high potential which leads to divergence. Divergence leads to the charges interacting against the surface of the thruster. Just as the charges ionize the xenon gases, they are capable of ionizing the surfaces and over time destroy the surface and hence contaminate it. Hence the lifetime of thruster gets limited. So a solution to this problem is using substances which are not easy to ionize as the surface material. Another approach can be to increase the potential of anode so that the electrons don’t deviate much or reduce the length of thruster such that the positive anode is more effective. The aim is to work on these aspects as to how constriction of the deviation of charges can be done by keeping the input power constant and hence increase the lifetime of the thruster. Predominantly ring cusp magnets are used in the ion thrusters. However, the study is also intended to observe the effect of using solenoid for producing micro-solenoidal magnetic field apart from using the ring cusp magnetic field which are used in the discharge chamber for prevention of interaction of electrons with the ionization walls. Another foremost area of interest is what are the ways by which power can be provided to the Solar Electric Propulsion Vehicle for lowering and boosting the orbit of the spacecraft and also provide substantial amount of power to the solenoid for producing stronger magnetic fields. This can be successfully achieved by using the concept of Electro-dynamic tether which will serve as a power source for powering both the vehicle and the solenoids in the ion thruster and hence eliminating the need for carrying extra propellant on the spacecraft which will reduce the weight and hence reduce the cost of space propulsion.Keywords: electro-dynamic tether, ion thruster, lifetime of thruster, solar electric propulsion vehicle
Procedia PDF Downloads 211