Search results for: computer assisted strategies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8070

Search results for: computer assisted strategies

210 21st Century Business Dynamics: Acting Local and Thinking Global through Extensive Business Reporting Language (XBRL)

Authors: Samuel Faboyede, Obiamaka Nwobu, Samuel Fakile, Dickson Mukoro

Abstract:

In the present dynamic business environment of corporate governance and regulations, financial reporting is an inevitable and extremely significant process for every business enterprise. Several financial elements such as Annual Reports, Quarterly Reports, ad-hoc filing, and other statutory/regulatory reports provide vital information to the investors and regulators, and establish trust and rapport between the internal and external stakeholders of an organization. Investors today are very demanding, and emphasize greatly on authenticity, accuracy, and reliability of financial data. For many companies, the Internet plays a key role in communicating business information, internally to management and externally to stakeholders. Despite high prominence being attached to external reporting, it is disconnected in most companies, who generate their external financial documents manually, resulting in high degree of errors and prolonged cycle times. Chief Executive Officers and Chief Financial Officers are increasingly susceptible to endorsing error-laden reports, late filing of reports, and non-compliance with regulatory acts. There is a lack of common platform to manage the sensitive information – internally and externally – in financial reports. The Internet financial reporting language known as eXtensible Business Reporting Language (XBRL) continues to develop in the face of challenges and has now reached the point where much of its promised benefits are available. This paper looks at the emergence of this revolutionary twenty-first century language of digital reporting. It posits that today, the world is on the brink of an Internet revolution that will redefine the ‘business reporting’ paradigm. The new Internet technology, eXtensible Business Reporting Language (XBRL), is already being deployed and used across the world. It finds that XBRL is an eXtensible Markup Language (XML) based information format that places self-describing tags around discrete pieces of business information. Once tags are assigned, it is possible to extract only desired information, rather than having to download or print an entire document. XBRL is platform-independent and it will work on any current or recent-year operating system, or any computer and interface with virtually any software. The paper concludes that corporate stakeholders and the government cannot afford to ignore the XBRL. It therefore recommends that all must act locally and think globally now via the adoption of XBRL that is changing the face of worldwide business reporting.

Keywords: XBRL, financial reporting, internet, internal and external reports

Procedia PDF Downloads 270
209 Understanding the Qualitative Nature of Product Reviews by Integrating Text Processing Algorithm and Usability Feature Extraction

Authors: Cherry Yieng Siang Ling, Joong Hee Lee, Myung Hwan Yun

Abstract:

The quality of a product to be usable has become the basic requirement in consumer’s perspective while failing the requirement ends up the customer from not using the product. Identifying usability issues from analyzing quantitative and qualitative data collected from usability testing and evaluation activities aids in the process of product design, yet the lack of studies and researches regarding analysis methodologies in qualitative text data of usability field inhibits the potential of these data for more useful applications. While the possibility of analyzing qualitative text data found with the rapid development of data analysis studies such as natural language processing field in understanding human language in computer, and machine learning field in providing predictive model and clustering tool. Therefore, this research aims to study the application capability of text processing algorithm in analysis of qualitative text data collected from usability activities. This research utilized datasets collected from LG neckband headset usability experiment in which the datasets consist of headset survey text data, subject’s data and product physical data. In the analysis procedure, which integrated with the text-processing algorithm, the process includes training of comments onto vector space, labeling them with the subject and product physical feature data, and clustering to validate the result of comment vector clustering. The result shows 'volume and music control button' as the usability feature that matches best with the cluster of comment vectors where centroid comments of a cluster emphasized more on button positions, while centroid comments of the other cluster emphasized more on button interface issues. When volume and music control buttons are designed separately, the participant experienced less confusion, and thus, the comments mentioned only about the buttons' positions. While in the situation where the volume and music control buttons are designed as a single button, the participants experienced interface issues regarding the buttons such as operating methods of functions and confusion of functions' buttons. The relevance of the cluster centroid comments with the extracted feature explained the capability of text processing algorithms in analyzing qualitative text data from usability testing and evaluations.

Keywords: usability, qualitative data, text-processing algorithm, natural language processing

Procedia PDF Downloads 273
208 Discourse Analysis: Where Cognition Meets Communication

Authors: Iryna Biskub

Abstract:

The interdisciplinary approach to modern linguistic studies is exemplified by the merge of various research methods, which sometimes causes complications related to the verification of the research results. This methodological confusion can be resolved by means of creating new techniques of linguistic analysis combining several scientific paradigms. Modern linguistics has developed really productive and efficient methods for the investigation of cognitive and communicative phenomena of which language is the central issue. In the field of discourse studies, one of the best examples of research methods is the method of Critical Discourse Analysis (CDA). CDA can be viewed both as a method of investigation, as well as a critical multidisciplinary perspective. In CDA the position of the scholar is crucial from the point of view exemplifying his or her social and political convictions. The generally accepted approach to obtaining scientifically reliable results is to use a special well-defined scientific method for researching special types of language phenomena: cognitive methods applied to the exploration of cognitive aspects of language, whereas communicative methods are thought to be relevant only for the investigation of communicative nature of language. In the recent decades discourse as a sociocultural phenomenon has been the focus of careful linguistic research. The very concept of discourse represents an integral unity of cognitive and communicative aspects of human verbal activity. Since a human being is never able to discriminate between cognitive and communicative planes of discourse communication, it doesn’t make much sense to apply cognitive and communicative methods of research taken in isolation. It is possible to modify the classical CDA procedure by means of mapping human cognitive procedures onto the strategic communicative planning of discourse communication. The analysis of the electronic petition 'Block Donald J Trump from UK entry. The signatories believe Donald J Trump should be banned from UK entry' (584, 459 signatures) and the parliamentary debates on it has demonstrated the ability to map cognitive and communicative levels in the following way: the strategy of discourse modeling (communicative level) overlaps with the extraction of semantic macrostructures (cognitive level); the strategy of discourse management overlaps with the analysis of local meanings in discourse communication; the strategy of cognitive monitoring of the discourse overlaps with the formation of attitudes and ideologies at the cognitive level. Thus, the experimental data have shown that it is possible to develop a new complex methodology of discourse analysis, where cognition would meet communication, both metaphorically and literally. The same approach may appear to be productive for the creation of computational models of human-computer interaction, where the automatic generation of a particular type of a discourse could be based on the rules of strategic planning involving cognitive models of CDA.

Keywords: cognition, communication, discourse, strategy

Procedia PDF Downloads 242
207 Parental Education on Early Childhood Development Using Mobile App and Website in China

Authors: Margo O'Sullivan, Xuefeng Chen, Qi Zhao, J. Jiang, Ning Fu

Abstract:

Early childhood development, or ECD, is about the 'whole child' – the physical, social and emotional, cognitive thinking and language progression of each young individual. Overwhelming evidence is now available to support investment in Early Childhood Development internationally, attendance at ECD leads to: improved learning outcomes; improved completion and reduced less dropout rates; and most notably, Professor Heckman, Nobel Laureate’s, findings that for every dollar invested, there is an economic return of up to 17%. Notably, ECD has been included in the 2015-2030 Sustainable Development Goals. The Government of China (GOC) has embraced this research and in 2010, State Council, announced focus on ECD setting a target to provide access to ECD for 85% of 3-6 year olds by 2020; to date, the target has surpassed expectations and reached 70.4%. GoC is also increasingly focusing on the even more critical 0-3 age group, when the plasticity of the brain is at its peak and neurons form connections as fast as 1,000 per second. Key to ECD are parents and caregivers of young children, with parental education critical to fully exploiting the significant potential of the early years of children. In China, with such vast numbers, one in seven pre-school age children in the world live in China, the Ministry of Education (MoE) and the National Centre for Education Technology, explored how to best provide parental education and provide key child developmental related knowledge to parents and caregivers. In response, MoE and UNICEF created a resource for parenting information that began with a computer website in 2012, followed by piloting a kiosk service in 2013 for parents in remote areas without access to the internet, and then a mobile phone application in 2014. The resource includes 269 ECD messages and 200 micro-videos covering critical issues of early childhood development from birth to age 6 years: daily care, nutrition and feeding, disease prevention, immunization, development and education, and safety and protection. To date, there have been 397,599 unique views on the website, and data for the mobile app currently being analysed (Links: http://yuer.cbern.gov.cn/; App: https://appsto.re/cn/OiKPZ.i). This paper will explore the development of this resource, its use by parents and the public, efforts to assess the effectiveness in improving parenting and child development, and future plans to roll an updated version in 2016 to all parents.

Keywords: early childhood development, mobile apps for education, parental education, China

Procedia PDF Downloads 214
206 Application of Neutron Stimulated Gamma Spectroscopy for Soil Elemental Analysis and Mapping

Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert

Abstract:

Determining soil elemental content and distribution (mapping) within a field are key features of modern agricultural practice. While traditional chemical analysis is a time consuming and labor-intensive multi-step process (e.g., sample collections, transport to laboratory, physical preparations, and chemical analysis), neutron-gamma soil analysis can be performed in-situ. This analysis is based on the registration of gamma rays issued from nuclei upon interaction with neutrons. Soil elements such as Si, C, Fe, O, Al, K, and H (moisture) can be assessed with this method. Data received from analysis can be directly used for creating soil elemental distribution maps (based on ArcGIS software) suitable for agricultural purposes. The neutron-gamma analysis system developed for field application consisted of an MP320 Neutron Generator (Thermo Fisher Scientific, Inc.), 3 sodium iodide gamma detectors (SCIONIX, Inc.) with a total volume of 7 liters, 'split electronics' (XIA, LLC), a power system, and an operational computer. Paired with GPS, this system can be used in the scanning mode to acquire gamma spectra while traversing a field. Using acquired spectra, soil elemental content can be calculated. These data can be combined with geographical coordinates in a geographical information system (i.e., ArcGIS) to produce elemental distribution maps suitable for agricultural purposes. Special software has been developed that will acquire gamma spectra, process and sort data, calculate soil elemental content, and combine these data with measured geographic coordinates to create soil elemental distribution maps. For example, 5.5 hours was needed to acquire necessary data for creating a carbon distribution map of an 8.5 ha field. This paper will briefly describe the physics behind the neutron gamma analysis method, physical construction the measurement system, and main characteristics and modes of work when conducting field surveys. Soil elemental distribution maps resulting from field surveys will be presented. and discussed. Comparison of these maps with maps created on the bases of chemical analysis and soil moisture measurements determined by soil electrical conductivity was similar. The maps created by neutron-gamma analysis were reproducible, as well. Based on these facts, it can be asserted that neutron stimulated soil gamma spectroscopy paired with GPS system is fully applicable for soil elemental agricultural field mapping.

Keywords: ArcGIS mapping, neutron gamma analysis, soil elemental content, soil gamma spectroscopy

Procedia PDF Downloads 125
205 Computational and Experimental Determination of Acoustic Impedance of Internal Combustion Engine Exhaust

Authors: A. O. Glazkov, A. S. Krylova, G. G. Nadareishvili, A. S. Terenchenko, S. I. Yudin

Abstract:

The topic of the presented materials concerns the design of the exhaust system for a certain internal combustion engine. The exhaust system can be divided into two parts. The first is the engine exhaust manifold, turbocharger, and catalytic converters, which are called “hot part.” The second part is the gas exhaust system, which contains elements exclusively for reducing exhaust noise (mufflers, resonators), the accepted designation of which is the "cold part." The design of the exhaust system from the point of view of acoustics, that is, reducing the exhaust noise to a predetermined level, consists of working on the second part. Modern computer technology and software make it possible to design "cold part" with high accuracy in a given frequency range but with the condition of accurately specifying the input parameters, namely, the amplitude spectrum of the input noise and the acoustic impedance of the noise source in the form of an engine with a "hot part". Getting this data is a difficult problem: high temperatures, high exhaust gas velocities (turbulent flows), and high sound pressure levels (non-linearity mode) do not allow the calculated results to be applied with sufficient accuracy. The aim of this work is to obtain the most reliable acoustic output parameters of an engine with a "hot part" based on a complex of computational and experimental studies. The presented methodology includes several parts. The first part is a finite element simulation of the "cold part" of the exhaust system (taking into account the acoustic impedance of radiation of outlet pipe into open space) with the result in the form of the input impedance of "cold part". The second part is a finite element simulation of the "hot part" of the exhaust system (taking into account acoustic characteristics of catalytic units and geometry of turbocharger) with the result in the form of the input impedance of the "hot part". The next third part of the technique consists of the mathematical processing of the results according to the proposed formula for the convergence of the mathematical series of summation of multiple reflections of the acoustic signal "cold part" - "hot part". This is followed by conducting a set of tests on an engine stand with two high-temperature pressure sensors measuring pulsations in the nozzle between "hot part" and "cold part" of the exhaust system and subsequent processing of test results according to a well-known technique in order to separate the "incident" and "reflected" waves. The final stage consists of the mathematical processing of all calculated and experimental data to obtain a result in the form of a spectrum of the amplitude of the engine noise and its acoustic impedance.

Keywords: acoustic impedance, engine exhaust system, FEM model, test stand

Procedia PDF Downloads 40
204 The Integration of Digital Humanities into the Sociology of Knowledge Approach to Discourse Analysis

Authors: Gertraud Koch, Teresa Stumpf, Alejandra Tijerina García

Abstract:

Discourse analysis research approaches belong to the central research strategies applied throughout the humanities; they focus on the countless forms and ways digital texts and images shape present-day notions of the world. Despite the constantly growing number of relevant digital, multimodal discourse resources, digital humanities (DH) methods are thus far not systematically developed and accessible for discourse analysis approaches. Specifically, the significance of multimodality and meaning plurality modelling are yet to be sufficiently addressed. In order to address this research gap, the D-WISE project aims to develop a prototypical working environment as digital support for the sociology of knowledge approach to discourse analysis and new IT-analysis approaches for the use of context-oriented embedding representations. Playing an essential role throughout our research endeavor is the constant optimization of hermeneutical methodology in the use of (semi)automated processes and their corresponding epistemological reflection. Among the discourse analyses, the sociology of knowledge approach to discourse analysis is characterised by the reconstructive and accompanying research into the formation of knowledge systems in social negotiation processes. The approach analyses how dominant understandings of a phenomenon develop, i.e., the way they are expressed and consolidated by various actors in specific arenas of discourse until a specific understanding of the phenomenon and its socially accepted structure are established. This article presents insights and initial findings from D-WISE, a joint research project running since 2021 between the Institute of Anthropological Studies in Culture and History and the Language Technology Group of the Department of Informatics at the University of Hamburg. As an interdisciplinary team, we develop central innovations with regard to the availability of relevant DH applications by building up a uniform working environment, which supports the procedure of the sociology of knowledge approach to discourse analysis within open corpora and heterogeneous, multimodal data sources for researchers in the humanities. We are hereby expanding the existing range of DH methods by developing contextualized embeddings for improved modelling of the plurality of meaning and the integrated processing of multimodal data. The alignment of this methodological and technical innovation is based on the epistemological working methods according to grounded theory as a hermeneutic methodology. In order to systematically relate, compare, and reflect the approaches of structural-IT and hermeneutic-interpretative analysis, the discourse analysis is carried out both manually and digitally. Using the example of current discourses on digitization in the healthcare sector and the associated issues regarding data protection, we have manually built an initial data corpus of which the relevant actors and discourse positions are analysed in conventional qualitative discourse analysis. At the same time, we are building an extensive digital corpus on the same topic based on the use and further development of entity-centered research tools such as topic crawlers and automated newsreaders. In addition to the text material, this consists of multimodal sources such as images, video sequences, and apps. In a blended reading process, the data material is filtered, annotated, and finally coded with the help of NLP tools such as dependency parsing, named entity recognition, co-reference resolution, entity linking, sentiment analysis, and other project-specific tools that are being adapted and developed. The coding process is carried out (semi-)automated by programs that propose coding paradigms based on the calculated entities and their relationships. Simultaneously, these can be specifically trained by manual coding in a closed reading process and specified according to the content issues. Overall, this approach enables purely qualitative, fully automated, and semi-automated analyses to be compared and reflected upon.

Keywords: entanglement of structural IT and hermeneutic-interpretative analysis, multimodality, plurality of meaning, sociology of knowledge approach to discourse analysis

Procedia PDF Downloads 213
203 Cricket Injury Surveillence by Mobile Application Technology on Smartphones

Authors: Najeebullah Soomro, Habib Noorbhai, Mariam Soomro, Ross Sanders

Abstract:

The demands on cricketers are increasing with more matches being played in a shorter period of time with a greater intensity. A ten year report on injury incidence for Australian elite cricketers between the 2000- 2011 seasons revealed an injury incidence rate of 17.4%.1. In the 2009–10 season, 24 % of Australian fast bowlers missed matches through injury. 1 Injury rates are even higher in junior cricketers with an injury incidence of 25% or 2.9 injuries per 100 player hours reported. 2 Traditionally, injury surveillance has relied on the use of paper based forms or complex computer software. 3,4 This makes injury reporting laborious for the staff involved. The purpose of this presentation is to describe a smartphone based mobile application as a means of improving injury surveillance in cricket. Methods: The researchers developed CricPredict mobile App for the Android platforms, the world’s most widely used smartphone platform. It uses Qt SDK (Software Development Kit) as IDE (Integrated Development Environment). C++ was used as the programming language with the Qt framework, which provides us with cross-platform abilities that will allow this app to be ported to other operating systems (iOS, Mac, Windows) in the future. The wireframes (graphic user interface) were developed using Justinmind Prototyper Pro Edition Version (Ver. 6.1.0). CricPredict enables recording of injury and training status conveniently and immediately. When an injury is reported automated follow-up questions include site of injury, nature of injury, mechanism of injury, initial treatment, referral and action taken after injury. Direct communication with the player then enables assessment of severity and diagnosis. CricPredict also allows the coach to maintain and track each player’s attendance at matches and training session. Workload data can also be recorded by either the player or coach by recording the number of balls bowled or played in a day. This is helpful in formulating injury rates and time lost due to injuries. All the data are stored at a secured password protected data server. Outcomes and Significance: Use of CricPredit offers a simple, user friendly tool for the coaching or medical staff associated with teams to predict, record and report injuries. This system will assist teams to capture injury data with ease thus allowing better understanding of injuries associated with cricket and potentially optimize the performance of such cricketers.

Keywords: injury, cricket, surveillance, smartphones, mobile

Procedia PDF Downloads 452
202 A Dynamic Cardiac Single Photon Emission Computer Tomography Using Conventional Gamma Camera to Estimate Coronary Flow Reserve

Authors: Maria Sciammarella, Uttam M. Shrestha, Youngho Seo, Grant T. Gullberg, Elias H. Botvinick

Abstract:

Background: Myocardial perfusion imaging (MPI) is typically performed with static imaging protocols and visually assessed for perfusion defects based on the relative intensity distribution. Dynamic cardiac SPECT, on the other hand, is a new imaging technique that is based on time varying information of radiotracer distribution, which permits quantification of myocardial blood flow (MBF). In this abstract, we report a progress and current status of dynamic cardiac SPECT using conventional gamma camera (Infinia Hawkeye 4, GE Healthcare) for estimation of myocardial blood flow and coronary flow reserve. Methods: A group of patients who had high risk of coronary artery disease was enrolled to evaluate our methodology. A low-dose/high-dose rest/pharmacologic-induced-stress protocol was implemented. A standard rest and a standard stress radionuclide dose of ⁹⁹ᵐTc-tetrofosmin (140 keV) was administered. The dynamic SPECT data for each patient were reconstructed using the standard 4-dimensional maximum likelihood expectation maximization (ML-EM) algorithm. Acquired data were used to estimate the myocardial blood flow (MBF). The correspondence between flow values in the main coronary vasculature with myocardial segments defined by the standardized myocardial segmentation and nomenclature were derived. The coronary flow reserve, CFR, was defined as the ratio of stress to rest MBF values. CFR values estimated with SPECT were also validated with dynamic PET. Results: The range of territorial MBF in LAD, RCA, and LCX was 0.44 ml/min/g to 3.81 ml/min/g. The MBF between estimated with PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (p < 0.001). But the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (p = 0.037). The mean stress MBF value was significantly lower for angiographically abnormal than that for the normal (Normal Mean MBF = 2.49 ± 0.61, Abnormal Mean MBF = 1.43 ± 0. 0.62, P < .001). Conclusions: The visually assessed image findings in clinical SPECT are subjective, and may not reflect direct physiologic measures of coronary lesion. The MBF and CFR measured with dynamic SPECT are fully objective and available only with the data generated from the dynamic SPECT method. A quantitative approach such as measuring CFR using dynamic SPECT imaging is a better mode of diagnosing CAD than visual assessment of stress and rest images from static SPECT images Coronary Flow Reserve.

Keywords: dynamic SPECT, clinical SPECT/CT, selective coronary angiograph, ⁹⁹ᵐTc-Tetrofosmin

Procedia PDF Downloads 141
201 Robust Processing of Antenna Array Signals under Local Scattering Environments

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

An adaptive array beamformer is designed for automatically preserving the desired signals while cancelling interference and noise. Providing robustness against model mismatches and tracking possible environment changes calls for robust adaptive beamforming techniques. The design criterion yields the well-known generalized sidelobe canceller (GSC) beamformer. In practice, the knowledge of the desired steering vector can be imprecise, which often occurs due to estimation errors in the DOA of the desired signal or imperfect array calibration. In these situations, the SOI is considered as interference, and the performance of the GSC beamformer is known to degrade. This undesired behavior results in a reduction of the array output signal-to-interference plus-noise-ratio (SINR). Therefore, it is worth developing robust techniques to deal with the problem due to local scattering environments. As to the implementation of adaptive beamforming, the required computational complexity is enormous when the array beamformer is equipped with massive antenna array sensors. To alleviate this difficulty, a generalized sidelobe canceller (GSC) with partially adaptivity for less adaptive degrees of freedom and faster adaptive response has been proposed in the literature. Unfortunately, it has been shown that the conventional GSC-based adaptive beamformers are usually very sensitive to the mismatch problems due to local scattering situations. In this paper, we present an effective GSC-based beamformer against the mismatch problems mentioned above. The proposed GSC-based array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. We utilize the predefined steering vector and a presumed angle tolerance range to carry out the required estimation for obtaining an appropriate steering vector. A matrix associated with the direction vector of signal sources is first created. Then projection matrices related to the matrix are generated and are utilized to iteratively estimate the actual direction vector of the desired signal. As a result, the quiescent weight vector and the required signal blocking matrix required for performing adaptive beamforming can be easily found. By utilizing the proposed GSC-based beamformer, we find that the performance degradation due to the considered local scattering environments can be effectively mitigated. To further enhance the beamforming performance, a signal subspace projection matrix is also introduced into the proposed GSC-based beamformer. Several computer simulation examples show that the proposed GSC-based beamformer outperforms the existing robust techniques.

Keywords: adaptive antenna beamforming, local scattering, signal blocking, steering mismatch

Procedia PDF Downloads 102
200 Magnetic Navigation in Underwater Networks

Authors: Kumar Divyendra

Abstract:

Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.

Keywords: clustering, deep learning, network backbone, parallel computing

Procedia PDF Downloads 85
199 Investigation of the Relationship between Digital Game Playing, Internet Addiction and Perceived Stress Levels in University Students

Authors: Sevim Ugur, Cemile Kutmec Yilmaz, Omer Us, Sevdenur Koksaldi

Abstract:

Aim: This study aims to investigate the effect of digital game playing and Internet addiction on perceived stress levels in university students. Method: The descriptive study was conducted through face-to-face interview method with a total of 364 university students studying at Aksaray University between November 15 and December 30, 2017. The research data were collected using personal information form, a questionnaire to determine the characteristics of playing digital game, the Internet addiction scale and the perceived stress scale. In the evaluation of the data, Mann-Whitney U test was used for two-group comparison of the sample with non-normal distribution, Kruskal-Wallis H-test was used in the comparison of more than two groups, and the Spearman correlation test was used to determine the relationship between Internet addiction and the perceived stress level. Results: It was determined that the mean age of the students participated in the study was 20.13 ± 1.7 years, 67.6% was female, 35.7% was sophomore, and 62.1% had an income 500 TL or less. It was found that 83.5% of the students use the Internet every day and 70.6% uses the Internet for 5 hours or less per day. Of the students, 12.4% prefers digital games instead of spending time outdoors, 8% plays a game as the first activity in leisure time, 12.4% plays all day, 15.7% feels anger when he/she is prevented from playing, 14.8% prefers playing games to get away from his/her problems, 23.4% had his/her school achievement affected negatively because of game playing, and 8% argues with family members due to the time spent for gaming. Students who play games on the computer for a long time were found to feel back pain (30.8%), headache (28.6%), insomnia (26.9%), dryness and pain in the eyes (26.6%), pain in the wrist (21.2%), feeling excessive tension and anger (16.2%), humpback (12.9), vision loss (9.6%) and pain in the wrist and fingers (7.4%). In our study, students' Internet addiction scale mean score was found to be 45.47 ± 16.1 and mean perceived stress scale score was 28.56 ± 2.7. A significant and negative correlation (p=0.037) was found between the total score of the Internet addiction scale and the total score of the perceived stress scale (r=-0.110). Conclusion: It was found in the study that Internet addiction and perceived stress of the students were at a moderate level and that there was a negative correlation between Internet addiction and perceived stress levels. Internet addiction was found to increase with the increasing perceived stress levels of students, and students were found to have health problems such as back pain, dryness in the eyes, pain, insomnia, headache, and humpback. Therefore, it is recommended to inform students about different coping methods other than spending time on the Internet to cope with the stress they perceive.

Keywords: digital game, internet addiction, student, stress level

Procedia PDF Downloads 277
198 Digitalization, Economic Growth and Financial Sector Development in Africa

Authors: Abdul Ganiyu Iddrisu

Abstract:

Digitization is the process of transforming analog material into digital form, especially for storage and use in a computer. Significant development of information and communication technology (ICT) over the past years has encouraged many researchers to investigate its contribution to promoting economic growth, and reducing poverty. Yet compelling empirical evidence on the effects of digitization on economic growth remains weak, particularly in Africa. This is because extant studies that explicitly evaluate digitization and economic growth nexus are mostly reports and desk reviews. This points out an empirical knowledge gap in the literature. Hypothetically, digitization influences financial sector development which in turn influences economic growth. Digitization has changed the financial sector and its operating environment. Obstacles to access to financing, for instance, physical distance, minimum balance requirements, low-income flows among others can be circumvented. Savings have increased, micro-savers have opened bank accounts, and banks are now able to price short-term loans. This has the potential to develop the financial sector, however, empirical evidence on digitization-financial development nexus is dearth. On the other hand, a number of studies maintained that financial sector development greatly influences growth of economies. We therefore argue that financial sector development is one of the transmission mechanisms through which digitization affects economic growth. Employing macro-country-level data from African countries and using fixed effects, random effects and Hausman-Taylor estimation approaches, this paper contributes to the literature by analysing economic growth in Africa focusing on the role of digitization, and financial sector development. First, we assess how digitization influence financial sector development in Africa. From an economic policy perspective, it is important to identify digitization determinants of financial sector development so that action can be taken to reduce the economic shocks associated with financial sector distortions. This nexus is rarely examined empirically in the literature. Secondly, we examine the effect of domestic credit to private sector and stock market capitalization as a percentage of GDP as used to proxy for financial sector development on 2 economic growth. Digitization is represented by the volume of digital/ICT equipment imported and GDP growth is used to proxy economic growth. Finally, we examine the effect of digitization on economic growth in the light of financial sector development. The following key results were found; first, digitalization propels financial sector development in Africa. Second, financial sector development enhances economic growth. Finally, contrary to our expectation, the results also indicate that digitalization conditioned on financial sector development tends to reduce economic growth in Africa. However, results of the net effects suggest that digitalization, overall, improves economic growth in Africa. We, therefore, conclude that, digitalization in Africa does not only develop the financial sector but unconditionally contributes the growth of the continent’s economies.

Keywords: digitalization, economic growth, financial sector development, Africa

Procedia PDF Downloads 89
197 Measurement of in-situ Horizontal Root Tensile Strength of Herbaceous Vegetation for Improved Evaluation of Slope Stability in the Alps

Authors: Michael T. Lobmann, Camilla Wellstein, Stefan Zerbe

Abstract:

Vegetation plays an important role for the stabilization of slopes against erosion processes, such as shallow erosion and landslides. Plant roots reinforce the soil, increase soil cohesion and often cross possible shear planes. Hence, plant roots reduce the risk of slope failure. Generally, shrub and tree roots penetrate deeper into the soil vertically, while roots of forbs and grasses are concentrated horizontally in the topsoil and organic layer. Therefore, shrubs and trees have a higher potential for stabilization of slopes with deep soil layers than forbs and grasses. Consequently, research mainly focused on the vertical root effects of shrubs and trees. Nevertheless, a better understanding of the stabilizing effects of grasses and forbs is needed for better evaluation of the stability of natural and artificial slopes with herbaceous vegetation. Despite the importance of vertical root effects, field observations indicate that horizontal root effects also play an important role for slope stabilization. Not only forbs and grasses, but also some shrubs and trees form tight horizontal networks of fine and coarse roots and rhizomes in the topsoil. These root networks increase soil cohesion and horizontal tensile strength. Available methods for physical measurements, such as shear-box tests, pullout tests and singular root tensile strength measurement can only provide a detailed picture of vertical effects of roots on slope stabilization. However, the assessment of horizontal root effects is largely limited to computer modeling. Here, a method for measurement of in-situ cumulative horizontal root tensile strength is presented. A traction machine was developed that allows fixation of rectangular grass sods (max. 30x60cm) on the short ends with a 30x30cm measurement zone in the middle. On two alpine grass slopes in South Tyrol (northern Italy), 30x60cm grass sods were cut out (max. depth 20cm). Grass sods were pulled apart measuring the horizontal tensile strength over 30cm width over the time. The horizontal tensile strength of the sods was measured and compared for different soil depths, hydrological conditions, and root physiological properties. The results improve our understanding of horizontal root effects on slope stabilization and can be used for improved evaluation of grass slope stability.

Keywords: grassland, horizontal root effect, landslide, mountain, pasture, shallow erosion

Procedia PDF Downloads 155
196 Analysis of Metamaterial Permeability on the Performance of Loosely Coupled Coils

Authors: Icaro V. Soares, Guilherme L. F. Brandao, Ursula D. C. Resende, Glaucio L. Siqueira

Abstract:

Electrical energy can be wirelessly transmitted through resonant coupled coils that operate in the near-field region. Once in this region, the field has evanescent character, the efficiency of Resonant Wireless Power Transfer (RWPT) systems decreases proportionally with the inverse cube of distance between the transmitter and receiver coils. The commercially available RWPT systems are restricted to short and mid-range applications in which the distance between coils is lesser or equal to the coil size. An alternative to overcome this limitation is applying metamaterial structures to enhance the coupling between coils, thus reducing the field decay along the distance between them. Metamaterials can be conceived as composite materials with periodic or non-periodic structure whose unconventional electromagnetic behaviour is due to its unit cell disposition and chemical composition. This new kind of material has been used in frequency selective surfaces, invisibility cloaks, leaky-wave antennas, among other applications. However, for RWPT it is mainly applied as superlenses which are lenses that can overcome the optical limitation and are made of left-handed media, that is, a medium with negative magnetic permeability and electric permittivity. As RWPT systems usually operate at wavelengths of hundreds of meters, the metamaterial unit cell size is much smaller than the wavelength. In this case, electric and magnetic field are decoupled, therefore the double negative condition for superlenses are not required and the negative magnetic permeability is enough to produce an artificial magnetic medium. In this work, the influence of the magnetic permeability of a metamaterial slab inserted between two loosely coupled coils is studied in order to find the condition that leads to the maximum transmission efficiency. The metamaterial used is formed by a subwavelength unit cell that consist of a capacitor-loaded split ring with an inner spiral that is designed and optimized using the software Computer Simulation Technology. The unit cell permeability is experimentally characterized by the ratio of the transmission parameters between coils measured with and without the presence of the metamaterial slab. Early measurements results show that the transmission coefficient at the resonant frequency after the inclusion of the metamaterial is about three times higher than with just the two coils, which confirms the enhancement that this structure brings to RWPT systems.

Keywords: electromagnetic lens, loosely coupled coils, magnetic permeability, metamaterials, resonant wireless power transfer, subwavelength unit cells

Procedia PDF Downloads 138
195 Psychophysiological Adaptive Automation Based on Fuzzy Controller

Authors: Liliana Villavicencio, Yohn Garcia, Pallavi Singh, Luis Fernando Cruz, Wilfrido Moreno

Abstract:

Psychophysiological adaptive automation is a concept that combines human physiological data and computer algorithms to create personalized interfaces and experiences for users. This approach aims to enhance human learning by adapting to individual needs and preferences and optimizing the interaction between humans and machines. According to neurosciences, the working memory demand during the student learning process is modified when the student is learning a new subject or topic, managing and/or fulfilling a specific task goal. A sudden increase in working memory demand modifies the level of students’ attention, engagement, and cognitive load. The proposed psychophysiological adaptive automation system will adapt the task requirements to optimize cognitive load, the process output variable, by monitoring the student's brain activity. Cognitive load changes according to the student’s previous knowledge, the type of task, the difficulty level of the task, and the overall psychophysiological state of the student. Scaling the measured cognitive load as low, medium, or high; the system will assign a task difficulty level to the next task according to the ratio between the previous-task difficulty level and student stress. For instance, if a student becomes stressed or overwhelmed during a particular task, the system detects this through signal measurements such as brain waves, heart rate variability, or any other psychophysiological variables analyzed to adjust the task difficulty level. The control of engagement and stress are considered internal variables for the hypermedia system which selects between three different types of instructional material. This work assesses the feasibility of a fuzzy controller to track a student's physiological responses and adjust the learning content and pace accordingly. Using an industrial automation approach, the proposed fuzzy logic controller is based on linguistic rules that complement the instrumentation of the system to monitor and control the delivery of instructional material to the students. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the delivery of academic content based on the working memory demand without compromising students’ health. This work has a potential application in the instructional design of virtual reality environments for training and education.

Keywords: fuzzy logic controller, hypermedia control system, personalized education, psychophysiological adaptive automation

Procedia PDF Downloads 65
194 Post-Traumatic Stress Disorder and Problem Alcohol Use in Women: Systematic Analysis

Authors: Neringa Bagdonaite

Abstract:

Study Aims: The current study aimed to systematically analyse various research done in the area of female post-traumatic stress disorder (PTSD) and alcohol abuse, and to critically review these results on the basis of theoretical models as well as answer following questions: (I) What is the reciprocal relationship between PTSD and problem alcohol use among females; (II) What are the moderating/mediating factors of this relationship? Methods: The computer bibliographic databases Ebsco, Scopus, Springer, Web of Science, Medline, Science Direct were used to search for scientific articles. Systematic analyses sample consisted of peer-reviewed, English written articles addressing mixed gender and female PTSD and alcohol abuse issues from Jan 2012 to May 2017. Results: Total of 1011 articles were found in scientific databases related to searched keywords of which 29 met the selection criteria and were analysed. The results of longitudinal studies indicate that (I) various trauma, especially interpersonal trauma exposure in childhood is linked with increased risk of revictimization in later life and problem alcohol use; (II) revictimization in adolescence or adulthood, rather than victimization in childhood has a greater impact on the onset and progression of problematic alcohol use in adulthood. Cross-sectional and epidemiological studies also support significant relationships between female PTSD and problem alcohol use. Regards to the negative impact of alcohol use on PTSD symptoms results are yet controversial; some evidence suggests that alcohol does not exacerbate symptoms of PTSD over time, while others argue that problem alcohol use worsens PTSD symptoms and is linked to chronicity of both disorders, especially among women with previous alcohol use problems. Analysis of moderating/mediating factors of PTSD and problem alcohol use revealed, that higher motives/expectancies, specifically distress coping motives for alcohol use significantly moderates the relationship between PTSD and problematic alcohol use. Whereas negative affective states mediate relationship between symptoms of PTSD and alcohol use, but only among woman with alcohol use problems already developed. Conclusions: Interpersonal trauma experience, especially in childhood and its reappearance in lifetime is linked with PTSD symptoms and problem drinking among women. Moreover, problem alcohol use can be both a cause and a consequence of trauma and PTSD, and if used for coping it, increases the likelihood of chronicity of both disorders. In order to effectively treat both disorders, it’s worthwhile taking into account this dynamic interplay of women's PTSD symptoms and problem drinking.

Keywords: female, trauma, post-traumatic stress disorder, problem alcohol use, systemic analysis

Procedia PDF Downloads 169
193 Bringing German History to Tourists

Authors: Gudrun Görlitz, Christian Schölzel, Alexander Vollmar

Abstract:

Sites of Jewish Life in Berlin 1933-1945. Between Persecution and Self-assertion” was realized in a project funded by the European Regional Development Fund. A smartphone app, and a associated web site enable tourists and other participants of this educational offer to learn in a serious way more about the life of Jews in the German capital during the Nazi era. Texts, photos, video and audio recordings communicate the historical content. Interactive maps (both current and historical) make it possible to use predefined or self combined routes. One of the manifold challenges was to create a broad ranged guide, in which all detailed information are well linked with each other. This enables heterogeneous groups of potential users to find a wide range of specific information, corresponding with their particular wishes and interests. The multitude of potential ways to navigate through the diversified information causes (hopefully) the users to utilize app and web site for a second or third time and with a continued interest. Therefore 90 locations, a lot of them situated in Berlin’s city centre, have been chosen. For all of them text-, picture and/or audio/video material gives extensive information. Suggested combinations of several of these “site stories” are leading to the offer of detailed excursion routes. Events and biographies are also presented. A few of the implemented biographies are especially enriched with source material concerning the aspect of (forced) migration of these persons during the Nazi time. All this was done in a close and fruitful interdisciplinary cooperation of computer scientists and historians. The suggested conference paper aims to show the challenges shaping complex source material for practical use by different user-groups in a proper technical and didactic way. Based on the historical research in archives, museums, libraries and digital resources the quantitative dimension of the project can be sized as follows: The paper focuses on the following historiographical and technical aspects: - Shaping the text material didactically for the use in new media, especially a Smartphone-App running on differing platforms; - Geo-referencing of the sites on historical and current map material; - Overlay of old and new maps to present and find the sites; - Using Augmented Reality technologies to re-visualize destroyed buildings; - Visualization of black-/white-picture-material; - Presentation of historical footage and the resulting problems to need too much storage space; - Financial and juridical aspects in gaining copyrights to present archival material.

Keywords: smartphone app, history, tourists, German

Procedia PDF Downloads 364
192 21st Century Computer Technology for the Training of Early Childhood Teachers: A Study of Second-Year Education Students Challenged with Building a Kindergarten Website

Authors: Yonit Nissim, Eyal Weissblueth

Abstract:

This research is the continuation of a process that began in 2010 with the goal of redesigning the training program for future early childhood teachers at the Ohalo College, to integrate technology and provide 21st-century skills. The article focuses on a study of the processes involved in developing a special educational unit which challenged students with the task of designing, planning and building an internet site for kindergartens. This project was part of their second-year studies in the early childhood track of an interdisciplinary course entitled 'Educating for the Future.' The goal: enabling students to gain experience in developing an internet site specifically for kindergartens, and gain familiarity with Google platforms, the acquisition and use of innovative skills and the integration of technology in pedagogy. Research questions examined how students handled the task of building an internet site. The study explored whether the guided process of building a site helped them develop proficiency in creativity, teamwork, evaluation and learning appropriate to the 21st century. The research tool was a questionnaire constructed by the researchers and distributed online to the students. Answers were collected from 50-course participants. Analysis of the participants’ responses showed that, along with the significant experience and benefits that students gained from building a website for kindergarten, ambivalence was shown toward the use of new, unfamiliar and complex technology. This attitude was characterized by unease and initial emotional distress triggered by the departure from routine training to an island of uncertainty. A gradual change took place toward the adoption of innovation with the help of empathy, training, and guidance from the instructors, leading to the students’ success in carrying out the task. Initial success led to further successes, resulting in a quality product and a feeling of personal competency among the students. A clear and extreme emotional shift was observed on the spectrum from a sense of difficulty and dissatisfaction to feelings of satisfaction, joy, competency and cognitive understanding of the importance of facing a challenge and succeeding. The findings of this study can contribute to increased understanding of the complex training process of future kindergarten teachers, coping with a changing world, and pedagogy that is supported by technology.

Keywords: early childhood teachers, educating for the future, emotions, kindergarten website

Procedia PDF Downloads 141
191 The Efficacy of Lithium vs. Valporate on Bipolar Patients and Their Sexual Side Effect: A Meta-Analysis of 4159 Patients

Authors: Yasmeen Jamal Alabdallat, Almutazballlah Bassam Qablan, Obada Ahmad Al Jayyousi, Ihdaa Mahmoud Bani Khalaf, Eman E. Alshial

Abstract:

Background: Bipolar disorder, formerly known as manic depression, is a mental health status that leads to extreme mood swings that include emotional lows (depression) and highs (mania or hypomania). This systematic review and meta-analysis aimed to assess the safety and efficacy of lithium versus valproate among bipolar patients. Methods: A computer literature search of PubMed, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials was conducted from inception until June 2022. Studies comparing lithium versus valproate among bipolar patients were selected for the analysis, and all relevant outcomes were pooled in the meta-analysis using Review Manager Software. Results: 11 Randomized Clinical Trials were included in this meta-analysis with a total of 4159 patients. Our meta showed that lithium was superior to valproate in terms of Young Mania Rating Scale (YMRS) (MD = 0.00 with 95% CI, (-0.55 – 0.55; I2 = 0%), P = 1.00). The results of the Hamilton Depression Rating Scale (HDRS) showed that the overall effect favored the valproate treated group (MD = 1.41 with 95% CI, (-0.15 – 2.67; I2 = 0%), P = 0.03). Concerning the results of the Montgomery-Asberg Depression Rating Scale (MADRS), the results showed that the lithium was superior to valproate (MD = 0.03 with 95% CI, (-0.80 to 0.87; I2 = 40%), P = 0.94). In terms of the sexual side effect, we found that the valproate was superior to lithium (RR 1.19 with 95% CI, (0.74 to 1.91; I2 = 0%), P = 0.47). The lithium-treated group was superior in comparison to valproate treated group in terms of Abnormal Involuntary Movement Scale (AIMS) (MD = -0.03 with 95% CI (-0.38 to 0.32; I2 = 0%), P = 0.87). The lithium was more favorable in terms of Simpson-Agnes scale (MD = -0.40 with 95% CI, (-0.86 to 0.06; I2 = 0%), P = 0.09). The results of the Barnes akathisia scale showed that the overall effect of the valproate was more favorable in comparison to lithium (MD = 0.05 with 95% CI, (-0.12 to 0.22; I2 = 0%), P = 0.57). Conclusion: Our study revealed that on the scales of efficacy Lithium treated group surpassed Valproate treated group in terms of Young Mania Rating Scale (YMRS), Abnormal Involuntary Movement Scale (AIMS) and Simpson-Agnes scale, but valproate surpassed it in Barnes Akathisia scale. Furthermore, on the scales of depression Hamilton Depression Rating Scale (HDRS) showed that the overall effect favored Valproate treated group, but Lithium surpassed valproate in terms of Montgomery-Asberg Depression Rating Scale (MADRS). Valproate surpassed Lithium in terms of sexual side effects.

Keywords: bipolar, mania, bipolar-depression, sexual dysfunction, sexual side effects, treatment

Procedia PDF Downloads 138
190 Digitization and Economic Growth in Africa: The Role of Financial Sector Development

Authors: Abdul Ganiyu Iddrisu, Bei Chen

Abstract:

Digitization is the process of transforming analog material into digital form, especially for storage and use in a computer. Significant development of information and communication technology (ICT) over the past years has encouraged many researchers to investigate its contribution to promoting economic growth and reducing poverty. Yet the compelling empirical evidence on the effects of digitization on economic growth remains weak, particularly in Africa. This is because extant studies that explicitly evaluate digitization and economic growth nexus are mostly reports and desk reviews. This points out an empirical knowledge gap in the literature. Hypothetically, digitization influences financial sector development which in turn influences economic growth. Digitization has changed the financial sector and its operating environment. Obstacles to access to financing, for instance, physical distance, minimum balance requirements, and low-income flows, among others can be circumvented. Savings have increased, micro-savers have opened bank accounts, and banks are now able to price short-term loans. This has the potential to develop the financial sector. However, empirical evidence on the digitization-financial development nexus is dearth. On the other hand, a number of studies maintained that financial sector development greatly influences growth of economies. We, therefore, argue that financial sector development is one of the transmission mechanisms through which digitization affects economic growth. Employing macro-country-level data from African countries and using fixed effects, random effects and Hausman-Taylor estimation approaches, this paper contributes to the literature by analysing economic growth in Africa, focusing on the role of digitization and financial sector development. First, we assess how digitization influences financial sector development in Africa. From an economic policy perspective, it is important to identify digitization determinants of financial sector development so that action can be taken to reduce the economic shocks associated with financial sector distortions. This nexus is rarely examined empirically in the literature. Secondly, we examine the effect of domestic credit to the private sector and stock market capitalization as a percentage of GDP as used to proxy for financial sector development on economic growth. Digitization is represented by the volume of digital/ICT equipment imported and GDP growth is used to proxy economic growth. Finally, we examine the effect of digitization on economic growth in the light of financial sector development. The following key results were found; first, digitalization propels financial sector development in Africa. Second, financial sector development enhances economic growth. Finally, contrary to our expectation, the results also indicate that digitalization conditioned on financial sector development tends to reduce economic growth in Africa. However, results of the net effects suggest that digitalization, overall, improve economic growth in Africa. We, therefore, conclude that, digitalization in Africa does not only develop the financial sector but unconditionally contributes the growth of the continent’s economies.

Keywords: digitalization, financial sector development, Africa, economic growth

Procedia PDF Downloads 123
189 Accurate Calculation of the Penetration Depth of a Bullet Using ANSYS

Authors: Eunsu Jang, Kang Park

Abstract:

In developing an armored ground combat vehicle (AGCV), it is a very important step to analyze the vulnerability (or the survivability) of the AGCV against enemy’s attack. In the vulnerability analysis, the penetration equations are usually used to get the penetration depth and check whether a bullet can penetrate the armor of the AGCV, which causes the damage of internal components or crews. The penetration equations are derived from penetration experiments which require long time and great efforts. However, they usually hold only for the specific material of the target and the specific type of the bullet used in experiments. Thus, penetration simulation using ANSYS can be another option to calculate penetration depth. However, it is very important to model the targets and select the input parameters in order to get an accurate penetration depth. This paper performed a sensitivity analysis of input parameters of ANSYS on the accuracy of the calculated penetration depth. Two conflicting objectives need to be achieved in adopting ANSYS in penetration analysis: maximizing the accuracy of calculation and minimizing the calculation time. To maximize the calculation accuracy, the sensitivity analysis of the input parameters for ANSYS was performed and calculated the RMS error with the experimental data. The input parameters include mesh size, boundary condition, material properties, target diameter are tested and selected to minimize the error between the calculated result from simulation and the experiment data from the papers on the penetration equation. To minimize the calculation time, the parameter values obtained from accuracy analysis are adjusted to get optimized overall performance. As result of analysis, the followings were found: 1) As the mesh size gradually decreases from 0.9 mm to 0.5 mm, both the penetration depth and calculation time increase. 2) As diameters of the target decrease from 250mm to 60 mm, both the penetration depth and calculation time decrease. 3) As the yield stress which is one of the material property of the target decreases, the penetration depth increases. 4) The boundary condition with the fixed side surface of the target gives more penetration depth than that with the fixed side and rear surfaces. By using above finding, the input parameters can be tuned to minimize the error between simulation and experiments. By using simulation tool, ANSYS, with delicately tuned input parameters, penetration analysis can be done on computer without actual experiments. The data of penetration experiments are usually hard to get because of security reasons and only published papers provide them in the limited target material. The next step of this research is to generalize this approach to anticipate the penetration depth by interpolating the known penetration experiments. This result may not be accurate enough to be used to replace the penetration experiments, but those simulations can be used in the early stage of the design process of AGCV in modelling and simulation stage.

Keywords: ANSYS, input parameters, penetration depth, sensitivity analysis

Procedia PDF Downloads 381
188 Non-Perturbative Vacuum Polarization Effects in One- and Two-Dimensional Supercritical Dirac-Coulomb System

Authors: Andrey Davydov, Konstantin Sveshnikov, Yulia Voronina

Abstract:

There is now a lot of interest to the non-perturbative QED-effects, caused by diving of discrete levels into the negative continuum in the supercritical static or adiabatically slowly varying Coulomb fields, that are created by the localized extended sources with Z > Z_cr. Such effects have attracted a considerable amount of theoretical and experimental activity, since in 3+1 QED for Z > Z_cr,1 ≈ 170 a non-perturbative reconstruction of the vacuum state is predicted, which should be accompanied by a number of nontrivial effects, including the vacuum positron emission. Similar in essence effects should be expected also in both 2+1 D (planar graphene-based hetero-structures) and 1+1 D (one-dimensional ‘hydrogen ion’). This report is devoted to the study of such essentially non-perturbative vacuum effects for the supercritical Dirac-Coulomb systems in 1+1D and 2+1D, with the main attention drawn to the vacuum polarization energy. Although the most of works considers the vacuum charge density as the main polarization observable, vacuum energy turns out to be not less informative and in many respects complementary to the vacuum density. Moreover, the main non-perturbative effects, which appear in vacuum polarization for supercritical fields due to the levels diving into the lower continuum, show up in the behavior of vacuum energy even more clear, demonstrating explicitly their possible role in the supercritical region. Both in 1+1D and 2+1D, we explore firstly the renormalized vacuum density in the supercritical region using the Wichmann-Kroll method. Thereafter, taking into account the results for the vacuum density, we formulate the renormalization procedure for the vacuum energy. To evaluate the latter explicitly, an original technique, based on a special combination of analytical methods, computer algebra tools and numerical calculations, is applied. It is shown that, for a wide range of the external source parameters (the charge Z and size R), in the supercritical region the renormalized vacuum energy could significantly deviate from the perturbative quadratic growth up to pronouncedly decreasing behavior with jumps by (-2 x mc^2), which occur each time, when the next discrete level dives into the negative continuum. In the considered range of variation of Z and R, the vacuum energy behaves like ~ -Z^2/R in 1+1D and ~ -Z^3/R in 2+1D, exceeding deeply negative values. Such behavior confirms the assumption of the neutral vacuum transmutation into the charged one, and thereby of the spontaneous positron emission, accompanying the emergence of the next vacuum shell due to the total charge conservation. To the end, we also note that the methods, developed for the vacuum energy evaluation in 2+1 D, with minimal complements could be carried over to the three-dimensional case, where the vacuum energy is expected to be ~ -Z^4/R and so could be competitive with the classical electrostatic energy of the Coulomb source.

Keywords: non-perturbative QED-effects, one- and two-dimensional Dirac-Coulomb systems, supercritical fields, vacuum polarization

Procedia PDF Downloads 192
187 Reassembling a Fragmented Border Landscape at Crossroads: Indigenous Rights, Rural Sustainability, Regional Integration and Post-Colonial Justice in Hong Kong

Authors: Chiu-Yin Leung

Abstract:

This research investigates a complex assemblage among indigenous identities, socio-political organization and national apparatus in the border landscape of post-colonial Hong Kong. This former British colony had designated a transient mode of governance in its New Territories and particularly the northernmost borderland in 1951-2012. With a discriminated system of land provisions for the indigenous villagers, the place has been inherited with distinctive village-based culture, historic monuments and agrarian practices until its sovereignty return into the People’s Republic of China. In its latest development imperatives by the national strategic planning, the frontier area of Hong Kong has been identified as a strategy site for regional economic integration in South China, with cross-border projects of innovation and technology zones, mega-transport infrastructure and inter-jurisdictional arrangement. Contemporary literature theorizes borders as the material and discursive production of territoriality, which manifest in state apparatus and the daily lives of its citizens and condense in the contested articulations of power, security and citizenship. Drawing on the concept of assemblage, this paper attempts to tract how the border regime and infrastructure in Hong Kong as a city are deeply ingrained in the everyday lived spaces of the local communities but also the changing urban and regional strategies across different longitudinal moments. Through an intensive ethnographic fieldwork among the borderland villages since 2008 and the extensive analysis of colonial archives, new development plans and spatial planning frameworks, the author navigates the genealogy of the border landscape in Ta Kwu Ling frontier area and its implications as the milieu for new state space, covering heterogeneous fields particularly in indigenous rights, heritage preservation, rural sustainability and regional economy. Empirical evidence suggests an apparent bias towards indigenous power and colonial representation in classifying landscape values and conserving historical monuments. Squatter and farm tenants are often deprived of property rights, statutory participation and livelihood option in the planning process. The postcolonial bureaucracies have great difficulties in mobilizing resources to catch up with the swift, political-first approach of the mainland counterparts. Meanwhile, the cultural heritage, lineage network and memory landscape are not protected altogether with any holistic view or collaborative effort across the border. The enactment of land resumption and compensation scheme is furthermore disturbed by lineage-based customary law, technocratic bureaucracy, intra-community conflicts and multi-scalar political mobilization. As many traces of colonial misfortune and tyranny have been whitewashed without proper management, the author argues that postcolonial justice is yet reconciled in this fragmented border landscape. The assemblage of border in mainstream representation has tended to oversimplify local struggles as a collective mist and setup a wider production of schizophrenia experiences in the discussion of further economic integration among Hong Kong and other mainland cities in the Pearl River Delta Region. The research is expected to shed new light on the theorizing of border regions and postcolonialism beyond Eurocentric perspectives. In reassembling the borderland experiences with other arrays in state governance, village organization and indigenous identities, the author also suggests an alternative epistemology in reconciling socio-spatial differences and opening up imaginaries for positive interventions.

Keywords: heritage conservation, indigenous communities, post-colonial borderland, regional development, rural sustainability

Procedia PDF Downloads 197
186 Enabling Self-Care and Shared Decision Making for People Living with Dementia

Authors: Jonathan Turner, Julie Doyle, Laura O’Philbin, Dympna O’Sullivan

Abstract:

People living with dementia should be at the centre of decision-making regarding goals for daily living. These goals include basic activities (dressing, hygiene, and mobility), advanced activities (finances, transportation, and shopping), and meaningful activities that promote well-being (pastimes and intellectual pursuits). However, there is limited involvement of people living with dementia in the design of technology to support their goals. A project is described that is co-designing intelligent computer-based support for, and with, people affected by dementia and their carers. The technology will support self-management, empower participation in shared decision-making with carers and help people living with dementia remain healthy and independent in their homes for longer. It includes information from the patient’s care plan, which documents medications, contacts, and the patient's wishes on end-of-life care. Importantly for this work, the plan can outline activities that should be maintained or worked towards, such as exercise or social contact. The authors discuss how to integrate care goal information from such a care plan with data collected from passive sensors in the patient’s home in order to deliver individualized planning and interventions for persons with dementia. A number of scientific challenges are addressed: First, to co-design with dementia patients and their carers computerized support for shared decision-making about their care while allowing the patient to share the care plan. Second, to develop a new and open monitoring framework with which to configure sensor technologies to collect data about whether goals and actions specified for a person in their care plan are being achieved. This is developed top-down by associating care quality types and metrics elicited from the co-design activities with types of data that can be collected within the home, from passive and active sensors, and from the patient’s feedback collected through a simple co-designed interface. These activities and data will be mapped to appropriate sensors and technological infrastructure with which to collect the data. Third, the application of machine learning models to analyze data collected via the sensing devices in order to investigate whether and to what extent activities outlined via the care plan are being achieved. The models will capture longitudinal data to track disease progression over time; as the disease progresses and captured data show that activities outlined in the care plan are not being achieved, the care plan may recommend alternative activities. Disease progression may also require care changes, and a data-driven approach can capture changes in a condition more quickly and allow care plans to evolve and be updated.

Keywords: care goals, decision-making, dementia, self-care, sensors

Procedia PDF Downloads 154
185 Fuzzy Optimization for Identifying Anticancer Targets in Genome-Scale Metabolic Models of Colon Cancer

Authors: Feng-Sheng Wang, Chao-Ting Cheng

Abstract:

Developing a drug from conception to launch is costly and time-consuming. Computer-aided methods can reduce research costs and accelerate the development process during the early drug discovery and development stages. This study developed a fuzzy multi-objective hierarchical optimization framework for identifying potential anticancer targets in a metabolic model. First, RNA-seq expression data of colorectal cancer samples and their healthy counterparts were used to reconstruct tissue-specific genome-scale metabolic models. The aim of the optimization framework was to identify anticancer targets that lead to cancer cell death and evaluate metabolic flux perturbations in normal cells that have been caused by cancer treatment. Four objectives were established in the optimization framework to evaluate the mortality of cancer cells for treatment and to minimize side effects causing toxicity-induced tumorigenesis on normal cells and smaller metabolic perturbations. Through fuzzy set theory, a multiobjective optimization problem was converted into a trilevel maximizing decision-making (MDM) problem. The applied nested hybrid differential evolution was applied to solve the trilevel MDM problem using two nutrient media to identify anticancer targets in the genome-scale metabolic model of colorectal cancer, respectively. Using Dulbecco’s Modified Eagle Medium (DMEM), the computational results reveal that the identified anticancer targets were mostly involved in cholesterol biosynthesis, pyrimidine and purine metabolisms, glycerophospholipid biosynthetic pathway and sphingolipid pathway. However, using Ham’s medium, the genes involved in cholesterol biosynthesis were unidentifiable. A comparison of the uptake reactions for the DMEM and Ham’s medium revealed that no cholesterol uptake reaction was included in DMEM. Two additional media, i.e., a cholesterol uptake reaction was included in DMEM and excluded in HAM, were respectively used to investigate the relationship of tumor cell growth with nutrient components and anticancer target genes. The genes involved in the cholesterol biosynthesis were also revealed to be determinable if a cholesterol uptake reaction was not induced when the cells were in the culture medium. However, the genes involved in cholesterol biosynthesis became unidentifiable if such a reaction was induced.

Keywords: Cancer metabolism, genome-scale metabolic model, constraint-based model, multilevel optimization, fuzzy optimization, hybrid differential evolution

Procedia PDF Downloads 65
184 Surface Acoustic Wave (SAW)-Induced Mixing Enhances Biomolecules Kinetics in a Novel Phase-Interrogation Surface Plasmon Resonance (SPR) Microfluidic Biosensor

Authors: M. Agostini, A. Sonato, G. Greco, M. Travagliati, G. Ruffato, E. Gazzola, D. Liuni, F. Romanato, M. Cecchini

Abstract:

Since their first demonstration in the early 1980s, surface plasmon resonance (SPR) sensors have been widely recognized as useful tools for detecting chemical and biological species, and the interest of the scientific community toward this technology has known a rapid growth in the past two decades owing to their high sensitivity, label-free operation and possibility of real-time detection. Recent works have suggested that a turning point in SPR sensor research would be the combination of SPR strategies with other technologies in order to reduce human handling of samples, improve integration and plasmonic sensitivity. In this light, microfluidics has been attracting growing interest. By properly designing microfluidic biochips it is possible to miniaturize the analyte-sensitive areas with an overall reduction of the chip dimension, reduce the liquid reagents and sample volume, improve automation, and increase the number of experiments in a single biochip by multiplexing approaches. However, as the fluidic channel dimensions approach the micron scale, laminar flows become dominant owing to the low Reynolds numbers that typically characterize microfluidics. In these environments mixing times are usually dominated by diffusion, which can be prohibitively long and lead to long-lasting biochemistry experiments. An elegant method to overcome these issues is to actively perturb the liquid laminar flow by exploiting surface acoustic waves (SAWs). With this work, we demonstrate a new approach for SPR biosensing based on the combination of microfluidics, SAW-induced mixing and the real-time phase-interrogation grating-coupling SPR technology. On a single lithium niobate (LN) substrate the nanostructured SPR sensing areas, interdigital transducer (IDT) for SAW generation and polydimethylsiloxane (PDMS) microfluidic chambers were fabricated. SAWs, impinging on the microfluidic chamber, generate acoustic streaming inside the fluid, leading to chaotic advection and thus improved fluid mixing, whilst analytes binding detection is made via SPR method based on SPP excitation via gold metallic grating upon azimuthal orientation and phase interrogation. Our device has been fully characterized in order to separate for the very first time the unwanted SAW heating effect with respect to the fluid stirring inside the microchamber that affect the molecules binding dynamics. Avidin/biotin assay and thiol-polyethylene glycol (bPEG-SH) were exploited as model biological interaction and non-fouling layer respectively. Biosensing kinetics time reduction with SAW-enhanced mixing resulted in a ≈ 82% improvement for bPEG-SH adsorption onto gold and ≈ 24% for avidin/biotin binding—≈ 50% and 18% respectively compared to the heating only condition. These results demonstrate that our biochip can significantly reduce the duration of bioreactions that usually require long times (e.g., PEG-based sensing layer, low concentration analyte detection). The sensing architecture here proposed represents a new promising technology satisfying the major biosensing requirements: scalability and high throughput capabilities. The detection system size and biochip dimension could be further reduced and integrated; in addition, the possibility of reducing biological experiment duration via SAW-driven active mixing and developing multiplexing platforms for parallel real-time sensing could be easily combined. In general, the technology reported in this study can be straightforwardly adapted to a great number of biological system and sensing geometry.

Keywords: biosensor, microfluidics, surface acoustic wave, surface plasmon resonance

Procedia PDF Downloads 262
183 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 38
182 Sweepline Algorithm for Voronoi Diagram of Polygonal Sites

Authors: Dmitry A. Koptelov, Leonid M. Mestetskiy

Abstract:

Voronoi Diagram (VD) of finite set of disjoint simple polygons, called sites, is a partition of plane into loci (for each site at the locus) – regions, consisting of points that are closer to a given site than to all other. Set of polygons is a universal model for many applications in engineering, geoinformatics, design, computer vision, and graphics. VD of polygons construction usually done with a reduction to task of constructing VD of segments, for which there are effective O(n log n) algorithms for n segments. Preprocessing – constructing segments from polygons’ sides, and postprocessing – polygon’s loci construction by merging the loci of the sides of each polygon are also included in reduction. This approach doesn’t take into account two specific properties of the resulting segment sites. Firstly, all this segments are connected in pairs in the vertices of the polygons. Secondly, on the one side of each segment lies the interior of the polygon. The polygon is obviously included in its locus. Using this properties in the algorithm for VD construction is a resource to reduce computations. The article proposes an algorithm for the direct construction of VD of polygonal sites. Algorithm is based on sweepline paradigm, allowing to effectively take into account these properties. The solution is performed based on reduction. Preprocessing is the constructing of set of sites from vertices and edges of polygons. Each site has an orientation such that the interior of the polygon lies to the left of it. Proposed algorithm constructs VD for set of oriented sites with sweepline paradigm. Postprocessing is a selecting of edges of this VD formed by the centers of empty circles touching different polygons. Improving the efficiency of the proposed sweepline algorithm in comparison with the general Fortune algorithm is achieved due to the following fundamental solutions: 1. Algorithm constructs only such VD edges, which are on the outside of polygons. Concept of oriented sites allowed to avoid construction of VD edges located inside the polygons. 2. The list of events in sweepline algorithm has a special property: the majority of events are connected with “medium” polygon vertices, where one incident polygon side lies behind the sweepline and the other in front of it. The proposed algorithm processes such events in constant time and not in logarithmic time, as in the general Fortune algorithm. The proposed algorithm is fully implemented and tested on a large number of examples. The high reliability and efficiency of the algorithm is also confirmed by computational experiments with complex sets of several thousand polygons. It should be noted that, despite the considerable time that has passed since the publication of Fortune's algorithm in 1986, a full-scale implementation of this algorithm for an arbitrary set of segment sites has not been made. The proposed algorithm fills this gap for an important special case - a set of sites formed by polygons.

Keywords: voronoi diagram, sweepline, polygon sites, fortunes' algorithm, segment sites

Procedia PDF Downloads 167
181 Dosimetric Comparison among Different Head and Neck Radiotherapy Techniques Using PRESAGE™ Dosimeter

Authors: Jalil ur Rehman, Ramesh C. Tailor, Muhammad Isa Khan, Jahnzeeb Ashraf, Muhammad Afzal, Geofferry S. Ibbott

Abstract:

Purpose: The purpose of this analysis was to investigate dose distribution of different techniques (3D-CRT, IMRT and VMAT) of head and neck cancer using 3-dimensional dosimeter called PRESAGETM Dosimeter. Materials and Methods: Computer tomography (CT) scans of radiological physics center (RPC) head and neck anthropomorphic phantom with both RPC standard insert and PRESAGETM insert were acquired separated with Philipp’s CT scanner and both CT scans were exported via DICOM to the Pinnacle version 9.4 treatment planning system (TPS). Each plan was delivered twice to the RPC phantom first containing the RPC standard insert having TLD and film dosimeters and then again containing the Presage insert having 3-D dosimeter (PRESAGETM) by using a Varian True Beam linear accelerator. After irradiation, the standard insert including point dose measurements (TLD) and planar Gafchromic® EBT film measurement were read using RPC standard procedure. The 3D dose distribution from PRESAGETM was read out with the Duke Midsized optical scanner dedicated to RPC (DMOS-RPC). Dose volume histogram (DVH), mean and maximal doses for organs at risk were calculated and compared among each head and neck technique. The prescription dose was same for all head and neck radiotherapy techniques which was 6.60 Gy/friction. Beam profile comparison and gamma analysis were used to quantify agreements among film measurement, PRESAGETM measurement and calculated dose distribution. Quality assurances of all plans were performed by using ArcCHECK method. Results: VMAT delivered the lowest mean and maximum doses to organ at risk (spinal cord, parotid) than IMRT and 3DCRT. Such dose distribution was verified by absolute dose distribution using thermoluminescent dosimeter (TLD) system. The central axial, sagittal and coronal planes were evaluated using 2D gamma map criteria(± 5%/3 mm) and results were 99.82% (axial), 99.78% (sagital), 98.38% (coronal) for VMAT plan and found the agreement between PRESAGE and pinnacle was better than IMRT and 3D-CRT plan excludes a 7 mm rim at the edge of the dosimeter. Profile showed good agreement for all plans between film, PRESAGE and pinnacle and 3D gamma was performed for PTV and OARs, VMAT and 3DCRT endow with better agreement than IMRT. Conclusion: VMAT delivered lowered mean and maximal doses to organs at risk and better PTV coverage during head and neck radiotherapy. TLD, EBT film and PRESAGETM dosimeters suggest that VMAT was better for the treatment of head and neck cancer than IMRT and 3D-CRT.

Keywords: RPC, 3DCRT, IMRT, VMAT, EBT2 film, TLD, PRESAGETM

Procedia PDF Downloads 375