Search results for: probability density function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8929

Search results for: probability density function

1159 Studies of Heavy Metal Ions Removal Efficiency in the Presence of Anionic Surfactant Using Ion Exchangers

Authors: Anna Wolowicz, Katarzyna Staszak, Zbigniew Hubicki

Abstract:

Nowadays heavy metal ions as well as surfactants are widely used throughout the world due to their useful properties. The consequence of such widespread use is their significant production. On the other hand, the increasing demand for surfactants and heavy metal ions results in production of large amounts of wastewaters which are discharged to the environment from mining, metal plating, pharmaceutical, cosmetic, fertilizer, paper, pesticide and electronic industries, pigments producing, petroleum refining and from autocatalyst, fibers, food, polymer industries etc. Heavy metal ions are non-biodegradable in the environment, cable of accumulation in living organisms and organs, toxic and carcinogenic. On the other hand, not only heavy metal ions but also surfactants affect the purity of water and soils. Some of surfactants are also toxic, harmful and dangerous because they are able to penetrate into surface waters causing foaming, blocked diffusion of oxygen from the atmosphere and act as emulsifiers of hydrophobic substances and increase solubility of many the dangerous pollutants. Among surfactants the anionic ones dominate and their share in the global production of surfactants is around 50 ÷ 60%. Due to the negative impact of heavy metals and surfactants on aquatic ecosystems and living organisms, removal and monitoring of their concentration in the environment is extremely important. Surfactants and heavy metal ions removal can be achieved by different biological and physicochemical methods. The adsorption as well as the ion-exchange methods play here a significant role. The aim of this study was heavy metal ions removal from aqueous solutions using different types of ion exchangers in the presence of anionic surfactants. Preliminary studies of copper(II), nickel(II), zinc(II) and cobalt(II) removal from acidic solutions using ion exchangers (Lewatit MonoPlus TP 220, Lewatit MonoPlus SR 7, Purolite A 400 TL, Purolite A 830, Purolite S 984, Dowex PSR 2, Dowex PSR3, Lewatit AF-5) allowed to select the most effective ones for the above mentioned sorbates and then to checking their removal efficiency in the presence of anionic surfactants. As it was found out Lewatit MonoPlus TP 220 of the chelating type, show the highest sorption capacities for copper(II) ions in comparison with the other ion exchangers under discussion, e.g. 9.98 mg/g (0.1 M HCl); 9.12 mg/g (6 M HCl). Moreover, cobalt(II) removal efficiency was the highest in 0.1 M HCl using also Lewatit MonoPlus TP 220 (6.9 mg/g) similar to zinc(II) (9.1 mg/g) and nickiel(II) (6.2 mg/g). As the anionic surfactant sodium dodecyl sulphate (SDS) was used and surfactant parameters such as viscosity (η), density (ρ) and critical micelle concentration (CMC) were obtained: η = 1.13 ± 0,01 mPa·s; ρ = 999.76 mg/cm3; CMC = 2.26 g/cm3. The studies of copper(II) removal from acidic solutions in the presence of SDS of different concentration show negligible effects on copper(II) removal efficiency. The sorption capacity of Cu(II) from 0.1 M acidic solution of 500 mg/L initial concentration was equal to 46.8 mg/g whereas in the presence of SDS 45.3 mg/g (0.1 mg SDS/L), 47.1 mg/g (0.5 mg SDS/L), 46.6 mg/g (1 mg SDS/L).

Keywords: anionic surfactant, heavy metal ions, ion exchanger, removal

Procedia PDF Downloads 126
1158 Spatial Analysis in the Impact of Aquifer Capacity Reduction on Land Subsidence Rate in Semarang City between 2014-2017

Authors: Yudo Prasetyo, Hana Sugiastu Firdaus, Diyanah Diyanah

Abstract:

The phenomenon of the lack of clean water supply in several big cities in Indonesia is a major problem in the development of urban areas. Moreover, in the city of Semarang, the population density and growth of physical development is very high. Continuous and large amounts of underground water (aquifer) exposure can result in a drastically aquifer supply declining in year by year. Especially, the intensity of aquifer use in the fulfilment of household needs and industrial activities. This is worsening by the land subsidence phenomenon in some areas in the Semarang city. Therefore, special research is needed to know the spatial correlation of the impact of decreasing aquifer capacity on the land subsidence phenomenon. This is necessary to give approve that the occurrence of land subsidence can be caused by loss of balance of pressure on below the land surface. One method to observe the correlation pattern between the two phenomena is the application of remote sensing technology based on radar and optical satellites. Implementation of Differential Interferometric Synthetic Aperture Radar (DINSAR) or Small Baseline Area Subset (SBAS) method in SENTINEL-1A satellite image acquisition in 2014-2017 period will give a proper pattern of land subsidence. These results will be spatially correlated with the aquifer-declining pattern in the same time period. Utilization of survey results to 8 monitoring wells with depth in above 100 m to observe the multi-temporal pattern of aquifer change capacity. In addition, the pattern of aquifer capacity will be validated with 2 underground water cavity maps from observation of ministries of energy and natural resources (ESDM) in Semarang city. Spatial correlation studies will be conducted on the pattern of land subsidence and aquifer capacity using overlapping and statistical methods. The results of this correlation will show how big the correlation of decrease in underground water capacity in influencing the distribution and intensity of land subsidence in Semarang city. In addition, the results of this study will also be analyzed based on geological aspects related to hydrogeological parameters, soil types, aquifer species and geological structures. The results of this study will be a correlation map of the aquifer capacity on the decrease in the face of the land in the city of Semarang within the period 2014-2017. So hopefully the results can help the authorities in spatial planning and the city of Semarang in the future.

Keywords: aquifer, differential interferometric synthetic aperture radar (DINSAR), land subsidence, small baseline area subset (SBAS)

Procedia PDF Downloads 168
1157 The Link between Corporate Governance and EU Competition Law Enforcement: A Conditional Logistic Regression Analysis of the Role of Diversity, Independence and Corporate Social Responsibility

Authors: Jeroen De Ceuster

Abstract:

This study is the first empirical analysis of the link between corporate governance and European Union competition law. Although competition law enforcement is often studied through the lens of competition law, we offer an alternative perspective by looking at a number of corporate governance factor at the level of the board of directors. We find that undertakings where the Chief Executive Officer is also chairman of the board are twice as likely to violate European Union competition law. No significant relationship was found between European Union competition law infringements and gender diversity of the board, the size of the board, the percentage of directors appointed after the Chief Executive Officer, the percentage of independent directors, or the presence of corporate social responsibility (CSR) committee. This contribution is based on a 1-1 matched peer study. Our sample includes all ultimate parent companies with a board that have been sanctioned by the European Commission for either anticompetitive agreements or abuse of dominance for the period from 2004 to 2018. These companies were matched to a company with headquarters in the same country, belongs to the same industry group, is active in the European Economic Area, and is the nearest neighbor to the infringing company in terms of revenue. Our final sample includes 121 pairs. As is common with matched peer studies, we use CLR to analyze the differences within these pairs. The only statistically significant independent variable after controlling for size and performance is CEO/Chair duality. The results indicate that companies whose Chief Executive Officer also functions as chairman of the board are twice as likely to infringe European Union competition law. This is in line with the monitoring theory of the board of directors, which states that its primary function is to monitor top management. Since competition law infringements are mostly organized by management and hidden from board directors, the results suggest that a Chief Executive Officer who is also chairman is more likely to be either complicit in the infringement or less critical towards his day-to-day colleagues and thus impedes proper detection by the board of competition law infringements.

Keywords: corporate governance, competition law, board of directors, board independence, ender diversity, corporate social responisbility

Procedia PDF Downloads 114
1156 Investigation of the Carbon Dots Optical Properties Using Laser Scanning Confocal Microscopy and TimE-resolved Fluorescence Microscopy

Authors: M. S. Stepanova, V. V. Zakharov, P. D. Khavlyuk, I. D. Skurlov, A. Y. Dubovik, A. L. Rogach

Abstract:

Carbon dots are small carbon-based spherical nanoparticles, which are typically less than 10 nm in size that can be modified with surface passivation and heteroatoms doping. The light-absorbing ability of carbon dots has attracted a significant amount of attention in photoluminescence for bioimaging and fluorescence sensing applications owing to their advantages, such as tunable fluorescence emission, photo- and thermostability and low toxicity. In this study, carbon dots were synthesized by the solvothermal method from citric acid and ethylenediamine dissolved in water. The solution was heated for 5 hours at 200°C and then cooled down to room temperature. The carbon dots films were obtained by evaporation from a high-concentration aqueous solution. The increase of both luminescence intensity and light transmission was obtained as a result of a 405 nm laser exposure to a part of the carbon dots film, which was detected using a confocal laser scanning microscope (LSM 710, Zeiss). Blueshift up to 35 nm of the luminescence spectrum is observed as luminescence intensity, which is increased more than twofold. The exact value of the shift depends on the time of the laser exposure. This shift can be caused by the modification of surface groups at the carbon dots, which are responsible for long-wavelength luminescence. In addition, a shift of the absorption peak by 10 nm and a decrease in the optical density at the wavelength of 350 nm is detected, which is responsible for the absorption of surface groups. The obtained sample was also studied with time-resolved confocal fluorescence microscope (MicroTime 100, PicoQuant), which made it possible to receive a time-resolved photoluminescence image and construct emission decays of the laser-exposed and non-exposed areas. 5 MHz pulse rate impulse laser has been used as a photoluminescence excitation source. Photoluminescence decay was approximated by two exhibitors. The laser-exposed area has the amplitude of the first-lifetime component (A1) twice as much as before, with increasing τ1. At the same time, the second-lifetime component (A2) decreases. These changes evidence a modification of the surface groups of carbon dots. The detected effect can be used to create thermostable fluorescent marks, the physical size of which is bounded by the diffraction limit of the optics (~ 200-300 nm) used for exposure and to improve the optical properties of carbon dots or in the field of optical encryption. Acknowledgements: This work was supported by the Ministry of Science and Higher Education of Russian Federation, goszadanie no. 2019-1080 and financially supported by Government of Russian Federation, Grant 08-08.

Keywords: carbon dots, photoactivation, optical properties, photoluminescence and absorption spectra

Procedia PDF Downloads 148
1155 Mitigating the Negative Health Effects from Stress - A Social Network Analysis

Authors: Jennifer A. Kowalkowski

Abstract:

Production agriculture (farming) is a physically, emotionally, and cognitively stressful occupation, where workers have little control over the stressors that impact both their work and their lives. In an occupation already rife with hazards, these occupational-related stressors have been shown to increase farm workers’ risks for illness, injury, disability, and death associated with their work. Despite efforts to mitigate the negative health effects from occupational-related stress (ORS) and to promote health and well-being (HWB) among farmers in the US, marked improvements have not been attained. Social support accessed through social networks has been shown to buffer against the negative health effects from stress, yet no studies have directly examined these relationships among farmers. The purpose of this study was to use social network analysis to explore the social networks of farm owner-operators and the social supports available to them for mitigating the negative health effects of ORS. A convenience sample of 71 farm owner-operators from a Midwestern County in the US completed and returned a mailed survey (55.5% response rate) that solicited information about their social networks related to ORS. Farmers reported an average of 2.4 individuals in their personal networks and higher levels of comfort discussing ORS with female network members. Farmers also identified few connections (3.4% density) and indicated low comfort with members of affiliation networks specific to ORS. Findings from this study highlighted that farmers accessed different social networks and resources for their personal HWB than for issues related to occupational(farm-related) health and safety. In addition, farmers’ social networks for personal HWB were smaller, with different relational characteristics than reported in studies of farmers’ social networks related to occupational health and safety. Collectively, these findings suggest that farmers conceptualize personal HWB differently than farm health and safety. Therefore, the same research approaches and targets that guide occupational health and safety research may not be appropriate for personal HWB for farmers. Interventions and programming targeting ORS and HWB have largely been offered through the same platforms or mechanisms as occupational health and safety programs. This may be attributed to the significant overlap between the farm as a family business and place of residence, or that ORS stems from farm-related issues. However, these assumptions translated to health research of farmers and farm families from the occupational health and safety literature have not been directly studied or challenged. Thismay explain why past interventions have not been effective at improving health outcomes for farmers and farm families. A close examination of findings from this study raises important questions for researchers who study agricultural health. Findings from this study have significant implications for future research agendas focused on addressing ORS, HWB, and health disparities for farmersand farm families.

Keywords: agricultural health, occupational-related stress, social networks, well-being

Procedia PDF Downloads 93
1154 Performance Evaluation of Production Schedules Based on Process Mining

Authors: Kwan Hee Han

Abstract:

External environment of enterprise is rapidly changing majorly by global competition, cost reduction pressures, and new technology. In these situations, production scheduling function plays a critical role to meet customer requirements and to attain the goal of operational efficiency. It deals with short-term decision making in the production process of the whole supply chain. The major task of production scheduling is to seek a balance between customer orders and limited resources. In manufacturing companies, this task is so difficult because it should efficiently utilize resource capacity under the careful consideration of many interacting constraints. At present, many computerized software solutions have been utilized in many enterprises to generate a realistic production schedule to overcome the complexity of schedule generation. However, most production scheduling systems do not provide sufficient information about the validity of the generated schedule except limited statistics. Process mining only recently emerged as a sub-discipline of both data mining and business process management. Process mining techniques enable the useful analysis of a wide variety of processes such as process discovery, conformance checking, and bottleneck analysis. In this study, the performance of generated production schedule is evaluated by mining event log data of production scheduling software system by using the process mining techniques since every software system generates event logs for the further use such as security investigation, auditing and error bugging. An application of process mining approach is proposed for the validation of the goodness of production schedule generated by scheduling software systems in this study. By using process mining techniques, major evaluation criteria such as utilization of workstation, existence of bottleneck workstations, critical process route patterns, and work load balance of each machine over time are measured, and finally, the goodness of production schedule is evaluated. By using the proposed process mining approach for evaluating the performance of generated production schedule, the quality of production schedule of manufacturing enterprises can be improved.

Keywords: data mining, event log, process mining, production scheduling

Procedia PDF Downloads 264
1153 In Vivo Evaluation of Exposure to Electromagnetic Fields at 27 GHz (5G) of Danio Rerio: A Preliminary Study

Authors: Elena Maria Scalisi, Roberta Pecoraro, Martina Contino, Sara Ignoto, Carmelo Iaria, Santi Concetto Pavone, Gino Sorbello, Loreto Di Donato, Maria Violetta Brundo

Abstract:

5G Technology is evolving to satisfy a variety of service requirements that may allow high data-rate connections (1Gbps) and lower latency times than current (<1ms). In order to support a high data transmission speed and a high traffic service for eMBB (enhanced mobile broadband) use cases, 5G systems have the characteristic of using different frequency bands of the radio wave spectrum (700 MHz, 3.6-3.8 GHz and 26.5-27.5 GHz), thus taking advantage of higher frequencies than previous mobile radio generations (1G-4G). However, waves at higher frequencies have a lower capacity to propagate in free space and therefore, in order to guarantee the capillary coverage of the territory for high reliability applications, it will be necessary to install a large number of repeaters. Following the introduction of this new technology, there has been growing concern over the past few months about possible harmful effects on human health. The aim of this preliminary study is to evaluate possible short term effects induced by 5G-millimeter waves on embryonic development and early life stages of Danio rerio by Z-FET. We exposed developing zebrafish at frequency of 27 GHz, with a standard pyramidal horn antenna placed at 15 cm far from the samples holder ensuring an incident power density of 10 mW/cm2. During the exposure cycle, from 6 h post fertilization (hpf) to 96 hpf, we measured a different morphological endpoints every 24 hours. Zebrafish embryo toxicity test (Z-FET) is a short term test, carried out on fertilized eggs of zebrafish and it represents an effective alternative to acute test with adult fish (OECD, 2013). We have observed that 5G did not reveal significant impacts on mortality nor on morphology because exposed larvae showed a normal detachment of the tail, presence of heartbeat, well-organized somites, therefore hatching rate was lower than untreated larvae even at 48 h of exposure. Moreover, the immunohistochemical analysis performed on larvae showed a negativity to the HSP-70 expression used as a biomarkers. This is a preliminary study on evaluation of potential toxicity induced by 5G and it seems appropriate to underline the importance that further studies would take, aimed at clarifying the probable real risk of exposure to electromagnetic fields.

Keywords: Biomarker of exposure, embryonic development, 5G waves, zebrafish embryo toxicity test

Procedia PDF Downloads 109
1152 Chatbots and the Future of Globalization: Implications of Businesses and Consumers

Authors: Shoury Gupta

Abstract:

Chatbots are a rapidly growing technological trend that has revolutionized the way businesses interact with their customers. With the advancements in artificial intelligence, chatbots can now mimic human-like conversations and provide instant and efficient responses to customer inquiries. In this research paper, we aim to explore the implications of chatbots on the future of globalization for both businesses and consumers. The paper begins by providing an overview of the current state of chatbots in the global market and their growth potential in the future. The focus is on how chatbots have become a valuable tool for businesses looking to expand their global reach, especially in areas with high population density and language barriers. With chatbots, businesses can engage with customers in different languages and provide 24/7 customer service support, creating a more accessible and convenient customer experience. The paper then examines the impact of chatbots on cross-cultural communication and how they can help bridge communication gaps between businesses and consumers from different cultural backgrounds. Chatbots can potentially facilitate cross-cultural communication by offering real-time translations, voice recognition, and other innovative features that can help users communicate effectively across different languages and cultures. By providing more accessible and inclusive communication channels, chatbots can help businesses reach new markets and expand their customer base, making them more competitive in the global market. However, the paper also acknowledges that there are potential drawbacks associated with chatbots. For instance, chatbots may not be able to address complex customer inquiries that require human input. Additionally, chatbots may perpetuate biases if they are programmed with certain stereotypes or assumptions about different cultures. These drawbacks may have significant implications for businesses and consumers alike. To explore the implications of chatbots on the future of globalization in greater detail, the paper provides a thorough review of existing literature and case studies. The review covers topics such as the benefits of chatbots for businesses and consumers, the potential drawbacks of chatbots, and how businesses can mitigate any risks associated with chatbot use. The paper also discusses the ethical considerations associated with chatbot use, such as privacy concerns and the need to ensure that chatbots do not discriminate against certain groups of people. The ethical implications of chatbots are particularly important given the potential for chatbots to be used in sensitive areas such as healthcare and financial services. Overall, this research paper provides a comprehensive analysis of chatbots and their implications for the future of globalization. By exploring both the potential benefits and drawbacks of chatbot use, the paper aims to provide insights into how businesses and consumers can leverage this technology to achieve greater global reach and improve cross-cultural communication. Ultimately, the paper concludes that chatbots have the potential to be a powerful tool for businesses looking to expand their global footprint and improve their customer experience, but that care must be taken to mitigate any risks associated with their use.

Keywords: chatbots, conversational AI, globalization, businesses

Procedia PDF Downloads 80
1151 Protective Efficacy of Moringa oleifera against Oxidative Ovarian Damage and Reproductive Failure in Female Rats Caused by Cyclophosphamide

Authors: Seham Samir Soliman, Ahmed A.Suliman, Khaled Fathy, Ahmed A. Sedik

Abstract:

Cyclophosphamide (CP), an antineoplastic drug, has been found to induce reproductive damage. It is essential to develop approaches aimed at safeguarding ovarian tissue integrity in women experiencing reproductive toxicity as a result of chemotherapy. The current study was conducted to assess the impact of an extract derived from Moringa oleifera (M. oleifera) leaves on ovarian damage produced by CP. A total of 32 female Wistar Albino rats, which were in a healthy cycling state, were randomly separated into 4 groups, with every group contains 8 rats. The first group was administered intraperitoneal (i.p.) saline. The second group was administered a solitary intraperitoneal dosage of cyclophosphamide (200 mg/kg). The third one received M. oleifera extract (150 mg/kg orally) for 20 days, followed by i.p. of CP on the last day of the experiment. The fourth group received M. oleifera extract (250 mg/kg orally) for 20 days, followed by i.p. of CP on the last day of the experiment. Hormonal assessments, including luteinizing hormone (LH), estrogen (ES), and follicle-stimulating hormone (FSH), were performed 24 hours after CP administration. In addition, evaluating the antioxidant status and inflammatory response against CP. Moreover, conducting detailed histopathological and ultra-structural pictures of the ovary. Our findings reported that rats intoxicated with CP exhibited elevated levels of FSH, LH, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and a decrease in E₂, and glutathione (GSH) levels. Pre-treatment with M. oleifera extract (250 mg/kg orally) ameliorated the disturbance in hormonal changes, oxidative stress indices, and the levels of pro-inflammatory mediators. Also, the histopathological and ultra-structural pictures of the ovaries were improved significantly in rats. In conclusion, M. oleifera extract possesses a significant protective role against CP-induced acute reproductive toxicity via modulating the values of FSH, LH, E₂ and quenching the release of reactive oxygen species and inflammatory mediators in female rats.

Keywords: cyclophosphamide, Moringa oleifera, ovarian function, oxidative stress, pro-inflammatory mediators

Procedia PDF Downloads 55
1150 Wearable System for Prolonged Cooling and Dehumidifying of PPE in Hot Environments

Authors: Lun Lou, Jintu Fan

Abstract:

While personal protective equipment (PPE) prevents the healthcare personnel from exposing to harmful surroundings, it creates a barrier to the dissipation of body heat and perspiration, leading to severe heat stress during prolonged exposure, especially in hot environments. It has been found that most of the existed personal cooling strategies have limitations in achieving effective cooling performance with long duration and lightweight. This work aimed to develop a lightweight (<1.0 kg) and less expensive wearable air cooling and dehumidifying system (WCDS) that can be applied underneath the protective clothing and provide 50W mean cooling power for more than 5 hours at 35°C environmental temperature without compromising the protection of PPE. For the WCDS, blowers will be used to activate an internal air circulation inside the clothing microclimate, which doesn't interfere with the protection of PPE. An air cooling and dehumidifying chamber (ACMR) with a specific design will be developed to reduce the air temperature and humidity inside the protective clothing. Then the cooled and dried air will be supplied to upper chest and back areas through a branching tubing system for personal cooling. A detachable ice cooling unit will be applied from the outside of the PPE to extract heat from the clothing microclimate. This combination allows for convenient replacement of the cooling unit to refresh the cooling effect, which can realize a continuous cooling function without taking off the PPE or adding too much weight. A preliminary thermal manikin test showed that the WCDS was able to reduce the microclimate temperature inside the PPE averagely by about 8°C for 60 minutes when the environmental temperature was 28.0 °C and 33.5 °C, respectively. Replacing the ice cooling unit every hour can maintain this cooling effect, while the longest operation duration is determined by the battery of the blowers, which can last for about 6 hours. This unique design is especially helpful for the PPE users, such as health care workers in infectious and hot environments when continuous cooling and dehumidifying are needed, but the change of protective clothing may increase the risk of infection. The new WCDS will not only improve the thermal comfort of PPE users but can also extend their safe working duration.

Keywords: personal thermal management, heat stress, ppe, health care workers, wearable device

Procedia PDF Downloads 62
1149 Adaptation Mechanism and Planning Response to Resiliency Shrinking of Small Towns Based on Complex Adaptive System by Taking Wuhan as an Example

Authors: Yanqun Li, Hong Geng

Abstract:

The rapid urbanization process taking big cities as the main body leads to the unequal configuration of urban and rural areas in the aspects of land supply, industrial division of labor, service supply and space allocation, and induces the shrinking characterization of service energy, industrial system and population vitality in small towns. As an important spatial unit in the spectrum of urbanization that serves, connects and couples urban and rural areas, the shrinking phenomenon faced by small towns has an important influence on the healthy development of urbanization. Based on the census of small towns in Wuhan metropolitan area, we have found that the shrinking of small towns is a passive contraction of elastic tension under the squeeze in cities. Once affected by the external forces such as policy regulation, planning guidance, and population return, small towns will achieve expansion and growth. Based on the theory of complex adaptive systems, this paper comprehensively constructs the development index evaluation system of small towns from five aspects of population, economy, space, society and ecology, measures the shrinking level of small towns, further analyzes the shrinking characteristics of small towns, and identifies whether the shrinking is elastic or not. And then this paper measures the resilience ability index of small town contract from the above-mentioned five aspects. Finally, this paper proposes an adaptive mechanism of urban-rural interaction evolution under fine division of labor to response the passive shrinking in small towns of Wuhan. Based on the above, the paper creatively puts forward the planning response measures of the small towns on the aspects of spatial layout, function orientation and service support, which can provide reference for other regions.

Keywords: complex adaptive systems, resiliency shrinking, adaptation mechanism, planning response

Procedia PDF Downloads 99
1148 The Feasibility and Usability of Antennas Silence Zone for Localization and Path Finding

Authors: S. Malebary, W. Xu

Abstract:

Antennas are important components that enable transmitting and receiving signals in mid-air (wireless). The radiation pattern of omni-directional (i.e., dipole) antennas, reflects the variation of power radiated by an antenna as a function of direction when transmitting. As the performance of the antenna is the same in transmitting and receiving, it also reflects the sensitivity of the antenna in different directions when receiving. The main observation when dealing with omni-directional antennas, regardless the application, is they equally radiate power in all directions in reference to Equivalent Isotropically Radiated Power (EIRP). Disseminating radio frequency signals in an omni-directional manner form a doughnut-shape-field with a cone in the middle of the elevation plane (when mounted vertically). In this paper, we investigate the existence of this physical phenomena namely silence cone zone (the zone where radiated power is nulled). First, we overview antenna types and properties that have the major impact on the shape of the electromagnetic field. Then we model various off the shelf dipoles in Matlab based on antennas’ features (dimensions, gain, operating frequency, … etc.) and compare the resulting radiation patterns. After that, we validate the existence of the null zone in Omni-directional antennas by conducting experiments and generating waveforms (using USRP1 and USRP2) at various frequencies using different types of antennas and gains in indoor/outdoor. We capture the generated waveforms around antennas' null zone in the reactive, near, and far field with a spectrum analyzer mounted on a drone, using various off the shelf antennas. We analyze the captured signals in RF-Explorer and plot the impact on received power and signal amplitude inside and around the null zone. Finally, it is concluded from evaluation and measurements the existence of null zones in Omni-directional antennas which we plan on extending this work in the near future to investigate the usability of the null zone for various applications such as localization and path finding.

Keywords: antennas, amplitude, field regions, frequency, FSPL, omni-directional, radiation pattern, RSSI, silence zone cone

Procedia PDF Downloads 290
1147 Carbon Capture and Storage Using Porous-Based Aerogel Materials

Authors: Rima Alfaraj, Abeer Alarawi, Murtadha AlTammar

Abstract:

The global energy landscape heavily relies on the oil and gas industry, which faces the critical challenge of reducing its carbon footprint. To address this issue, the integration of advanced materials like aerogels has emerged as a promising solution to enhance sustainability and environmental performance within the industry. This study thoroughly examines the application of aerogel-based technologies in the oil and gas sector, focusing particularly on their role in carbon capture and storage (CCS) initiatives. Aerogels, known for their exceptional properties, such as high surface area, low density, and customizable pore structure, have garnered attention for their potential in various CCS strategies. The review delves into various fabrication techniques utilized in producing aerogel materials, including sol-gel, supercritical drying, and freeze-drying methods, to assess their suitability for specific industry applications. Beyond fabrication, the practicality of aerogel materials in critical areas such as flow assurance, enhanced oil recovery, and thermal insulation is explored. The analysis spans a wide range of applications, from potential use in pipelines and equipment to subsea installations, offering valuable insights into the real-world implementation of aerogels in the oil and gas sector. The paper also investigates the adsorption and storage capabilities of aerogel-based sorbents, showcasing their effectiveness in capturing and storing carbon dioxide (CO₂) molecules. Optimization of pore size distribution and surface chemistry is examined to enhance the affinity and selectivity of aerogels towards CO₂, thereby improving the efficiency and capacity of CCS systems. Additionally, the study explores the potential of aerogel-based membranes for separating and purifying CO₂ from oil and gas streams, emphasizing their role in the carbon capture and utilization (CCU) value chain in the industry. Emerging trends and future perspectives in integrating aerogel-based technologies within the oil and gas sector are also discussed, including the development of hybrid aerogel composites and advanced functional components to further enhance material performance and versatility. By synthesizing the latest advancements and future directions in aerogel used for CCS applications in the oil and gas industry, this review offers a comprehensive understanding of how these innovative materials can aid in transitioning towards a more sustainable and environmentally conscious energy landscape. The insights provided can assist in strategic decision-making, drive technology development, and foster collaborations among academia, industry, and policymakers to promote the widespread adoption of aerogel-based solutions in the oil and gas sector.

Keywords: CCS, porous, carbon capture, oil and gas, sustainability

Procedia PDF Downloads 13
1146 Methadone Maintenance Treatment Patients' and Medical Students' Common Trait: Low Mindfulness Trait Associated with High Perceived Stress

Authors: Einat Peles, Anat Sason, Ariel Claman, Gabriel Barkay, Miriam Adelson

Abstract:

Individuals with opioid addiction are characterized as suffering from stress responses disturbance, including the hypothalamic-pituitary-adrenal (HPA) axis, and autonomic nervous system function. HPA axis is known to be stabilized during methadone maintenance treatment (MMT). Mindfulness (present-oriented, nonjudgmental awareness of cognitions, emotions, perceptions, and habitual behavioral reactions in daily life) counteracts stress. To our knowledge, the relation between perceived stress and mindfulness trait among MMT patients has never been studied. To measure indices of mindfulness and their relation to perceived stress among MMT patients, a cross-sectional random sample of current MMT patients was performed using questionnaires for perceived stress (PSS) and mindfulness trait (FFMQ- yields a total score and individual scores for five internally consistent mindfulness factors: Observing, Describing, Acting with awareness and consciousness, Non-judging the inner experience, Non-reactivity to the inner experience). Two additional groups were studied to serve as reference groups; Medical students that are known to suffer from stress, and Axis II psychiatric diagnosis patients that are known to characterized with poor mindfulness trait. Results: Groups included 41 MMT patients, 27 Axis II patients and 36 medical students. High perceived stressed (PSS≥18) defined among 61% of the MMT patients and 50% of the medical students. Highest mindfulness score observed among non-stressed MMT patients (153.5±17.2) followed by the groups of stressed MMT and non-stressed student (128.9±17.0 and 130.5±13.3 respectively), with the lowest score among stressed students (116.3±17.9) (multivariate analyses, corrected model p (F=14.3) < 0.0005, p (group) < 0.0005, p (stress) < 0.0005, p (interaction) =0.2). Linear inverse correlations were found between perceived stress score and mindfulness score among MMT patients (R=-0.65, p < 0.0005) and students (R=-0.51, p=0.002). Axis II patients had the lowest mindfulness score (103.4±25.3). Conclusion: High prevalence of high perceived stressed which characterized with poor mindfulness trait observed in both MMT patients and medical students, two different population groups. The effectiveness of mindfulness treatment in reducing stress and improve mindfulness trait should be evaluated to improve rehabilitation of MMT patients, and students success.

Keywords: mindfulness, stress, methadone maintenance treatment, medical students

Procedia PDF Downloads 166
1145 Thomas Kuhn, the Accidental Theologian: An Argument for the Similarity of Science and Religion

Authors: Dominic McGann

Abstract:

Applying Kuhn’s model of paradigm shifts in science to cases of doctrinal change in religion has been a common area of study in recent years. Few authors, however, have sought an explanation for the ease with which this model of theory change in science can be applied to cases of religious change. In order to provide such an explanation of this analytic phenomenon, this paper aims to answer one central question: Why is it that a theory that was intended to be used in an analysis of the history of science can be applied to something as disparate as the doctrinal history of religion with little to no modification? By way of answering this question, this paper begins with an explanation of Kuhn’s model and its applications in the field of religious studies. Following this, Massa’s recently proposed explanation for this phenomenon, and its notable flaws will be explained by way of framing the central proposal of this article, that the operative parts of scientific and religious changes function on the same fundamental concept of changes in understanding. Focusing its argument on this key concept, this paper seeks to illustrate its operation in cases of religious conversion and in Kuhn’s notion of the incommensurability of different scientific paradigms. The conjecture of this paper is that just as a Pagan-turned-Christian ceases to hear Thor’s hammer when they hear a clap of thunder, so too does a Ptolemaic-turned-Copernican-astronomer cease to see the Sun orbiting the Earth when they view a sunrise. In both cases, the agent in question has undergone a similar change in universal understanding, which provides us with a fundamental connection between changes in religion and changes in science. Following an exploration of this connection, this paper will consider the implications that such a connection has for the concept of the division between religion and science. This will, in turn, lead to the conclusion that religion and science are more alike than they are opposed with regards to the fundamental notion of understanding, thereby providing an answer to our central question. The major finding of this paper is that Kuhn’s model can be applied to religious cases so easily because changes in science and changes in religion operate on the same type of change in understanding. Therefore, in summary, science and religion share a crucial similarity and are not as disparate as they first appear.

Keywords: Thomas Kuhn, science and religion, paradigm shifts, incommensurability, insight and understanding, philosophy of science, philosophy of religion

Procedia PDF Downloads 149
1144 Combining Nitrocarburisation and Dry Lubrication for Improving Component Lifetime

Authors: Kaushik Vaideeswaran, Jean Gobet, Patrick Margraf, Olha Sereda

Abstract:

Nitrocarburisation is a surface hardening technique often applied to improve the wear resistance of steel surfaces. It is considered to be a promising solution in comparison with other processes such as flame spraying, owing to the formation of a diffusion layer which provides mechanical integrity, as well as its cost-effectiveness. To improve other tribological properties of the surface such as the coefficient of friction (COF), dry lubricants are utilized. Currently, the lifetime of steel components in many applications using either of these techniques individually are faced with the limitations of the two: high COF for nitrocarburized surfaces and low wear resistance of dry lubricant coatings. To this end, the current study involves the creation of a hybrid surface using the impregnation of a dry lubricant on to a nitrocarburized surface. The mechanical strength and hardness of Gerster SA’s nitrocarburized surfaces accompanied by the impregnation of the porous outermost layer with a solid lubricant will create a hybrid surface possessing both outstanding wear resistance and a low friction coefficient and with high adherence to the substrate. Gerster SA has the state-of-the-art technology for the surface hardening of various steels. Through their expertise in the field, the nitrocarburizing process parameters (atmosphere, temperature, dwelling time) were optimized to obtain samples that have a distinct porous structure (in terms of size, shape, and density) as observed by metallographic and microscopic analyses. The porosity thus obtained is suitable for the impregnation of a dry lubricant. A commercially available dry lubricant with a thermoplastic matrix was employed for the impregnation process, which was optimized to obtain a void-free interface with the surface of the nitrocarburized layer (henceforth called hybrid surface). In parallel, metallic samples without nitrocarburisation were also impregnated with the same dry lubricant as a reference (henceforth called reference surface). The reference and the nitrocarburized surfaces, with and without the dry lubricant were tested for their tribological behavior by sliding against a quenched steel ball using a nanotribometer. Without any lubricant, the nitrocarburized surface showed a wear rate 5x lower than the reference metal. In the presence of a thin film of dry lubricant ( < 2 micrometers) and under the application of high loads (500 mN or ~800 MPa), while the COF for the reference surface increased from ~0.1 to > 0.3 within 120 m, the hybrid surface retained a COF < 0.2 for over 400m of sliding. In addition, while the steel ball sliding against the reference surface showed heavy wear, the corresponding ball sliding against the hybrid surface showed very limited wear. Observations of the sliding tracks in the hybrid surface using Electron Microscopy show the presence of the nitrocarburized nodules as well as the lubricant, whereas no traces of the lubricant were found in the sliding track on the reference surface. In this manner, the clear advantage of combining nitrocarburisation with the impregnation of a dry lubricant towards forming a hybrid surface has been demonstrated.

Keywords: dry lubrication, hybrid surfaces, improved wear resistance, nitrocarburisation, steels

Procedia PDF Downloads 109
1143 Synthesis and Characterization of High-Aspect-Ratio Hematite Nanostructures for Solar Water Splitting

Authors: Paula Quiterio, Arlete Apolinario, Celia T. Sousa, Joao Azevedo, Paula Dias, Adelio Mendes, Joao P. Araujo

Abstract:

Nowadays one of the mankind's greatest challenges has been the supply of low-cost and environmentally friendly energy sources as an alternative to non-renewable fossil fuels. Hydrogen has been considered a promising solution, representing a clean and low-cost fuel. It can be produced directly from clean and abundant resources, such as sunlight and water, using photoelectrochemical cells (PECs), in a process that mimics the nature´s photosynthesis. Hematite (alpha-Fe2O3) has attracted considerable attention as a promising photoanode for solar water splitting, due to its high chemical stability, nontoxicity, availability and low band gap (2.2 eV), which allows reaching a high thermodynamic solar-to-hydrogen efficiency of 16.8 %. However, the main drawbacks of hematite such as the short hole diffusion length and the poor conductivity that lead to high electron-hole recombination result in significant PEC efficiency losses. One strategy to overcome these limitations and to increase the PEC efficiency is to use 1D nanostructures, such as nanotubes (NTs) and nanowires (NWs), which present high aspect ratios and large surface areas providing direct pathways for electron transport up to the charge collector and minimizing the recombination losses. In particular, due to the ultrathin walls of the NTs, the holes can reach the surface faster than in other nanostructures, representing a key factor for the NTs photoresponse. In this work, we prepared hematite NWs and NTs, respectively by hydrothermal process and electrochemical anodization. For hematite NWs growing, we studied the effect of variable hydrothermal conditions, different annealing temperatures and time, and the use of Ti and Sn dopants on the morphology and PEC performance. The crystalline phase characterization by X-ray diffraction was crucial to distinguish the formation of hematite and other iron oxide phases, alongside its effect on the photoanodes conductivity and consequent PEC efficiency. The conductivity of the as-prepared NWs is very low, in the order of 10-5 S cm-1, but after doping and annealing optimization it increased by a factor of 105. A high photocurrent density of 1.02 mA cm-2 at 1.45 VRHE was obtained under simulated sunlight, which is a very promising value for this kind of hematite nanostructures. The stability of the photoelectrodes was also tested, presenting good stability after several J-V measurements over time. The NTs, synthesized by fast anodizations with potentials ranging from 20-100 V, presented a linear growth of the NTs pore walls, with very low thicknesses from 10 - 18 nm. These preliminary results are also very promising for the use of hematite photoelectrodes on PEC hydrogen applications.

Keywords: hematite, nanotubes, nanowires, photoelectrochemical cells

Procedia PDF Downloads 210
1142 Characteristics of Wood Plastics Nano-Composites Made of Agricultural Residues and Urban Recycled Polymer Materials

Authors: Amir Nourbakhsh Habibabadi, Alireza Ashori

Abstract:

Context: The growing concern over the management of plastic waste and the high demand for wood-based products have led to the development of wood-plastic composites. Agricultural residues, which are abundantly available, can be used as a source of lignocellulosic fibers in the production of these composites. The use of recycled polymers and nanomaterials is also a promising approach to enhance the mechanical and physical properties of the composites. Research Aim: The aim of this study was to investigate the feasibility of using recycled high-density polyethylene (rHDPE), polypropylene (rPP), and agricultural residues fibers for manufacturing wood-plastic nano-composites. The effects of these materials on the mechanical properties of the composites, specifically tensile and flexural strength, were studied. Methodology: The study utilized an experimental approach where extruders and hot presses were used to fabricate the composites. Five types of cellulosic residues fibers (bagasse, corn stalk, rice straw, sunflower, and canola stem), three levels of nanomaterials (carbon nanotubes, nano silica, and nanoclay), and coupling agent were used to chemically bind the wood/polymer fibers, chemicals, and reinforcement. The mechanical properties of the composites were then analyzed. Findings: The study found that composites made with rHDPE provided moderately superior tensile and flexural properties compared to rPP samples. The addition of agricultural residues in several types of wood-plastic nano-composites significantly improved their bending and tensile properties, with bagasse having the most significant advantage over other lignocellulosic materials. The use of recycled polymers, agricultural residues, and nano-silica resulted in composites with the best strength properties. Theoretical Importance: The study's findings suggest that using agricultural fiber residues as reinforcement in wood/plastic nanocomposites is a viable approach to improve the mechanical properties of the composites. Additionally, the study highlights the potential of using recycled polymers in the development of value-added products without compromising the product's properties. Data Collection and Analysis Procedures: The study collected data on the mechanical properties of the composites using tensile and flexural tests. Statistical analyses were performed to determine the significant effects of the various materials used. Question addressed: Can agricultural residues and recycled polymers be used to manufacture wood-plastic nano-composites with enhanced mechanical properties? Conclusion: The study demonstrates the feasibility of using agricultural residues and recycled polymers in the production of wood-plastic nano-composites. The addition of these materials significantly improved the mechanical properties of the composites, with bagasse being the most effective agricultural residue. The study's findings suggest that composites made from recycled materials can offer value-added products without sacrificing performance.

Keywords: polymer, composites, wood, nano

Procedia PDF Downloads 59
1141 Physical Model Testing of Storm-Driven Wave Impact Loads and Scour at a Beach Seawall

Authors: Sylvain Perrin, Thomas Saillour

Abstract:

The Grande-Motte port and seafront development project on the French Mediterranean coastline entailed evaluating wave impact loads (pressures and forces) on the new beach seawall and comparing the resulting scour potential at the base of the existing and new seawall. A physical model was built at ARTELIA’s hydraulics laboratory in Grenoble (France) to provide insight into the evolution of scouring overtime at the front of the wall, quasi-static and impulsive wave force intensity and distribution on the wall, and water and sand overtopping discharges over the wall. The beach was constituted of fine sand and approximately 50 m wide above mean sea level (MSL). Seabed slopes were in the range of 0.5% offshore to 1.5% closer to the beach. A smooth concrete structure will replace the existing concrete seawall with an elevated curved crown wall. Prior the start of breaking (at -7 m MSL contour), storm-driven maximum spectral significant wave heights of 2.8 m and 3.2 m were estimated for the benchmark historical storm event dated of 1997 and the 50-year return period storms respectively, resulting in 1 m high waves at the beach. For the wave load assessment, a tensor scale measured wave forces and moments and five piezo / piezo-resistive pressure sensors were placed on the wall. Light-weight sediment physical model and pressure and force measurements were performed with scale 1:18. The polyvinyl chloride light-weight particles used to model the prototype silty sand had a density of approximately 1 400 kg/m3 and a median diameter (d50) of 0.3 mm. Quantitative assessments of the seabed evolution were made using a measuring rod and also a laser scan survey. Testing demonstrated the occurrence of numerous impulsive wave impacts on the reflector (22%), induced not by direct wave breaking but mostly by wave run-up slamming on the top curved part of the wall. Wave forces of up to 264 kilonewtons and impulsive pressure spikes of up to 127 kilonewtons were measured. Maximum scour of -0.9 m was measured for the new seawall versus -0.6 m for the existing seawall, which is imputable to increased wave reflection (coefficient was 25.7 - 30.4% vs 23.4 - 28.6%). This paper presents a methodology for the setup and operation of a physical model in order to assess the hydrodynamic and morphodynamic processes at a beach seawall during storms events. It discusses the pros and cons of such methodology versus others, notably regarding structures peculiarities and model effects.

Keywords: beach, impacts, scour, seawall, waves

Procedia PDF Downloads 139
1140 Effects of Kinesio Taping on Pain and Functions of Chronic Nonspecific Low Back Pain Patients

Authors: Ahmed Assem Abd El Rahim

Abstract:

BACKGROUND: Low back pain (LBP) is enormously common health problem& most of subjects experience it at some point of their life. Kinesio-taping is one of therapy methods introduced for studied cases with nonspecific low back pain. OBJECTIVES: to look at how Kinesio-taping affects studied cases with non-specific low back pain in terms of discomfort, range of motion, & back muscular strength. SUBJECTS: 40 mechanical LBP patients aged 20-40 years had been assigned haphazardly into two groups, They had been selected from outpatient clinic, KasrAl-AiniHospital, Cairo university. Methods: GroupA: 20 patients received the I-shape KT longitudinally & conventional physiotherapy program. Group B:20 studied cases received application of the KT Horizontally & conventional physiotherapy program. pain had been measured by visual analog scale, Range of motion had been measured by Roland Morris Disability Questionnaire (RMDQ), & strength had been measured by an isokinetic dynamometer before & after therapy. Therapy sessions had been three times weekly for four weeks. RESULTS: Groups (A & B) discovered decrease in pain& disability and rise in their flexion, extension ROM & peak torque of trunk extensor after end of 4 weeks of program. mean values of pain scale after therapy had been 3.7 and 5.04 in groups A & B. mean values of Disability scale after treatment had been 7.87.and 9.35 in groups A & B. mean values of ROM of flexion had been 28.06, and 24.53 in groups A & B. mean values of ROM of extension had been 13.43 & 10.73 in groups A & B. mean values of Peak torque of lumbar extensors were 65.43 and 63.22 in groups A & B. Though, participants who received the I-shape KT longitudinally as well as conventional physiotherapy program (group A), discovered more reduction in pain& disability and more improvement in ROM of flexion, extension, and Peak torque of lumbar extensors value (P<0.001) after therapy program CONCLUSION: Therapeutic longitudinal Kinesio-taping application with conventional physiotherapy will be more valuable than Therapeutic horizontal Kinesio-taping application with conventional physiotherapy when treating nonspecific low back pain studied cases.

Keywords: Kinesio taping, function, low back pain, muscle power

Procedia PDF Downloads 49
1139 Structural Health Monitoring of Buildings–Recorded Data and Wave Method

Authors: Tzong-Ying Hao, Mohammad T. Rahmani

Abstract:

This article presents the structural health monitoring (SHM) method based on changes in wave traveling times (wave method) within a layered 1-D shear beam model of structure. The wave method measures the velocity of shear wave propagating in a building from the impulse response functions (IRF) obtained from recorded data at different locations inside the building. If structural damage occurs in a structure, the velocity of wave propagation through it changes. The wave method analysis is performed on the responses of Torre Central building, a 9-story shear wall structure located in Santiago, Chile. Because events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded at this building, therefore it can serve as a full-scale benchmark to validate the structural health monitoring method utilized. The analysis of inter-story drifts and the Fourier spectra for the EW and NS motions during 2010 Chile earthquake are presented. The results for the NS motions suggest the coupling of translation and torsion responses. The system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) were detected initially decreasing approximately 24% in the EW motion. Near the end of shaking, an increase of about 17% was detected. These analysis and results serve as baseline indicators of the occurrence of structural damage. The detected changes in wave velocities of the shear beam model are consistent with the observed damage. However, the 1-D shear beam model is not sufficient to simulate the coupling of translation and torsion responses in the NS motion. The wave method is proven for actual implementation in structural health monitoring systems based on carefully assessing the resolution and accuracy of the model for its effectiveness on post-earthquake damage detection in buildings.

Keywords: Chile earthquake, damage detection, earthquake response, impulse response function, shear beam model, shear wave velocity, structural health monitoring, torre central building, wave method

Procedia PDF Downloads 352
1138 A Methodology for Developing New Technology Ideas to Avoid Patent Infringement: F-Term Based Patent Analysis

Authors: Kisik Song, Sungjoo Lee

Abstract:

With the growing importance of intangible assets recently, the impact of patent infringement on the business of a company has become more evident. Accordingly, it is essential for firms to estimate the risk of patent infringement risk before developing a technology and create new technology ideas to avoid the risk. Recognizing the needs, several attempts have been made to help develop new technology opportunities and most of them have focused on identifying emerging vacant technologies from patent analysis. In these studies, the IPC (International Patent Classification) system or keywords from text-mining application to patent documents was generally used to define vacant technologies. Unlike those studies, this study adopted F-term, which classifies patent documents according to the technical features of the inventions described in them. Since the technical features are analyzed by various perspectives by F-term, F-term provides more detailed information about technologies compared to IPC while more systematic information compared to keywords. Therefore, if well utilized, it can be a useful guideline to create a new technology idea. Recognizing the potential of F-term, this paper aims to suggest a novel approach to developing new technology ideas to avoid patent infringement based on F-term. For this purpose, we firstly collected data about F-term and then applied text-mining to the descriptions about classification criteria and attributes. From the text-mining results, we could identify other technologies with similar technical features of the existing one, the patented technology. Finally, we compare the technologies and extract the technical features that are commonly used in other technologies but have not been used in the existing one. These features are presented in terms of “purpose”, “function”, “structure”, “material”, “method”, “processing and operation procedure” and “control means” and so are useful for creating new technology ideas that help avoid infringing patent rights of other companies. Theoretically, this is one of the earliest attempts to adopt F-term to patent analysis; the proposed methodology can show how to best take advantage of F-term with the wealth of technical information. In practice, the proposed methodology can be valuable in the ideation process for successful product and service innovation without infringing the patents of other companies.

Keywords: patent infringement, new technology ideas, patent analysis, F-term

Procedia PDF Downloads 254
1137 Evaluation of a Higher Diploma in Mental Health Nursing Using Qualitative and Quantitative Methods: Effects on Student Behavior, Attitude and Perception

Authors: T. Frawley, G. O'Kelly

Abstract:

The UCD School of Nursing, Midwifery and Health Systems Higher Diploma in Mental Health (HDMH) nursing programme commenced in January 2017. Forty students successfully completed the programme. Programme evaluation was conducted from the outset. Research ethics approval was granted by the UCD Human Research Ethics Committee – Sciences in November 2016 (LS-E-16-163). Plan for Sustainability: Each iteration of the programme continues to be evaluated and adjusted accordingly. Aims: The ultimate purpose of the HDMH programme is to prepare registered nurses (registered children’s nurse (RCN), registered nurse in intellectual disability (RNID) and registered general nurse (RGN)) to function as effective registered psychiatric nurses in all settings which provide care and treatment for people experiencing mental health difficulties. Curriculum evaluation is essential to ensure that the programme achieves its purpose, that aims and expected outcomes are met and that required changes are highlighted for the programme’s continuing positive development. Methods: Both quantitative and qualitative methods were used in the evaluation. A series of questionnaires were used (the majority pre and post programme) to determine student perceptions of the programme, behaviour and attitudinal change from commencement to completion. These included the student assessment of learning gains (SALG); mental health knowledge schedule (MAKS); mental health clinician attitudes scale (MICA); reported and intended behaviour scale (RIBS); and community attitudes towards the mentally ill (CAMI). In addition, student and staff focus groups were conducted. Evaluation methods also incorporated module feedback. Outcome/Results: The evaluation highlighted a very positive response in relation to the achievement of programme outcomes and preparation for future work as registered psychiatric nursing. Some areas were highlighted for further development, which have been taken cognisance of in the 2019 iteration of the programme.

Keywords: learning gains, mental health, nursing, stigma

Procedia PDF Downloads 126
1136 Numerical Investigation of Phase Change Materials (PCM) Solidification in a Finned Rectangular Heat Exchanger

Authors: Mounir Baccar, Imen Jmal

Abstract:

Because of the rise in energy costs, thermal storage systems designed for the heating and cooling of buildings are becoming increasingly important. Energy storage can not only reduce the time or rate mismatch between energy supply and demand but also plays an important role in energy conservation. One of the most preferable storage techniques is the Latent Heat Thermal Energy Storage (LHTES) by Phase Change Materials (PCM) due to its important energy storage density and isothermal storage process. This paper presents a numerical study of the solidification of a PCM (paraffin RT27) in a rectangular thermal storage exchanger for air conditioning systems taking into account the presence of natural convection. Resolution of continuity, momentum and thermal energy equations are treated by the finite volume method. The main objective of this numerical approach is to study the effect of natural convection on the PCM solidification time and the impact of fins number on heat transfer enhancement. It also aims at investigating the temporal evolution of PCM solidification, as well as the longitudinal profiles of the HTF circling in the duct. The present research undertakes the study of two cases: the first one treats the solidification of PCM in a PCM-air heat exchanger without fins, while the second focuses on the solidification of PCM in a heat exchanger of the same type with the addition of fins (3 fins, 5 fins, and 9 fins). Without fins, the stratification of the PCM from colder to hotter during the heat transfer process has been noted. This behavior prevents the formation of thermo-convective cells in PCM area and then makes transferring almost conductive. In the presence of fins, energy extraction from PCM to airflow occurs at a faster rate, which contributes to the reduction of the discharging time and the increase of the outlet air temperature (HTF). However, for a great number of fins (9 fins), the enhancement of the solidification process is not significant because of the effect of confinement of PCM liquid spaces for the development of thermo-convective flow. Hence, it can be concluded that the effect of natural convection is not very significant for a high number of fins. In the optimum case, using 3 fins, the increasing temperature of the HTF exceeds approximately 10°C during the first 30 minutes. When solidification progresses from the surfaces of the PCM-container and propagates to the central liquid phase, an insulating layer will be created in the vicinity of the container surfaces and the fins, causing a low heat exchange rate between PCM and air. As the solid PCM layer gets thicker, a progressive regression of the field of movements is induced in the liquid phase, thus leading to the inhibition of heat extraction process. After about 2 hours, 68% of the PCM became solid, and heat transfer was almost dominated by conduction mechanism.

Keywords: heat transfer enhancement, front solidification, PCM, natural convection

Procedia PDF Downloads 171
1135 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 58
1134 A Genre-Based Approach to the Teaching of Pronunciation

Authors: Marden Silva, Danielle Guerra

Abstract:

Some studies have indicated that pronunciation teaching hasn’t been paid enough attention by teachers regarding EFL contexts. In particular, segmental and suprasegmental features through genre-based approach may be an opportunity on how to integrate pronunciation into a more meaningful learning practice. Therefore, the aim of this project was to carry out a survey on some aspects related to English pronunciation that Brazilian students consider more difficult to learn, thus enabling the discussion of strategies that can facilitate the development of oral skills in English classes by integrating the teaching of phonetic-phonological aspects into the genre-based approach. Notions of intelligibility, fluency and accuracy were proposed by some authors as an ideal didactic sequence. According to their proposals, basic learners should be exposed to activities focused on the notion of intelligibility as well as intermediate students to the notion of fluency, and finally more advanced ones to accuracy practices. In order to test this hypothesis, data collection was conducted during three high school English classes at Federal Center for Technological Education of Minas Gerais (CEFET-MG), in Brazil, through questionnaires and didactic activities, which were recorded and transcribed for further analysis. The genre debate was chosen to facilitate the oral expression of the participants in a freer way, making them answering questions and giving their opinion about a previously selected topic. The findings indicated that basic students demonstrated more difficulty with aspects of English pronunciation than the others. Many of the intelligibility aspects analyzed had to be listened more than once for a better understanding. For intermediate students, the speeches recorded were considerably easier to understand, but nevertheless they found it more difficult to pronounce the words fluently, often interrupting their speech to think about what they were going to say and how they would talk. Lastly, more advanced learners seemed to express their ideas more fluently, but still subtle errors related to accuracy were perceptible in speech, thereby confirming the proposed hypothesis. It was also seen that using genre-based approach to promote oral communication in English classes might be a relevant method, considering the socio-communicative function inherent in the suggested approach.

Keywords: EFL, genre-based approach, oral skills, pronunciation

Procedia PDF Downloads 119
1133 The Noun-Phrase Elements on the Usage of the Zero Article

Authors: Wen Zhen

Abstract:

Compared to content words, function words have been relatively overlooked by English learners especially articles. The article system, to a certain extent, becomes a resistance to know English better, driven by different elements. Three principal factors can be summarized in term of the nature of the articles when referring to the difficulty of the English article system. However, making the article system more complex are difficulties in the second acquisition process, for [-ART] learners have to create another category, causing even most non-native speakers at proficiency level to make errors. According to the sequences of acquisition of the English article, it is showed that the zero article is first acquired and in high inaccuracy. The zero article is often overused in the early stages of L2 acquisition. Although learners at the intermediate level move to underuse the zero article for they realize that the zero article does not cover any case, overproduction of the zero article even occurs among advanced L2 learners. The aim of the study is to investigate noun-phrase factors which give rise to incorrect usage or overuse of the zero article, thus providing suggestions for L2 English acquisition. Moreover, it enables teachers to carry out effective instruction that activate conscious learning of students. The research question will be answered through a corpus-based, data- driven approach to analyze the noun-phrase elements from the semantic context and countability of noun-phrases. Based on the analysis of the International Thurber Thesis corpus, the results show that: (1) Although context of [-definite,-specific] favored the zero article, both[-definite,+specific] and [+definite,-specific] showed less influence. When we reflect on the frequency order of the zero article , prototypicality plays a vital role in it .(2)EFL learners in this study have trouble classifying abstract nouns as countable. We can find that it will bring about overuse of the zero article when learners can not make clear judgements on countability altered from (+definite ) to (-definite).Once a noun is perceived as uncountable by learners, the choice would fall back on the zero article. These findings suggest that learners should be engaged in recognition of the countability of new vocabulary by explaining nouns in lexical phrases and explore more complex aspects such as analysis dependent on discourse.

Keywords: noun phrase, zero article, corpus, second language acquisition

Procedia PDF Downloads 238
1132 Kriging-Based Global Optimization Method for Bluff Body Drag Reduction

Authors: Bingxi Huang, Yiqing Li, Marek Morzynski, Bernd R. Noack

Abstract:

We propose a Kriging-based global optimization method for active flow control with multiple actuation parameters. This method is designed to converge quickly and avoid getting trapped into local minima. We follow the model-free explorative gradient method (EGM) to alternate between explorative and exploitive steps. This facilitates a convergence similar to a gradient-based method and the parallel exploration of potentially better minima. In contrast to EGM, both kinds of steps are performed with Kriging surrogate model from the available data. The explorative step maximizes the expected improvement, i.e., favors regions of large uncertainty. The exploitive step identifies the best location of the cost function from the Kriging surrogate model for a subsequent weight-biased linear-gradient descent search method. To verify the effectiveness and robustness of the improved Kriging-based optimization method, we have examined several comparative test problems of varying dimensions with limited evaluation budgets. The results show that the proposed algorithm significantly outperforms some model-free optimization algorithms like genetic algorithm and differential evolution algorithm with a quicker convergence for a given budget. We have also performed direct numerical simulations of the fluidic pinball (N. Deng et al. 2020 J. Fluid Mech.) on three circular cylinders in equilateral-triangular arrangement immersed in an incoming flow at Re=100. The optimal cylinder rotations lead to 44.0% net drag power saving with 85.8% drag reduction and 41.8% actuation power. The optimal results for active flow control based on this configuration have achieved boat-tailing mechanism by employing Coanda forcing and wake stabilization by delaying separation and minimizing the wake region.

Keywords: direct numerical simulations, flow control, kriging, stochastic optimization, wake stabilization

Procedia PDF Downloads 91
1131 A Damage-Plasticity Concrete Model for Damage Modeling of Reinforced Concrete Structures

Authors: Thanh N. Do

Abstract:

This paper addresses the modeling of two critical behaviors of concrete material in reinforced concrete components: (1) the increase in strength and ductility due to confining stresses from surrounding transverse steel reinforcements, and (2) the progressive deterioration in strength and stiffness due to high strain and/or cyclic loading. To improve the state-of-the-art, the author presents a new 3D constitutive model of concrete material based on plasticity and continuum damage mechanics theory to simulate both the confinement effect and the strength deterioration in reinforced concrete components. The model defines a yield function of the stress invariants and a compressive damage threshold based on the level of confining stresses to automatically capture the increase in strength and ductility when subjected to high compressive stresses. The model introduces two damage variables to describe the strength and stiffness deterioration under tensile and compressive stress states. The damage formulation characterizes well the degrading behavior of concrete material, including the nonsymmetric strength softening in tension and compression, as well as the progressive strength and stiffness degradation under primary and follower load cycles. The proposed damage model is implemented in a general purpose finite element analysis program allowing an extensive set of numerical simulations to assess its ability to capture the confinement effect and the degradation of the load-carrying capacity and stiffness of structural elements. It is validated against a collection of experimental data of the hysteretic behavior of reinforced concrete columns and shear walls under different load histories. These correlation studies demonstrate the ability of the model to describe vastly different hysteretic behaviors with a relatively consistent set of parameters. The model shows excellent consistency in response determination with very good accuracy. Its numerical robustness and computational efficiency are also very good and will be further assessed with large-scale simulations of structural systems.

Keywords: concrete, damage-plasticity, shear wall, confinement

Procedia PDF Downloads 153
1130 Interbrain Synchronization and Multilayer Hyper brain Networks when Playing Guitar in Quartet

Authors: Viktor Müller, Ulman Lindenberger

Abstract:

Neurophysiological evidence suggests that the physiological states of the system are characterized by specific network structures and network topology dynamics, demonstrating a robust interplay between network topology and function. It is also evident that interpersonal action coordination or social interaction (e.g., playing music in duets or groups) requires strong intra- and interbrain synchronization resulting in a specific hyper brain network activity across two or more brains to support such coordination or interaction. Such complex hyper brain networks can be described as multiplex or multilayer networks that have a specific multidimensional or multilayer network organization characteristic for superordinate systems and their constituents. The aim of the study was to describe multilayer hyper brain networks and synchronization patterns of guitarists playing guitar in a quartet by using electroencephalography (EEG) hyper scanning (simultaneous EEG recording from multiple brains) and following time-frequency decomposition and multilayer network construction, where within-frequency coupling (WFC) represents communication within different layers, and cross-frequency coupling (CFC) depicts communication between these layers. Results indicate that communication or coupling dynamics, both within and between the layers across the brains of the guitarists, play an essential role in action coordination and are particularly enhanced during periods of high demands on musical coordination. Moreover, multilayer hyper brain network topology and dynamical structure of guitar sounds showed specific guitar-guitar, brain-brain, and guitar-brain causal associations, indicating multilevel dynamics with upward and downward causation, contributing to the superordinate system dynamics and hyper brain functioning. It is concluded that the neuronal dynamics during interpersonal interaction are brain-wide and frequency-specific with the fine-tuned balance between WFC and CFC and can best be described in terms of multilayer multi-brain networks with specific network topology and connectivity strengths. Further sophisticated research is needed to deepen our understanding of these highly interesting and complex phenomena.

Keywords: EEG hyper scanning, intra- and interbrain coupling, multilayer hyper brain networks, social interaction, within- and cross-frequency coupling

Procedia PDF Downloads 60