Search results for: short-term electricity price forecast
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2406

Search results for: short-term electricity price forecast

1656 Power Supply by Soil Battery and Production of Hydrogen Fuel for Greenhouse and Space Heating

Authors: Mohsen Azarmjoo, Yasaman Azarmjoo, Zahra Alikhani Koopaei

Abstract:

The increasing global population and continued growth in energy consumption underscore the need for renewable and sustainable energy sources more than ever. Soil batteries are a method for generating electrical energy by using recycled materials. Recycled materials include galvanized and copper sheets and recycled tires. Additionally, hydrogen, being a clean and efficient fuel, has the potential to replace fossil fuels. Consequently, hydrogen production from water presents a sustainable solution for energy supply. By utilizing aged materials, hydrogen production becomes more cost-effective and environmentally friendly. This article focuses on energy-deprived agricultural lands, explaining how soil batteries and hydrogen can provide the necessary energy for agricultural equipment, such as irrigation, lighting, greenhouse ventilation, and heating. The article explores the benefits of utilizing this method, emphasizing its potential to reduce environmental pollution through the use of recyclable materials. It is worth mentioning that these technologies face challenges, but their progress toward achieving zero-energy consumer standards positions them as promising future technologies for electricity generation. This article provides detailed insights into emerging technologies using a constructed case study involving soil batteries and a hydrogen fuel production device.

Keywords: electricity generation, soil batteries, tires, hydrogen, heat supply, water, aged materials, recycling, agricultural lands

Procedia PDF Downloads 62
1655 Economics of Precision Mechanization in Wine and Table Grape Production

Authors: Dean A. McCorkle, Ed W. Hellman, Rebekka M. Dudensing, Dan D. Hanselka

Abstract:

The motivation for this study centers on the labor- and cost-intensive nature of wine and table grape production in the U.S., and the potential opportunities for precision mechanization using robotics to augment those production tasks that are labor-intensive. The objectives of this study are to evaluate the economic viability of grape production in five U.S. states under current operating conditions, identify common production challenges and tasks that could be augmented with new technology, and quantify a maximum price for new technology that growers would be able to pay. Wine and table grape production is primed for precision mechanization technology as it faces a variety of production and labor issues. Methodology: Using a grower panel process, this project includes the development of a representative wine grape vineyard in five states and a representative table grape vineyard in California. The panels provided production, budget, and financial-related information that are typical for vineyards in their area. Labor costs for various production tasks are of particular interest. Using the data from the representative budget, 10-year projected financial statements have been developed for the representative vineyard and evaluated using a stochastic simulation model approach. Labor costs for selected vineyard production tasks were evaluated for the potential of new precision mechanization technology being developed. These tasks were selected based on a variety of factors, including input from the panel members, and the extent to which the development of new technology was deemed to be feasible. The net present value (NPV) of the labor cost over seven years for each production task was derived. This allowed for the calculation of a maximum price for new technology whereby the NPV of labor costs would equal the NPV of purchasing, owning, and operating new technology. Expected Results: The results from the stochastic model will show the projected financial health of each representative vineyard over the 2015-2024 timeframe. Investigators have developed a preliminary list of production tasks that have the potential for precision mechanization. For each task, the labor requirements, labor costs, and the maximum price for new technology will be presented and discussed. Together, these results will allow technology developers to focus and prioritize their research and development efforts for wine and table grape vineyards, and suggest opportunities to strengthen vineyard profitability and long-term viability using precision mechanization.

Keywords: net present value, robotic technology, stochastic simulation, wine and table grapes

Procedia PDF Downloads 258
1654 Development of a Comprehensive Energy Model for Canada

Authors: Matthew B. Davis, Amit Kumar

Abstract:

With potentially dangerous impacts of climate change on the horizon, Canada has an opportunity to take a lead role on the international stage to demonstrate how energy use intensity and greenhouse gas emission intensity may be effectively reduced. Through bottom-up modelling of Canada’s energy sector using Long-range Energy Alternative Planning (LEAP) software, it can be determined where efforts should to be concentrated to produce the most positive energy management results. By analyzing a provincially integrated Canada, one can develop strategies to minimize the country’s economic downfall while transitioning to lower-emission energy technologies. Canada’s electricity sector plays an important role in accommodating these transitionary technologies as fossil-fuel based power production is prevalent in many parts of the country and is responsible for a large portion (17%) of Canada’s greenhouse gas emissions. Current findings incorporate an in-depth model of Canada’s current energy supply and demand sectors, as well as a business-as-usual scenario up to the year 2035. This allows for in-depth analysis of energy flow from resource potential, to extraction, to fuel and electricity production, to energy end use and emissions in Canada’s residential, transportation, commercial, institutional, industrial, and agricultural sectors. Bottom-up modelling techniques such as these are useful to critically analyze and compare the various possible scenarios of implementing sustainable energy measures. This work can aid government in creating effective energy and environmental policies, as well as guide industry to what technology or process changes would be most worthwhile to pursue.

Keywords: energy management, LEAP, energy end-use, GHG emissions

Procedia PDF Downloads 300
1653 Comparative Study of the Earth Land Surface Temperature Signatures over Ota, South-West Nigeria

Authors: Moses E. Emetere, M. L. Akinyemi

Abstract:

Agricultural activities in the South–West Nigeria are mitigated by the global increase in temperature. The unpredictive surface temperature of the area had increased health challenges amongst other social influence. The satellite data of surface temperatures were compared with the ground station Davis weather station. The differential heating of the lower atmosphere were represented mathematically. A numerical predictive model was propounded to forecast future surface temperature.

Keywords: numerical predictive model, surface temperature, satellite date, ground data

Procedia PDF Downloads 468
1652 Fuzzy Wavelet Model to Forecast the Exchange Rate of IDR/USD

Authors: Tri Wijayanti Septiarini, Agus Maman Abadi, Muhammad Rifki Taufik

Abstract:

The exchange rate of IDR/USD can be the indicator to analysis Indonesian economy. The exchange rate as a important factor because it has big effect in Indonesian economy overall. So, it needs the analysis data of exchange rate. There is decomposition data of exchange rate of IDR/USD to be frequency and time. It can help the government to monitor the Indonesian economy. This method is very effective to identify the case, have high accurate result and have simple structure. In this paper, data of exchange rate that used is weekly data from December 17, 2010 until November 11, 2014.

Keywords: the exchange rate, fuzzy mamdani, discrete wavelet transforms, fuzzy wavelet

Procedia PDF Downloads 566
1651 Effects of E-Learning Mode of Instruction and Conventional Mode of Instruction on Student’s Achievement in English Language in Senior Secondary Schools, Ibadan Municipal, Nigeria

Authors: Ibode Osa Felix

Abstract:

The use of e-Learning is presently intensified in the academic world following the outbreak of the Covid-19 pandemic in early 2020. Hitherto, e-learning had made its debut in teaching and learning many years ago when it emerged as an aspect of Computer Based Teaching, but never before has its patronage become so important and popular as currently obtains. Previous studies revealed that there is an ongoing debate among researchers on the efficacy of the E-learning mode of instruction over the traditional teaching method. Therefore, the study examined the effect of E-learning and Conventional Mode of Instruction on Students Achievement in the English Language. The study is a quasi-experimental study in which 230 students, from three public secondary schools, were selected through a simple random sampling technique. Three instruments were developed, namely, E-learning Instructional Guide (ELIG), Conventional Method of Instructional Guide (CMIG), and English Language Achievement Test (ELAT). The result revealed that students taught through the conventional method had better results than students taught online. The result also shows that girls taught with the conventional method of teaching performed better than boys in the English Language. The study, therefore, recommended that effort should be made by the educational authorities in Nigeria to provide internet facilities to enhance practices among learners and provide electricity to power e-learning equipment in the secondary schools. This will boost e-learning practices among teachers and students and consequently overtake conventional method of teaching in due course.

Keywords: e-learning, conventional method of teaching, achievement in english, electricity

Procedia PDF Downloads 170
1650 Meat Products Demand in Oyo West Local Government: An Application of Almost Ideal Demand System (LA/AIDS)

Authors: B. A. Adeniyi, S. A. Daud, O. Amao

Abstract:

The study investigates consumer demand for meat products in Oyo West Local Government using linear approximate almost ideal demand system (LA/AIDS). Questions that were addressed by the study include: first, what is the type and quantity of meat products available to the household and their demand pattern? Second is the investigation of the factors that affect meat products demand pattern and proportion of income that is spent on them. For the above purpose cross-sectional data were collected from 156 households of the study area and analyzed to reveal the functional relationship between meat products consumption and some socio-economic variables of the household. Results indicated that per capita meat consumption increased as household income and education increased but decreased with age. It was also found that male tend to consume more meat products than their female counterparts and that increase in household size will first increased per caput meat consumption but later decreased it. Price also tends to greatly influence the demand pattern of meat products. The results of elasticity computed from the results of regression analysis revealed that own price elasticity for all meat products were negative which indicated that they were normal products while cross and expenditure elasticity were positive which further confirmed that meat products were normal and substitute products. This study therefore concludes that the relevance of these variables imposed a great challenge to the policy makers and the government, in the sense that more cost effective methods of meat production technology have to be devised in other to make consumption of meat products more affordable.

Keywords: meat products, consumption, animal production, technology

Procedia PDF Downloads 245
1649 Consumers’ Preferences and Willingness to Pay for Tomato Attributes: Evidence from Pakistan

Authors: Jahangir Khan, Syed Attaullah Shah, Aditya R. Khanal

Abstract:

Vegetables are the most important component of a healthy diet; among them, tomatoes are the most purchased and consumed vegetable. Fresh and processed tomatoes are widely consumed in Pakistan and are regarded as premium products. Consumers have unique preferences regarding food choices when buying products in the market. This research paper investigates how consumers assess tomatoes and their willingness to pay for various tomato attributes while making food choices. Information on consumers’ behavior regarding food choices was collected from 1200 respondents through face-to-face interviews using a choice experiment design and an econometric evaluation of the random utility model. The data was gathered from three diverse climatic zones: Northern, Central, and Southern. The study examined consumers' WTP for tomato attributes such as production method, packaging, and variety type. The empirical results confirmed that respondents preferred organic tomatoes and were willing to pay a 65% price premium compared to the conventional method. Additionally, consumers were also willing to pay a 56% price premium for hybrid variety compared to local variety. Results of the research indicated that consumers were willing to pay a premium of 23% for labeled packaging. The findings of this research study provide useful information to stakeholders in the tomato supply chain to better align their products with consumers' preferences, ultimately enhancing market growth and consumers’ satisfaction.

Keywords: choice experiment, consumers’ behavior, tomato attributes, willingness to pay

Procedia PDF Downloads 9
1648 Assessment of Korea's Natural Gas Portfolio Considering Panama Canal Expansion

Authors: Juhan Kim, Jinsoo Kim

Abstract:

South Korea cannot import natural gas in any form other than LNG because of the division of South and North Korea. Further, the high proportion of natural gas in the national energy mix makes this resource crucial for energy security in Korea. Expansion of Panama Canal will allow for reducing the cost of shipping between the Far East and U.S East. Panama Canal expansion can have significant impacts on South Korea. Due to this situation, we review the natural gas optimal portfolio by considering the uniqueness of the Korean Natural gas market and expansion of Panama Canal. In order to assess Korea’s natural gas optimal portfolio, we developed natural gas portfolio model. The model comprises two steps. First, to obtain the optimal long-term spot contract ratio, the study examines the price level and the correlation between spot and long-term contracts by using the Markowitz, portfolio model. The optimal long-term spot contract ratio follows the efficient frontier of the cost/risk level related to this price level and degree of correlation. Second, by applying the obtained long-term contract purchase ratio as the constraint in the linear programming portfolio model, we determined the natural gas optimal import portfolio that minimizes total intangible and tangible costs. Using this model, we derived the optimal natural gas portfolio considering the expansion of Panama Canal. Based on these results, we assess the portfolio for natural gas import to Korea from the perspective of energy security and present some relevant policy proposals.

Keywords: natural gas, Panama Canal, portfolio analysis, South Korea

Procedia PDF Downloads 290
1647 Forecasting of Grape Juice Flavor by Using Support Vector Regression

Authors: Ren-Jieh Kuo, Chun-Shou Huang

Abstract:

The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractively. Thus, this study intends to introduce the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN and LR to forecast the flavor of grapes juice in real data, the result shows that SVR is more suitable and effective at predicting performance.

Keywords: flavor forecasting, artificial neural networks, Support Vector Regression, China

Procedia PDF Downloads 492
1646 Cost Overruns in Mega Projects: Project Progress Prediction with Probabilistic Methods

Authors: Yasaman Ashrafi, Stephen Kajewski, Annastiina Silvennoinen, Madhav Nepal

Abstract:

Mega projects either in construction, urban development or energy sectors are one of the key drivers that build the foundation of wealth and modern civilizations in regions and nations. Such projects require economic justification and substantial capital investment, often derived from individual and corporate investors as well as governments. Cost overruns and time delays in these mega projects demands a new approach to more accurately predict project costs and establish realistic financial plans. The significance of this paper is that the cost efficiency of megaprojects will improve and decrease cost overruns. This research will assist Project Managers (PMs) to make timely and appropriate decisions about both cost and outcomes of ongoing projects. This research, therefore, examines the oil and gas industry where most mega projects apply the classic methods of Cost Performance Index (CPI) and Schedule Performance Index (SPI) and rely on project data to forecast cost and time. Because these projects are always overrun in cost and time even at the early phase of the project, the probabilistic methods of Monte Carlo Simulation (MCS) and Bayesian Adaptive Forecasting method were used to predict project cost at completion of projects. The current theoretical and mathematical models which forecast the total expected cost and project completion date, during the execution phase of an ongoing project will be evaluated. Earned Value Management (EVM) method is unable to predict cost at completion of a project accurately due to the lack of enough detailed project information especially in the early phase of the project. During the project execution phase, the Bayesian adaptive forecasting method incorporates predictions into the actual performance data from earned value management and revises pre-project cost estimates, making full use of the available information. The outcome of this research is to improve the accuracy of both cost prediction and final duration. This research will provide a warning method to identify when current project performance deviates from planned performance and crates an unacceptable gap between preliminary planning and actual performance. This warning method will support project managers to take corrective actions on time.

Keywords: cost forecasting, earned value management, project control, project management, risk analysis, simulation

Procedia PDF Downloads 402
1645 The Performance Improvement of Solar Aided Power Generation System by Introducing the Second Solar Field

Authors: Junjie Wu, Hongjuan Hou, Eric Hu, Yongping Yang

Abstract:

Solar aided power generation (SAPG) technology has been proven as an efficient way to make use of solar energy for power generation purpose. In an SAPG plant, a solar field consisting of parabolic solar collectors is normally used to supply the solar heat in order to displace the high pressure/temperature extraction steam. To understand the performance of such a SAPG plant, a new simulation model was developed by the authors recently, in which the boiler was treated, as a series of heat exchangers unlike other previous models. Through the simulations using the new model, it was found the outlet properties of reheated steam, e.g. temperature, would decrease due to the introduction of the solar heat. The changes make the (lower stage) turbines work under off-design condition. As a result, the whole plant’s performance may not be optimal. In this paper, the second solar filed was proposed to increase the inlet temperature of steam to be reheated, in order to bring the outlet temperature of reheated steam back to the designed condition. A 600MW SAPG plant was simulated as a case study using the new model to understand the impact of the second solar field on the plant performance. It was found in the study, the 2nd solar field would improve the plant’s performance in terms of cycle efficiency and solar-to-electricity efficiency by 1.91% and 6.01%. The solar-generated electricity produced by per aperture area under the design condition was 187.96W/m2, which was 26.14% higher than the previous design.

Keywords: solar-aided power generation system, off-design performance, coal-saving performance, boiler modelling, integration schemes

Procedia PDF Downloads 289
1644 On Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth in Patients with Lymph Nodes Metastases

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

This paper is devoted to mathematical modelling of the progression and stages of breast cancer. We propose Consolidated mathematical growth model of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases (CoM-III) as a new research tool. We are interested in: 1) modelling the whole natural history of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases; 2) developing adequate and precise CoM-III which reflects relations between primary tumor and secondary distant metastases; 3) analyzing the CoM-III scope of application; 4) implementing the model as a software tool. Firstly, the CoM-III includes exponential tumor growth model as a system of determinate nonlinear and linear equations. Secondly, mathematical model corresponds to TNM classification. It allows to calculate different growth periods of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases: 1) ‘non-visible period’ for primary tumor; 2) ‘non-visible period’ for secondary distant metastases growth in patients with lymph nodes metastases; 3) ‘visible period’ for secondary distant metastases growth in patients with lymph nodes metastases. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. Thus, the CoM-III model and predictive software: a) detect different growth periods of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases; b) make forecast of the period of the distant metastases appearance in patients with lymph nodes metastases; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoM-III: the number of doublings for ‘non-visible’ and ‘visible’ growth period of secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of secondary distant metastases. The CoM-III enables, for the first time, to predict the whole natural history of primary tumor and secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on primary tumor sizes. Summarizing: a) CoM-III describes correctly primary tumor and secondary distant metastases growth of IA, IIA, IIB, IIIB (T1-4N1-3M0) stages in patients with lymph nodes metastases (N1-3); b) facilitates the understanding of the appearance period and inception of secondary distant metastases.

Keywords: breast cancer, exponential growth model, mathematical model, primary tumor, secondary metastases, survival

Procedia PDF Downloads 300
1643 Analysis of Energy Consumption Based on Household Appliances in Jodhpur, India

Authors: A. Kumar, V. Devadas

Abstract:

Energy is the basic element for any country’s economic development. India is one of the most populated countries, and is dependent on fossil fuel and nuclear-based energy generation. The energy sector faces huge challenges and is dependent on the import of energy from neighboring countries to fulfill the gap in demand and supply. India has huge setbacks for efficient energy generation, distribution, and consumption, therefore they consume more quantity of energy to produce the same amount of Gross Domestic Product (GDP) compared to the developed countries. Technology and technique use, availability, and affordability in the various sectors are varying according to their economic status. In this paper, an attempt is made to quantify the domestic electrical energy consumption in Jodhpur, India. Survey research methods have been employed and stratified sampling technique-based households were chosen for conducting the investigation. Pre-tested survey schedules are used to investigate the grassroots level study. The collected data are analyzed by employing statistical techniques. Thereafter, a multiple regression model is developed to understand the functions of total electricity consumption in the domestic sector corresponding to other independent variables including electrical appliances, age of the building, household size, education, etc. The study resulted in identifying the governing variable in energy consumption at the household level and their relationship with the efficiency of household-based electrical and energy appliances. The analysis is concluded with the recommendation for optimizing the gap in peak electrical demand and supply in the domestic sector.

Keywords: appliance, consumption, electricity, households

Procedia PDF Downloads 114
1642 Robust Electrical Segmentation for Zone Coherency Delimitation Base on Multiplex Graph Community Detection

Authors: Noureddine Henka, Sami Tazi, Mohamad Assaad

Abstract:

The electrical grid is a highly intricate system designed to transfer electricity from production areas to consumption areas. The Transmission System Operator (TSO) is responsible for ensuring the efficient distribution of electricity and maintaining the grid's safety and quality. However, due to the increasing integration of intermittent renewable energy sources, there is a growing level of uncertainty, which requires a faster responsive approach. A potential solution involves the use of electrical segmentation, which involves creating coherence zones where electrical disturbances mainly remain within the zone. Indeed, by means of coherent electrical zones, it becomes possible to focus solely on the sub-zone, reducing the range of possibilities and aiding in managing uncertainty. It allows faster execution of operational processes and easier learning for supervised machine learning algorithms. Electrical segmentation can be applied to various applications, such as electrical control, minimizing electrical loss, and ensuring voltage stability. Since the electrical grid can be modeled as a graph, where the vertices represent electrical buses and the edges represent electrical lines, identifying coherent electrical zones can be seen as a clustering task on graphs, generally called community detection. Nevertheless, a critical criterion for the zones is their ability to remain resilient to the electrical evolution of the grid over time. This evolution is due to the constant changes in electricity generation and consumption, which are reflected in graph structure variations as well as line flow changes. One approach to creating a resilient segmentation is to design robust zones under various circumstances. This issue can be represented through a multiplex graph, where each layer represents a specific situation that may arise on the grid. Consequently, resilient segmentation can be achieved by conducting community detection on this multiplex graph. The multiplex graph is composed of multiple graphs, and all the layers share the same set of vertices. Our proposal involves a model that utilizes a unified representation to compute a flattening of all layers. This unified situation can be penalized to obtain (K) connected components representing the robust electrical segmentation clusters. We compare our robust segmentation to the segmentation based on a single reference situation. The robust segmentation proves its relevance by producing clusters with high intra-electrical perturbation and low variance of electrical perturbation. We saw through the experiences when robust electrical segmentation has a benefit and in which context.

Keywords: community detection, electrical segmentation, multiplex graph, power grid

Procedia PDF Downloads 78
1641 Enhancing the Pricing Expertise of an Online Distribution Channel

Authors: Luis N. Pereira, Marco P. Carrasco

Abstract:

Dynamic pricing is a revenue management strategy in which hotel suppliers define, over time, flexible and different prices for their services for different potential customers, considering the profile of e-consumers and the demand and market supply. This means that the fundamentals of dynamic pricing are based on economic theory (price elasticity of demand) and market segmentation. This study aims to define a dynamic pricing strategy and a contextualized offer to the e-consumers profile in order to improve the number of reservations of an online distribution channel. Segmentation methods (hierarchical and non-hierarchical) were used to identify and validate an optimal number of market segments. A profile of the market segments was studied, considering the characteristics of the e-consumers and the probability of reservation a room. In addition, the price elasticity of demand was estimated for each segment using econometric models. Finally, predictive models were used to define rules for classifying new e-consumers into pre-defined segments. The empirical study illustrates how it is possible to improve the intelligence of an online distribution channel system through an optimal dynamic pricing strategy and a contextualized offer to the profile of each new e-consumer. A database of 11 million e-consumers of an online distribution channel was used in this study. The results suggest that an appropriate policy of market segmentation in using of online reservation systems is benefit for the service suppliers because it brings high probability of reservation and generates more profit than fixed pricing.

Keywords: dynamic pricing, e-consumers segmentation, online reservation systems, predictive analytics

Procedia PDF Downloads 234
1640 Improvement of Energy Efficiency and Cost Management for Household Refrigerators Under Different Climate Classes and Examination of Effect of VIP Ageing and Usage of Electronic Expansion Valve Technology

Authors: Yesim Guzel, Mert Akbiyik

Abstract:

Energy consumption (EC) and costs due to the usage of refrigerators are increasing continuously. This creates a disadvantage not only on the budget of customers but also to global warming. This study aims to decrease EC and cost due to refrigerator EC all around the world. Research about the effect of climate classes on industrial cabinets, supermarket refrigerators or room air conditioning systems can be found in open literature; however, to the best of authors' knowledge, there is no study that includes the effect of climate classes, vacuum insulation panels (VIP) and polyurethane (PU) aging, and electronic expansion valve (EEV) technology for home refrigerators. For this purpose, 4 configurations are examined for household refrigerators for ST (subtropical) and T (tropical) climates. The aging of VIP and PU and the annual interest rate of electricity cost (%5) are considered to obtain more accurate results in calculations. Heat gain (Q), EC, and CO₂ emission are calculated. Config. 1, 2, 3 and 4 are with NO VIP, FULL VIP, NO VIP+ EEV, and FULL VIP+EEV, respectively. As a result, it is observed that Q for Config. 1 and 2 increase as Temp increases. Moreover, from ST to T climates, for all the configurations, EC increases. Additionally, the payback period (t) is based on reference cabinet Config. 1 is calculated. It is considered that annual electricity cost as constant for every climate. When ts are compared with Config. 1 for both climates, it is seen that the minimum t of 2 years is Config. 3. This study shows not only is EEV a better alternative option than VIPs. Hence, EEVs are way cheaper than VIPs and have shorter t, but it also allows us to compare Ec, Q, CO₂ emissions, and cost.

Keywords: energy, thermodynamics, ageing, VIP, polyurethane, expansion valve, EEV, PU, climate, refrigerating, cooling, efficiency

Procedia PDF Downloads 45
1639 Brand Creation for Community Product: A Case Study at Samut Songkram, Thailand

Authors: Cholpassorn Sitthiwarongchai

Abstract:

The purposes of this paper were to search for the uniqueness of community products from Bang Khonthi District, Samut Songkram Province, Thailand and to create a proper brand for the community products. Four important questions were asked to identify the uniqueness of the community products. The first question: What is the brand of coconut sugar that community wants to imply? The answer was 100 percent authentic coconut sugar. The second question: What is the nature of this product? The answer was that it is a natural product without any harmful chemical. The third question is: Who are the target customers? The answer was that homemakers and tourists are target customers. The fourth question: What is the brand guarantee to customers? The answer was that the brand guarantees that the product is 100 percent natural process with a high quality and it is a community production. The findings revealed that in terms of product, customers rated quality and package as the two most important factors. In terms of price, customers rated lower price and a visible label as the two most important factors. In terms of place, customer rated layout and the cleanliness of the place as the two most important factors. In terms of promotion, customer rated public relations and brochure at the store as the most important factors. From the group discussion, the local community agreed that the brand for the community coconut sugar of Salapi community should be a picture of a green coconut tree and yellow color background. This brand implies the strength of community and authentic of the high quality natural product.

Keywords: coconut sugar, community brand, Samut Songkram, natural product

Procedia PDF Downloads 395
1638 Evotrader: Bitcoin Trading Using Evolutionary Algorithms on Technical Analysis and Social Sentiment Data

Authors: Martin Pellon Consunji

Abstract:

Due to the rise in popularity of Bitcoin and other crypto assets as a store of wealth and speculative investment, there is an ever-growing demand for automated trading tools, such as bots, in order to gain an advantage over the market. Traditionally, trading in the stock market was done by professionals with years of training who understood patterns and exploited market opportunities in order to gain a profit. However, nowadays a larger portion of market participants are at minimum aided by market-data processing bots, which can generally generate more stable signals than the average human trader. The rise in trading bot usage can be accredited to the inherent advantages that bots have over humans in terms of processing large amounts of data, lack of emotions of fear or greed, and predicting market prices using past data and artificial intelligence, hence a growing number of approaches have been brought forward to tackle this task. However, the general limitation of these approaches can still be broken down to the fact that limited historical data doesn’t always determine the future, and that a lot of market participants are still human emotion-driven traders. Moreover, developing markets such as those of the cryptocurrency space have even less historical data to interpret than most other well-established markets. Due to this, some human traders have gone back to the tried-and-tested traditional technical analysis tools for exploiting market patterns and simplifying the broader spectrum of data that is involved in making market predictions. This paper proposes a method which uses neuro evolution techniques on both sentimental data and, the more traditionally human-consumed, technical analysis data in order to gain a more accurate forecast of future market behavior and account for the way both automated bots and human traders affect the market prices of Bitcoin and other cryptocurrencies. This study’s approach uses evolutionary algorithms to automatically develop increasingly improved populations of bots which, by using the latest inflows of market analysis and sentimental data, evolve to efficiently predict future market price movements. The effectiveness of the approach is validated by testing the system in a simulated historical trading scenario, a real Bitcoin market live trading scenario, and testing its robustness in other cryptocurrency and stock market scenarios. Experimental results during a 30-day period show that this method outperformed the buy and hold strategy by over 260% in terms of net profits, even when taking into consideration standard trading fees.

Keywords: neuro-evolution, Bitcoin, trading bots, artificial neural networks, technical analysis, evolutionary algorithms

Procedia PDF Downloads 122
1637 Issues of Accounting of Lease and Revenue according to International Financial Reporting Standards

Authors: Nadezhda Kvatashidze, Elena Kharabadze

Abstract:

It is broadly known that lease is a flexible means of funding enterprises. Lease reduces the risk related to access and possession of assets, as well as obtainment of funding. Therefore, it is important to refine lease accounting. The lease accounting regulations under the applicable standard (International Accounting Standards 17) make concealment of liabilities possible. As a result, the information users get inaccurate and incomprehensive information and have to resort to an additional assessment of the off-balance sheet lease liabilities. In order to address the problem, the International Financial Reporting Standards Board decided to change the approach to lease accounting. With the deficiencies of the applicable standard taken into account, the new standard (IFRS 16 ‘Leases’) aims at supplying appropriate and fair lease-related information to the users. Save certain exclusions; the lessee is obliged to recognize all the lease agreements in its financial report. The approach was determined by the fact that under the lease agreement, rights and obligations arise by way of assets and liabilities. Immediately upon conclusion of the lease agreement, the lessee takes an asset into its disposal and assumes the obligation to effect the lease-related payments in order to meet the recognition criteria defined by the Conceptual Framework for Financial Reporting. The payments are to be entered into the financial report. The new lease accounting standard secures supply of quality and comparable information to the financial information users. The International Accounting Standards Board and the US Financial Accounting Standards Board jointly developed IFRS 15: ‘Revenue from Contracts with Customers’. The standard allows the establishment of detailed revenue recognition practical criteria such as identification of the performance obligations in the contract, determination of the transaction price and its components, especially price variable considerations and other important components, as well as passage of control over the asset to the customer. IFRS 15: ‘Revenue from Contracts with Customers’ is very similar to the relevant US standards and includes requirements more specific and consistent than those of the standards in place. The new standard is going to change the recognition terms and techniques in the industries, such as construction, telecommunications (mobile and cable networks), licensing (media, science, franchising), real property, software etc.

Keywords: assessment of the lease assets and liabilities, contractual liability, division of contract, identification of contracts, contract price, lease identification, lease liabilities, off-balance sheet, transaction value

Procedia PDF Downloads 318
1636 A Method of Manufacturing Low Cost Utility Robots and Vehicles

Authors: Gregory E. Ofili

Abstract:

Introduction and Objective: Climate change and a global economy mean farmers must adapt and gain access to affordable and reliable automation technologies. Key barriers include a lack of transportation, electricity, and internet service, coupled with costly enabling technologies and limited local subject matter expertise. Methodology/Approach: Resourcefulness is essential to mechanization on a farm. This runs contrary to the tech industry practice of planned obsolescence and disposal. One solution is plug-and-play hardware that allows farmer to assemble, repair, program, and service their own fleet of industrial machines. To that end, we developed a method of manufacturing low-cost utility robots, transport vehicles, and solar/wind energy harvesting systems, all running on an open-source Robot Operating System (ROS). We demonstrate this technology by fabricating a utility robot and an all-terrain (4X4) utility vehicle. Constructed of aluminum trusses and weighing just 40 pounds, yet capable of transporting 200 pounds of cargo, on sale for less than $2,000. Conclusions & Policy Implications: Electricity, internet, and automation are essential for productivity and competitiveness. With planned obsolescence, the priorities of technology suppliers are not aligned with the farmer’s realities. This patent-pending method of manufacturing low-cost industrial robots and electric vehicles has met its objective. To create low-cost machines, the farmer can assemble, program, and repair with basic hand tools.

Keywords: automation, robotics, utility robot, small-hold farm, robot operating system

Procedia PDF Downloads 69
1635 Perception of Faculties Towards Online Teaching-Learning Activities during COVID-19 Pandemic: A Cross-Sectional Study at a Tertiary Care Center in Eastern Nepal

Authors: Deependra Prasad Sarraf, Gajendra Prasad Rauniar, Robin Maskey, Rajiv Maharjan, Ashish Shrestha, Ramayan Prasad Kushwaha

Abstract:

Objectives: To assess the perception of faculties towards online teaching-learning activities conducted during the COVID-19 pandemic and to identify barriers and facilitators to conducting online teaching-learning activities in our context. Methods: A cross-sectional study was conducted among faculties at B. P. Koirala Institute of Health Sciences using a 26-item semi-structured questionnaire. A Google Form was prepared, and its link was sent to the faculties via email. Descriptive statistics were calculated, and findings were presented as tables and graphs. Results: Out of 158 faculties, the majority were male (66.46%), medical faculties (85.44%), and assistant professors (46.84%). Only 16 (10.13%) faculties had received formal training regarding preparing and/or delivering online teaching learning activities. Out of 158, 133 (84.18%) faculties faced technical and internet issues. The most common advantage and disadvantage of online teaching learning activities perceived by the faculties were ‘not limited to time or place’ (94.30%) and ‘lack of interaction with the students’ (82.28%), respectively. Majority (94.3%) of them had a positive perception towards online teaching-learning activities conducted during COVID-19 pandemic. Slow internet connection (91.77%) and frequent electricity interruption (82.91%) were the most common perceived barriers to online teaching-learning. Conclusions: Most of the faculties had a positive perception towards online teaching-learning activities. Academic leaders and stakeholders should provide uninterrupted internet and electricity connectivity, training on online teaching-learning platform, and timely technical support.

Keywords: COVID-19 pandemic, faculties, medical education, perception

Procedia PDF Downloads 170
1634 Thermodynamic Modeling and Exergoeconomic Analysis of an Isobaric Adiabatic Compressed Air Energy Storage System

Authors: Youssef Mazloum, Haytham Sayah, Maroun Nemer

Abstract:

The penetration of renewable energy sources into the electric grid is significantly increasing. However, the intermittence of these sources breaks the balance between supply and demand for electricity. Hence, the importance of the energy storage technologies, they permit restoring the balance and reducing the drawbacks of intermittence of the renewable energies. This paper discusses the modeling and the cost-effectiveness of an isobaric adiabatic compressed air energy storage (IA-CAES) system. The proposed system is a combination among a compressed air energy storage (CAES) system with pumped hydro storage system and thermal energy storage system. The aim of this combination is to overcome the disadvantages of the conventional CAES system such as the losses due to the storage pressure variation, the loss of the compression heat and the use of fossil fuel sources. A steady state model is developed to perform an energy and exergy analyses of the IA-CAES system and calculate the distribution of the exergy losses in the latter system. A sensitivity analysis is also carried out to estimate the effects of some key parameters on the system’s efficiency, such as the pinch of the heat exchangers, the isentropic efficiency of the rotating machinery and the pressure losses. The conducted sensitivity analysis is a local analysis since the sensibility of each parameter changes with the variation of the other parameters. Therefore, an exergoeconomic study is achieved as well as a cost optimization in order to reduce the electricity cost produced during the production phase. The optimizer used is OmOptim which is a genetic algorithms based optimizer.

Keywords: cost-effectiveness, Exergoeconomic analysis, isobaric adiabatic compressed air energy storage (IA-CAES) system, thermodynamic modeling

Procedia PDF Downloads 245
1633 Digital Structural Monitoring Tools @ADaPT for Cracks Initiation and Growth due to Mechanical Damage Mechanism

Authors: Faizul Azly Abd Dzubir, Muhammad F. Othman

Abstract:

Conventional structural health monitoring approach for mechanical equipment uses inspection data from Non-Destructive Testing (NDT) during plant shut down window and fitness for service evaluation to estimate the integrity of the equipment that is prone to crack damage. Yet, this forecast is fraught with uncertainty because it is often based on assumptions of future operational parameters, and the prediction is not continuous or online. Advanced Diagnostic and Prognostic Technology (ADaPT) uses Acoustic Emission (AE) technology and a stochastic prognostic model to provide real-time monitoring and prediction of mechanical defects or cracks. The forecast can help the plant authority handle their cracked equipment before it ruptures, causing an unscheduled shutdown of the facility. The ADaPT employs process historical data trending, finite element analysis, fitness for service, and probabilistic statistical analysis to develop a prediction model for crack initiation and growth due to mechanical damage. The prediction model is combined with live equipment operating data for real-time prediction of the remaining life span owing to fracture. ADaPT was devised at a hot combined feed exchanger (HCFE) that had suffered creep crack damage. The ADaPT tool predicts the initiation of a crack at the top weldment area by April 2019. During the shutdown window in April 2019, a crack was discovered and repaired. Furthermore, ADaPT successfully advised the plant owner to run at full capacity and improve output by up to 7% by April 2019. ADaPT was also used on a coke drum that had extensive fatigue cracking. The initial cracks are declared safe with ADaPT, with remaining crack lifetimes extended another five (5) months, just in time for another planned facility downtime to execute repair. The prediction model, when combined with plant information data, allows plant operators to continuously monitor crack propagation caused by mechanical damage for improved maintenance planning and to avoid costly shutdowns to repair immediately.

Keywords: mechanical damage, cracks, continuous monitoring tool, remaining life, acoustic emission, prognostic model

Procedia PDF Downloads 74
1632 Cosmetic Recommendation Approach Using Machine Learning

Authors: Shakila N. Senarath, Dinesh Asanka, Janaka Wijayanayake

Abstract:

The necessity of cosmetic products is arising to fulfill consumer needs of personality appearance and hygiene. A cosmetic product consists of various chemical ingredients which may help to keep the skin healthy or may lead to damages. Every chemical ingredient in a cosmetic product does not perform on every human. The most appropriate way to select a healthy cosmetic product is to identify the texture of the body first and select the most suitable product with safe ingredients. Therefore, the selection process of cosmetic products is complicated. Consumer surveys have shown most of the time, the selection process of cosmetic products is done in an improper way by consumers. From this study, a content-based system is suggested that recommends cosmetic products for the human factors. To such an extent, the skin type, gender and price range will be considered as human factors. The proposed system will be implemented by using Machine Learning. Consumer skin type, gender and price range will be taken as inputs to the system. The skin type of consumer will be derived by using the Baumann Skin Type Questionnaire, which is a value-based approach that includes several numbers of questions to derive the user’s skin type to one of the 16 skin types according to the Bauman Skin Type indicator (BSTI). Two datasets are collected for further research proceedings. The user data set was collected using a questionnaire given to the public. Those are the user dataset and the cosmetic dataset. Product details are included in the cosmetic dataset, which belongs to 5 different kinds of product categories (Moisturizer, Cleanser, Sun protector, Face Mask, Eye Cream). An alternate approach of TF-IDF (Term Frequency – Inverse Document Frequency) is applied to vectorize cosmetic ingredients in the generic cosmetic products dataset and user-preferred dataset. Using the IF-IPF vectors, each user-preferred products dataset and generic cosmetic products dataset can be represented as sparse vectors. The similarity between each user-preferred product and generic cosmetic product will be calculated using the cosine similarity method. For the recommendation process, a similarity matrix can be used. Higher the similarity, higher the match for consumer. Sorting a user column from similarity matrix in a descending order, the recommended products can be retrieved in ascending order. Even though results return a list of similar products, and since the user information has been gathered, such as gender and the price ranges for product purchasing, further optimization can be done by considering and giving weights for those parameters once after a set of recommended products for a user has been retrieved.

Keywords: content-based filtering, cosmetics, machine learning, recommendation system

Procedia PDF Downloads 134
1631 An Integrated Real-Time Hydrodynamic and Coastal Risk Assessment Model

Authors: M. Reza Hashemi, Chris Small, Scott Hayward

Abstract:

The Northeast Coast of the US faces damaging effects of coastal flooding and winds due to Atlantic tropical and extratropical storms each year. Historically, several large storm events have produced substantial levels of damage to the region; most notably of which were the Great Atlantic Hurricane of 1938, Hurricane Carol, Hurricane Bob, and recently Hurricane Sandy (2012). The objective of this study was to develop an integrated modeling system that could be used as a forecasting/hindcasting tool to evaluate and communicate the risk coastal communities face from these coastal storms. This modeling system utilizes the ADvanced CIRCulation (ADCIRC) model for storm surge predictions and the Simulating Waves Nearshore (SWAN) model for the wave environment. These models were coupled, passing information to each other and computing over the same unstructured domain, allowing for the most accurate representation of the physical storm processes. The coupled SWAN-ADCIRC model was validated and has been set up to perform real-time forecast simulations (as well as hindcast). Modeled storm parameters were then passed to a coastal risk assessment tool. This tool, which is generic and universally applicable, generates spatial structural damage estimate maps on an individual structure basis for an area of interest. The required inputs for the coastal risk model included a detailed information about the individual structures, inundation levels, and wave heights for the selected region. Additionally, calculation of wind damage to structures was incorporated. The integrated coastal risk assessment system was then tested and applied to Charlestown, a small vulnerable coastal town along the southern shore of Rhode Island. The modeling system was applied to Hurricane Sandy and a synthetic storm. In both storm cases, effect of natural dunes on coastal risk was investigated. The resulting damage maps for the area (Charlestown) clearly showed that the dune eroded scenarios affected more structures, and increased the estimated damage. The system was also tested in forecast mode for a large Nor’Easters: Stella (March 2017). The results showed a good performance of the coupled model in forecast mode when compared to observations. Finally, a nearshore model XBeach was then nested within this regional grid (ADCIRC-SWAN) to simulate nearshore sediment transport processes and coastal erosion. Hurricane Irene (2011) was used to validate XBeach, on the basis of a unique beach profile dataset at the region. XBeach showed a relatively good performance, being able to estimate eroded volumes along the beach transects with a mean error of 16%. The validated model was then used to analyze the effectiveness of several erosion mitigation methods that were recommended in a recent study of coastal erosion in New England: beach nourishment, coastal bank (engineered core), and submerged breakwater as well as artificial surfing reef. It was shown that beach nourishment and coastal banks perform better to mitigate shoreline retreat and coastal erosion.

Keywords: ADCIRC, coastal flooding, storm surge, coastal risk assessment, living shorelines

Procedia PDF Downloads 115
1630 Whether Buffer Zone Community Forests’ Benefits Are Distributed Fairly to Low-Income Users: Reflection From the Buffer Zone Community Forests in Bardia National Park, Nepal

Authors: Keshav Raj Acharya, Thakur Silwal, Neelam C. Poudyal

Abstract:

Buffer zones, the peripheral areas around the national parks and wildlife reserves, are available for the purpose of benefitting the local inhabitants by providing forest products for subsistence needs of basic forest products outside the protected areas. The forest area within the buffer zone has been managed as a buffer zone community forest (BZCF) for the last 25 years after the approval of the buffer zone management regulation 1996. With a case study of select BZCF in Bardia National Park, this study aims to analyze whether the benefit provided by BZCF is equally available to poor users among other socioeconomic classes of the users. The findings are based on the analysis of cross-sectional data involving household surveys (n=305) and key informants’ interviews (n=10) as well as office records available at different 5 buffer zone community forest user groups offices. Results indicate that despite the provisions of subsidized rates for poor; poor households were more deprived due to higher forest products price particularly, the timber price in buffer zone. Evidence also indicate that due to the increased forest coverage, the incidence of wildlife damage has also increased and impacted the poor more due to lack of land ownership as well as limited alternatives. Clear community forest management guidelines with equitable benefit sharing and compensatory mechanisms to the users of poor socioeconomic class have been identified as a solution to increase the benefit to poor users in BZCFUGs.

Keywords: crop depredation, forest products, users, wellbeing ranking

Procedia PDF Downloads 47
1629 On Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Primary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

Finding algorithms to predict the growth of tumors has piqued the interest of researchers ever since the early days of cancer research. A number of studies were carried out as an attempt to obtain reliable data on the natural history of breast cancer growth. Mathematical modeling can play a very important role in the prognosis of tumor process of breast cancer. However, mathematical models describe primary tumor growth and metastases growth separately. Consequently, we propose a mathematical growth model for primary tumor and primary metastases which may help to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoM-IV and corresponding software. We are interested in: 1) modelling the whole natural history of primary tumor and primary metastases; 2) developing adequate and precise CoM-IV which reflects relations between PT and MTS; 3) analyzing the CoM-IV scope of application; 4) implementing the model as a software tool. The CoM-IV is based on exponential tumor growth model and consists of a system of determinate nonlinear and linear equations; corresponds to TNM classification. It allows to calculate different growth periods of primary tumor and primary metastases: 1) ‘non-visible period’ for primary tumor; 2) ‘non-visible period’ for primary metastases; 3) ‘visible period’ for primary metastases. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. Thus, the CoM-IV model and predictive software: a) detect different growth periods of primary tumor and primary metastases; b) make forecast of the period of primary metastases appearance; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of BC and facilitate optimization of diagnostic tests. The following are calculated by CoM-IV: the number of doublings for ‘nonvisible’ and ‘visible’ growth period of primary metastases; tumor volume doubling time (days) for ‘nonvisible’ and ‘visible’ growth period of primary metastases. The CoM-IV enables, for the first time, to predict the whole natural history of primary tumor and primary metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on primary tumor sizes. Summarizing: a) CoM-IV describes correctly primary tumor and primary distant metastases growth of IV (T1-4N0-3M1) stage with (N1-3) or without regional metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and manifestation of primary metastases.

Keywords: breast cancer, exponential growth model, mathematical modelling, primary metastases, primary tumor, survival

Procedia PDF Downloads 332
1628 Positive Energy Districts in the Swedish Energy System

Authors: Vartan Ahrens Kayayan, Mattias Gustafsson, Erik Dotzauer

Abstract:

The European Union is introducing the positive energy district concept, which has the goal to reduce overall carbon dioxide emissions. Other studies have already mapped the make-up of such districts, and reviewed their definitions and where they are positioned. The Swedish energy system is unique compared to others in Europe, due to the implementation of low-carbon electricity and heat energy sources and high uptake of district heating. The goal for this paper is to start the discussion about how the concept of positive energy districts can best be applied to the Swedish context and meet their mitigation goals. To explore how these differences impact the formation of positive energy districts, two cases were analyzed for their methods and how these integrate into the Swedish energy system: a district in Uppsala with a focus on energy and another in Helsingborg with a focus on climate. The case in Uppsala uses primary energy calculations which can be critisied but take a virtual border that allows for its surrounding system to be considered. The district in Helsingborg has a complex methodology for considering the life cycle emissions of the neighborhood. It is successful in considering the energy balance on a monthly basis, but it can be problematized in terms of creating sub-optimized systems due to setting tight geographical constraints. The discussion of shaping the definitions and methodologies for positive energy districts is taking place in Europe and Sweden. We identify three pitfalls that must be avoided so that positive energy districts meet their mitigation goals in the Swedish context. The goal of pushing out fossil fuels is not relevant in the current energy system, the mismatch between summer electricity production and winter energy demands should be addressed, and further implementations should consider collaboration with the established district heating grid.

Keywords: positive energy districts, energy system, renewable energy, European Union

Procedia PDF Downloads 77
1627 Ways of Innovative Sustainable Agriculture in India

Authors: Shailja Thakur

Abstract:

In this paper it is shown that how farmers are suffering from all sides including vagaries of weather then price fluctuations, demand supply constraints, poor soil health etc. Also the ICT can prove to be of great help if incorporated rightly into Indian agriculture. Some innovative ways to reward farmers and distribution of subsidies to them can improve the current scenario.

Keywords: cost of farming, information and communication technology, innovative steps, roof gardening, vermicomposting

Procedia PDF Downloads 304