Search results for: receiver operating characteristic histogram
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3948

Search results for: receiver operating characteristic histogram

3198 Comparative Study of Heat Transfer Capacity Limits of Heat Pipes

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved Heat pipe, heat pipe limits

Procedia PDF Downloads 421
3197 Designing Ecologically and Economically Optimal Electric Vehicle Charging Stations

Authors: Y. Ghiassi-Farrokhfal

Abstract:

The number of electric vehicles (EVs) is increasing worldwide. Replacing gas fueled cars with EVs reduces carbon emission. However, the extensive energy consumption of EVs stresses the energy systems, requiring non-green sources of energy (such as gas turbines) to compensate for the new energy demand caused by EVs in the energy systems. To make EVs even a greener solution for the future energy systems, new EV charging stations are equipped with solar PV panels and batteries. This will help serve the energy demand of EVs through the green energy of solar panels. To ensure energy availability, solar panels are combined with batteries. The energy surplus at any point is stored in batteries and is used when there is not enough solar energy to serve the demand. While EV charging stations equipped with solar panels and batteries are green and ecologically optimal, they might not be financially viable solutions, due to battery prices. To make the system viable, we should size the battery economically and operate the system optimally. This is, in general, a challenging problem because of the stochastic nature of the EV arrivals at the charging station, the available solar energy, and the battery operating system. In this work, we provide a mathematical model for this problem and we compute the return on investment (ROI) of such a system, which is designed to be ecologically and financially optimal. We also quantify the minimum required investment in terms of battery and solar panels along with the operating strategy to ensure that a charging station has enough energy to serve its EV demand at any time.

Keywords: solar energy, battery storage, electric vehicle, charging stations

Procedia PDF Downloads 220
3196 Synthesis of Na-LSX Zeolite and Hydrosodalite from Polish Fly Ashes

Authors: Barbara Bialecka, Zdzislaw Adamczyk, Magdalena Cempa

Abstract:

In the work, the results of investigations into the hydrothermal zeolitization of fly ash from hard coal combustion in one of Polish Power Station have been presented. The chemical composition of the ash was determined by the method of X-ray fluorescence (XRF), whereas the phases of both fly ash and the products after synthesis were identified using microscopic observations, X-ray diffraction analysis (XRD) as well as electron scanning microscopy with measurements of the chemical compositions in micro areas (SEM/EDS). The synthesis was carried out with various concentrations of NaOH solution (3M, 4M and 6M) in the following conditions: synthesis temperature – 80ᵒC, synthesis time – 16 hours, volume of NaOH solution – 350ml, fly ash mass – 14g. The main chemical components of fly ash were SiO₂ and Al₂O₃, the contents of which reached 51.62 and 28.14%mas., respectively. The input ash contained mainly such phases as mullite, quarz, magnetite, and glass. The research results indicate that the phase composition of products after zeolitization was differentiated. The material after synthesis in 3M NaOH solution was found to contain mullite, quarz, magnetite, and Na-LSX zeolite. The products of synthesis in 4M NaOH solution were very similar to those in 3M solution (mullite, quarz, magnetite, Na-LSX zeolite), but they additionally contained hydrosodalite. The material after synthesis in 6M NaOH solution contains mullite, quarz, magnetite (similarly to synthesis in 3M and 4M NaOH solition) and additionally hydrosodalite. Therefore, the products of synthesis contain relic components from the fly ash input sample in the form of mullite, quarz, and magnetite, as well as new phases, which are Na-LSX zeolite and hydrosodalite. It should be noted that the products of synthesis in the case of 4M NaOH solution contained both new phases (Na-LSX zeolite and hydrosodalite), while the products from the extreme concentration of NaOH solutions (3M and 6M) contained only one of them. Observations in the scanning electron microscope revealed the new phases’ morphology. It was found that Na-LSX zeolite formed cubic crystals, whereas hydrosodalite formed characteristic aggregations. The results of investigations into the chemical composition in the micro area of phase grains in the products after synthesis reveal some dependencies, among others a characteristic increase in the content of sodium, related to the increased concentration of NaOH solution.

Keywords: Na-LSX, fly ash, hydrosodalite, zeolite

Procedia PDF Downloads 172
3195 Adaptive Multipath Mitigation Acquisition Approach for Global Positioning System Software Receivers

Authors: Animut Meseret Simachew

Abstract:

Parallel Code Phase Search Acquisition (PCSA) Algorithm has been considered as a promising method in GPS software receivers for detection and estimation of the accurate correlation peak between the received Global Positioning System (GPS) signal and locally generated replicas. GPS signal acquisition in highly dense multipath environments is the main research challenge. In this work, we proposed a robust variable step-size (RVSS) PCSA algorithm based on fast frequency transform (FFT) filtering technique to mitigate short time delay multipath signals. Simulation results reveal the effectiveness of the proposed algorithm over the conventional PCSA algorithm. The proposed RVSS-PCSA algorithm equalizes the received carrier wiped-off signal with locally generated C/A code.

Keywords: adaptive PCSA, detection and estimation, GPS signal acquisition, GPS software receiver

Procedia PDF Downloads 117
3194 Optical Vortex in Asymmetric Arcs of Rotating Intensity

Authors: Mona Mihailescu, Rebeca Tudor, Irina A. Paun, Cristian Kusko, Eugen I. Scarlat, Mihai Kusko

Abstract:

Specific intensity distributions in the laser beams are required in many fields: optical communications, material processing, microscopy, optical tweezers. In optical communications, the information embedded in specific beams and the superposition of multiple beams can be used to increase the capacity of the communication channels, employing spatial modulation as an additional degree of freedom, besides already available polarization and wavelength multiplexing. In this regard, optical vortices present interest due to their potential to carry independent data which can be multiplexed at the transmitter and demultiplexed at the receiver. Also, in the literature were studied their combinations: 1) axial or perpendicular superposition of multiple optical vortices or 2) with other laser beam types: Bessel, Airy. Optical vortices, characterized by stationary ring-shape intensity and rotating phase, are achieved using computer generated holograms (CGH) obtained by simulating the interference between a tilted plane wave and a wave passing through a helical phase object. Here, we propose a method to combine information through the reunion of two CGHs. One is obtained using the helical phase distribution, characterized by its topological charge, m. The other is obtained using conical phase distribution, characterized by its radial factor, r0. Each CGH is obtained using plane wave with different tilts: km and kr for CGH generated from helical phase object and from conical phase object, respectively. These reunions of two CGHs are calculated to be phase optical elements, addressed on the liquid crystal display of a spatial light modulator, to optically process the incident beam for investigations of the diffracted intensity pattern in far field. For parallel reunion of two CGHs and high values of the ratio between km and kr, the bright ring from the first diffraction order, specific for optical vortices, is changed in an asymmetric intensity pattern: a number of circle arcs. Both diffraction orders (+1 and -1) are asymmetrical relative to each other. In different planes along the optical axis, it is observed that this asymmetric intensity pattern rotates around its centre: in the +1 diffraction order the rotation is anticlockwise and in the -1 diffraction order, the rotation is clockwise. The relation between m and r0 controls the diameter of the circle arcs and the ratio between km and kr controls the number of arcs. For perpendicular reunion of the two CGHs and low values of the ratio between km and kr, the optical vortices are multiplied and focalized in different planes, depending on the radial parameter. The first diffraction order contains information about both phase objects. It is incident on the phase masks placed at the receiver, computed using the opposite values for topological charge or for the radial parameter and displayed successively. In all, the proposed method is exploited in terms of constructive parameters, for the possibility offered by the combination of different types of beams which can be used in robust optical communications.

Keywords: asymmetrical diffraction orders, computer generated holograms, conical phase distribution, optical vortices, spatial light modulator

Procedia PDF Downloads 310
3193 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 90
3192 Improve Heat Pipes Thermal Performance In H-VAC Systems Using CFD Modeling

Authors: A. Ghanami, M.Heydari

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.used in the abstract.

Keywords: Heat pipe, HVAC system, Grooved Heat pipe, Heat pipe limits.

Procedia PDF Downloads 482
3191 Multiple Organ Manifestation in Neonatal Lupus Erythematous: Report of Two Cases

Authors: A. Lubis, R. Widayanti, Z. Hikmah, A. Endaryanto, A. Harsono, A. Harianto, R. Etika, D. K. Handayani, M. Sampurna

Abstract:

Neonatal lupus erythematous (NLE) is a rare disease marked by clinical characteristic and specific maternal autoantibody. Many cutaneous, cardiac, liver, and hematological manifestations could happen with affect of one organ or multiple. In this case, both babies were premature, low birth weight (LBW), small for gestational age (SGA) and born through caesarean section from a systemic lupus erythematous (SLE) mother. In the first case, we found a baby girl with dyspnea and grunting. Chest X ray showed respiratory distress syndrome (RDS) great I and echocardiography showed small atrial septal defect (ASD) and ventricular septal defect (VSD). She also developed anemia, thrombocytopenia, elevated C-reactive protein, hypoalbuminemia, increasing coagulation factors, hyperbilirubinemia, and positive blood culture of Klebsiella pneumonia. Anti-Ro/SSA and Anti-nRNP/sm were positive. Intravenous fluid, antibiotic, transfusion of blood, thrombocyte concentrate, and fresh frozen plasma were given. The second baby, male presented with necrotic tissue on the left ear and skin rashes, erythematous macula, athropic scarring, hyperpigmentation on all of his body with various size and facial haemorrhage. He also suffered from thrombocytopenia, mild elevated transaminase enzyme, hyperbilirubinemia, anti-Ro/SSA was positive. Intravenous fluid, methyprednisolone, intravenous immunoglobulin (IVIG), blood, and thrombocyte concentrate transfution were given. Two cases of neonatal lupus erythematous had been presented. Diagnosis based on clinical presentation and maternal auto antibody on neonate. Organ involvement in NLE can occur as single or multiple manifestations.

Keywords: neonatus lupus erythematous, maternal autoantibody, clinical characteristic, multiple organ manifestation

Procedia PDF Downloads 424
3190 Control Algorithm Design of Single-Phase Inverter For ZnO Breakdown Characteristics Tests

Authors: Kashif Habib, Zeeshan Ayyub

Abstract:

ZnO voltage dependent resistor was widely used as components of the electrical system for over-voltage protection. It has a wide application prospect in superconducting energy-removal, generator de-excitation, overvoltage protection of electrical & electronics equipment. At present, the research for the application of ZnO voltage dependent resistor stop, it uses just in the field of its nonlinear voltage current characteristic and overvoltage protection areas. There is no further study over the over-voltage breakdown characteristics, such as the combustion phenomena and the measure of the voltage/current when it breakdown, and the affect to its surrounding equipment. It is also a blind spot in its application. So, when we do the feature test of ZnO voltage dependent resistor, we need to design a reasonable test power supply, making the terminal voltage keep for sine wave, simulating the real use of PF voltage in power supply conditions. We put forward the solutions of using inverter to generate a controllable power. The paper mainly focuses on the breakdown characteristic test power supply of nonlinear ZnO voltage dependent resistor. According to the current mature switching power supply technology, we proposed power control system using the inverter as the core. The power mainly realize the sin-voltage output on the condition of three-phase PF-AC input, and 3 control modes (RMS, Peak, Average) of the current output. We choose TMS320F2812M as the control part of the hardware platform. It is used to convert the power from three-phase to a controlled single-phase sin-voltage through a rectifier, filter, and inverter. Design controller produce SPWM, to get the controlled voltage source via appropriate multi-loop control strategy, while execute data acquisition and display, system protection, start logic control, etc. The TMS320F2812M is able to complete the multi-loop control quickly and can be a good completion of the inverter output control.

Keywords: ZnO, multi-loop control, SPWM, non-linear load

Procedia PDF Downloads 325
3189 Thermal Management of Ground Heat Exchangers Applied in High Power LED

Authors: Yuan-Ching Chiang, Chien-Yeh Hsu, Chen Chih-Hao, Sih-Li Chen

Abstract:

The p-n junction temperature of LEDs directly influences their operating life and luminous efficiency. An excessively high p-n junction temperature minimizes the output flux of LEDs, decreasing their brightness and influencing the photon wavelength; consequently, the operating life of LEDs decreases and their luminous output changes. The maximum limit of the p-n junction temperature of LEDs is approximately 120 °C. The purpose of this research was to devise an approach for dissipating heat generated in a confined space when LEDs operate at low temperatures to reduce light decay. The cooling mode of existing commercial LED lights can be divided into natural- and forced convection cooling. In natural convection cooling, the volume of LED encapsulants must be increased by adding more fins to increase the cooling area. However, this causes difficulties in achieving efficient LED lighting at high power. Compared with forced convection cooling, heat transfer through water convection is associated with a higher heat transfer coefficient per unit area; therefore, we dissipated heat by using a closed loop water cooling system. Nevertheless, cooling water exposed to air can be easily influenced by environmental factors. Thus, we incorporated a ground heat exchanger into the water cooling system to minimize the influence of air on cooling water and then observed the relationship between the amounts of heat dissipated through the ground and LED efficiency.

Keywords: helical ground heat exchanger, high power LED, ground source cooling system, heat dissipation

Procedia PDF Downloads 579
3188 Systems Approach on Thermal Analysis of an Automatic Transmission

Authors: Sinsze Koo, Benjin Luo, Matthew Henry

Abstract:

In order to increase the performance of an automatic transmission, the automatic transmission fluid is required to be warm up to an optimal operating temperature. In a conventional vehicle, cold starts result in friction loss occurring in the gear box and engine. The stop and go nature of city driving dramatically affect the warm-up of engine oil and automatic transmission fluid and delay the time frame needed to reach an optimal operating temperature. This temperature phenomenon impacts both engine and transmission performance but also increases fuel consumption and CO2 emission. The aim of this study is to develop know-how of the thermal behavior in order to identify thermal impacts and functional principles in automatic transmissions. Thermal behavior was studied using models and simulations, developed using GT-Suit, on a one-dimensional thermal and flow transport. A power train of a conventional vehicle was modeled in order to emphasis the thermal phenomena occurring in the various components and how they impact the automatic transmission performance. The simulation demonstrates the thermal model of a transmission fluid cooling system and its component parts in warm-up after a cold start. The result of these analyses will support the future designs of transmission systems and components in an attempt to obtain better fuel efficiency and transmission performance. Therefore, these thermal analyses could possibly identify ways that improve existing thermal management techniques with prioritization on fuel efficiency.

Keywords: thermal management, automatic transmission, hybrid, and systematic approach

Procedia PDF Downloads 377
3187 Design and Study of a Parabolic Trough Solar Collector for Generating Electricity

Authors: A. A. A. Aboalnour, Ahmed M. Amasaib, Mohammed-Almujtaba A. Mohammed-Farah, Abdelhakam, A. Noreldien

Abstract:

This paper presents a design and study of Parabolic Trough Solar Collector (PTC). Mathematical models were used in this work to find the direct and reflected solar radiation from the air layer on the surface of the earth per hour based on the total daily solar radiation on a horizontal surface. Also mathematical models had been used to calculate the radiation of the tilted surfaces. Most of the ingredients used in this project as previews data required on several solar energy applications, thermal simulation, and solar power systems. In addition, mathematical models had been used to study the flow of the fluid inside the tube (receiver), and study the effect of direct and reflected solar radiation on the pressure, temperature, speed, kinetic energy and forces of fluid inside the tube. Finally, the mathematical models had been used to study the (PTC) performances and estimate its thermal efficiency.

Keywords: CFD, experimental, mathematical models, parabolic trough, radiation

Procedia PDF Downloads 422
3186 Learning the Most Common Causes of Major Industrial Accidents and Apply Best Practices to Prevent Such Accidents

Authors: Rajender Dahiya

Abstract:

Investigation outcomes of major process incidents have been consistent for decades and validate that the causes and consequences are often identical. The debate remains as we continue to experience similar process incidents even with enormous development of new tools, technologies, industry standards, codes, regulations, and learning processes? The objective of this paper is to investigate the most common causes of major industrial incidents and reveal industry challenges and best practices to prevent such incidents. The author, in his current role, performs audits and inspections of a variety of high-hazard industries in North America, including petroleum refineries, chemicals, petrochemicals, manufacturing, etc. In this paper, he shares real life scenarios, examples, and case studies from high hazards operating facilities including key challenges and best practices. This case study will provide a clear understanding of the importance of near miss incident investigation. The incident was a Safe operating limit excursion. The case describes the deficiencies in management programs, the competency of employees, and the culture of the corporation that includes hazard identification and risk assessment, maintaining the integrity of safety-critical equipment, operating discipline, learning from process safety near misses, process safety competency, process safety culture, audits, and performance measurement. Failure to identify the hazards and manage the risks of highly hazardous materials and processes is one of the primary root-causes of an incident, and failure to learn from past incidents is the leading cause of the recurrence of incidents. Several investigations of major incidents discovered that each showed several warning signs before occurring, and most importantly, all were preventable. The author will discuss why preventable incidents were not prevented and review the mutual causes of learning failures from past major incidents. The leading causes of past incidents are summarized below. Management failure to identify the hazard and/or mitigate the risk of hazardous processes or materials. This process starts early in the project stage and continues throughout the life cycle of the facility. For example, a poorly done hazard study such as HAZID, PHA, or LOPA is one of the leading causes of the failure. If this step is performed correctly, then the next potential cause is. Management failure to maintain the integrity of safety critical systems and equipment. In most of the incidents, mechanical integrity of the critical equipment was not maintained, safety barriers were either bypassed, disabled, or not maintained. The third major cause is Management failure to learn and/or apply learning from the past incidents. There were several precursors before those incidents. These precursors were either ignored altogether or not taken seriously. This paper will conclude by sharing how a well-implemented operating management system, good process safety culture, and competent leaders and staff contributed to managing the risks to prevent major incidents.

Keywords: incident investigation, risk management, loss prevention, process safety, accident prevention

Procedia PDF Downloads 57
3185 Designing Electrically Pumped Photonic Crystal Surface Emitting Lasers Based on a Honeycomb Nanowire Pattern

Authors: Balthazar Temu, Zhao Yan, Bogdan-Petrin Ratiu, Sang Soon Oh, Qiang Li

Abstract:

Photonic crystal surface emitting lasers (PCSELs) has recently become an area of active research because of the advantages these lasers have over the edge emitting lasers and vertical cavity surface emitting lasers (VCSELs). PCSELs can emit laser beams with high power (from the order of few milliwatts to Watts or even tens of Watts) which scales with the emission area while maintaining single mode operation even at large emission areas. Most PCSELs reported in the literature are air-hole based, with only few demonstrations of nanowire based PCSELs. We previously reported an optically pumped, nanowire based PCSEL operating in the O band by using the honeycomb lattice. The nanowire based PCSELs have the advantage of being able to grow on silicon platform without threading dislocations. It is desirable to extend their operating wavelength to C band to open more applications including eye-safe sensing, lidar and long haul optical communications. In this work we first analyze how the lattice constant , nanowire diameter, nanowire height and side length of the hexagon in the honeycomb pattern can be changed to increase the operating wavelength of the honeycomb based PCSELs to the C band. Then as an attempt to make our device electrically pumped, we present the finite-difference time-domain (FDTD) simulation results with metals on the nanowire. The results for different metals on the nanowire are presented in order to choose the metal which gives the device with the best quality factor. The metals under consideration are those which form good ohmic contact with p-type doped InGaAs with low contact resistivity and decent sticking coefficient to the semiconductor. Such metals include Tungsten, Titanium, Palladium and Platinum. Using the chosen metal we demonstrate the impact of thickness of the metal for a given nanowire height on the quality factor of the device. We also investigate how the height of the nanowire affects the quality factor for a fixed thickness of the metal. Finally, the main steps in making the practical device are discussed.

Keywords: designing nanowire PCSEL, designing PCSEL on silicon substrates, low threshold nanowire laser, simulation of photonic crystal lasers.

Procedia PDF Downloads 16
3184 A Breakthrough Improvement Brought by Taxi-Calling APPs for Taxi Operation Level

Authors: Yuan-Lin Liu, Ye Li, Tian Xia

Abstract:

Taxi-calling APPs have been used widely, while brought both benefits and a variety of issues for the taxi market. Many countries do not know whether the benefits are remarkable than the issues or not. This paper established a comparison between the basic scenario (2009-2012) and a taxi-calling software usage scenario (2012-2015) to explain the impact of taxi-calling APPs. The impacts of taxi-calling APPs illustrated by the comparison results are: 1) The supply and demand distribution is more balanced, extending from the city center to the suburb. The availability of taxi service has been improved in low density areas, thin market attribute has also been improved; 2)The ratio of short distance taxi trip decreased, long distance service increased, the utilization of mileage increased, and the rate of empty decreased; 3) The popularity of taxi-calling APPs was able to reduce the average empty distance, cruise time, empty mileage rate and average times of loading passengers, can also enhance the average operating speed, improve the taxi operating level, and reduce social cost although there are some disadvantages. This paper argues that the taxi industry and government can establish an integrated third-party credit information platform based on credit evaluated by the data of the drivers’ driving behaviors to supervise the drivers. Taxi-calling APPs under fully covered supervision in the mobile Internet environment will become a new trend.

Keywords: taxi, taxi-calling APPs, credit, scenario comparison

Procedia PDF Downloads 254
3183 Simulation of Communication and Sensing Device in Automobiles Using VHDL

Authors: Anirudh Bhaikhel

Abstract:

The exclusive objective of this paper is to develop a device which can pass on the interpreted result of the sensed information to the interfaced communicable devices to avoid or minimise accidents. This device may also be used in case of emergencies like kidnapping, robberies, medical emergencies etc. The present era has seen a rapid metamorphosis in the automobile industry with increasing use of technology and speed. The increase in purchasing power of customers and price war of automobile companies has made an easy access to the automobile users. The use of automobiles has increased tremendously in last 4-5 years thus causing traffic congestions and thus making vehicles more prone to accidents. This device can be an effective measure to counteract cases of abduction. Risks of accidents can be decreased tremendously through the notifications received by these alerts. It will help to detect the upcoming emergencies. This paper includes the simulation of the communication and sensing device required in automobiles using VHDL.

Keywords: automobiles, communication, component, cyclic redundancy check (CRC), modulo-2 arithmetic, parity bits, receiver, sensors, transmitter, turns, VHDL (VHSIC hardware descriptive language)

Procedia PDF Downloads 267
3182 Increasing Efficiency of Own Used Fuel Gas by “LOTION” Method in Generating Systems PT. Pertamina EP Cepu Donggi Matindok Field in Central Sulawesi Province, Indonesia

Authors: Ridwan Kiay Demak, Firmansyahrullah, Muchammad Sibro Mulis, Eko Tri Wasisto, Nixon Poltak Frederic, Agung Putu Andika, Lapo Ajis Kamamu, Muhammad Sobirin, Kornelius Eppang

Abstract:

PC Prove LSM successfully improved the efficiency of Own Used Fuel Gas with the "Lotion" method in the PT Pertamina EP Cepu Donggi Matindok Generating System. The innovation of using the "LOTION" (LOAD PRIORITY SELECTION) method in the generating system is modeling that can provide a priority qualification of main and non-main equipment to keep gas processing running even though it leaves 1 GTG operating. GTG operating system has been integrated, controlled, and monitored properly through PC programs and web-based access to answer Industry 4.0 problems. The results of these improvements have succeeded in making Donggi Matindok Field Production reach 98.77 MMSCFD and become a proper EMAS candidate in 2022-2023. Additional revenue from increasing the efficiency of the use of own used gas amounting to USD USD 5.06 Million per year and reducing operational costs from maintenance efficiency (ABO) due to saving running hours GTG amounted to USD 3.26 Million per year. Continuity of fuel gas availability for the GTG generation system can maintain the operational reliability of the plant, which is 3.833333 MMSCFD. And reduced gas emissions wasted to the environment by 33,810 tons of C02 eq per year.

Keywords: LOTION method, load priority selection, fuel gas efficiency, gas turbine generator, reduce emissions

Procedia PDF Downloads 59
3181 Continuous Wave Interference Effects on Global Position System Signal Quality

Authors: Fang Ye, Han Yu, Yibing Li

Abstract:

Radio interference is one of the major concerns in using the global positioning system (GPS) for civilian and military applications. Interference signals are produced not only through all electronic systems but also illegal jammers. Among different types of interferences, continuous wave (CW) interference has strong adverse impacts on the quality of the received signal. In this paper, we make more detailed analysis for CW interference effects on GPS signal quality. Based on the C/A code spectrum lines, the influence of CW interference on the acquisition performance of GPS receivers is further analysed. This influence is supported by simulation results using GPS software receiver. As the most important user parameter of GPS receivers, the mathematical expression of bit error probability is also derived in the presence of CW interference, and the expression is consistent with the Monte Carlo simulation results. The research on CW interference provides some theoretical gist and new thoughts on monitoring the radio noise environment and improving the anti-jamming ability of GPS receivers.

Keywords: GPS, CW interference, acquisition performance, bit error probability, Monte Carlo

Procedia PDF Downloads 259
3180 Analysis of Joint Source Channel LDPC Coding for Correlated Sources Transmission over Noisy Channels

Authors: Marwa Ben Abdessalem, Amin Zribi, Ammar Bouallègue

Abstract:

In this paper, a Joint Source Channel coding scheme based on LDPC codes is investigated. We consider two concatenated LDPC codes, one allows to compress a correlated source and the second to protect it against channel degradations. The original information can be reconstructed at the receiver by a joint decoder, where the source decoder and the channel decoder run in parallel by transferring extrinsic information. We investigate the performance of the JSC LDPC code in terms of Bit-Error Rate (BER) in the case of transmission over an Additive White Gaussian Noise (AWGN) channel, and for different source and channel rate parameters. We emphasize how JSC LDPC presents a performance tradeoff depending on the channel state and on the source correlation. We show that, the JSC LDPC is an efficient solution for a relatively low Signal-to-Noise Ratio (SNR) channel, especially with highly correlated sources. Finally, a source-channel rate optimization has to be applied to guarantee the best JSC LDPC system performance for a given channel.

Keywords: AWGN channel, belief propagation, joint source channel coding, LDPC codes

Procedia PDF Downloads 357
3179 Principle Component Analysis on Colon Cancer Detection

Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti

Abstract:

Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.

Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis

Procedia PDF Downloads 205
3178 Microwave Assisted Solvent-free Catalytic Transesterification of Glycerol to Glycerol Carbonate

Authors: Wai Keng Teng, Gek Cheng Ngoh, Rozita Yusoff, Mohamed Kheireddine Aroua

Abstract:

As a by-product of the biodiesel industries, glycerol has been vastly generated which surpasses the market demand. It is imperative to develop an efficient glycerol valorization processes in minimizing the net energy requirement and intensifying the biodiesel production. In this study, base-catalyzed transesterification of glycerol with dimethyl carbonate using microwave irradiation as heating method to produce glycerol carbonate was conducted by varing grades of glycerol i.e. 70%, 86% and 99% purity that obtained from biodiesel plant. Metal oxide catalysts were used with varying operating parameters including reaction time, DMC/glycerol molar ratio, catalyst weight %, temperature and stirring speed. From the study on the effect of different operating parameters; it was found that the type of catalyst used has the most significant effect on the transesterification reaction. Admist the metal oxide catalysts examined, CaO gave the best performance. This study indicates the feasibility of producing glycerol carbonate using different grade of glycerol in both conventional thermal activation and microwave irradiation with CaO as catalyst. Microwave assisted transesterification (MAT) of glycerol into glycerol carbonate has demostrated itself as an energy efficient route by achieving 94.3% yield of GC at 65°C, 5 minutes reaction time, 1 wt% CaO and DMC/glycerol molar ratio of 2. The advantages of MAT transesterification route has made the direct utilization of bioglycerol from biodiesel production without the need of purification. This has marked a more economical and less-energy intensive glycerol carbonate synthesis route.

Keywords: base-catalyzed transesterification, glycerol, glycerol carbonate, microwave irradiation

Procedia PDF Downloads 287
3177 Linear Frequency Modulation-Frequency Shift Keying Radar with Compressive Sensing

Authors: Ho Jeong Jin, Chang Won Seo, Choon Sik Cho, Bong Yong Choi, Kwang Kyun Na, Sang Rok Lee

Abstract:

In this paper, a radar signal processing technique using the LFM-FSK (Linear Frequency Modulation-Frequency Shift Keying) is proposed for reducing the false alarm rate based on the compressive sensing. The LFM-FSK method combines FMCW (Frequency Modulation Continuous Wave) signal with FSK (Frequency Shift Keying). This shows an advantage which can suppress the ghost phenomenon without the complicated CFAR (Constant False Alarm Rate) algorithm. Moreover, the parametric sparse algorithm applying the compressive sensing that restores signals efficiently with respect to the incomplete data samples is also integrated, leading to reducing the burden of ADC in the receiver of radars. 24 GHz FMCW signal is applied and tested in the real environment with FSK modulated data for verifying the proposed algorithm along with the compressive sensing.

Keywords: compressive sensing, LFM-FSK radar, radar signal processing, sparse algorithm

Procedia PDF Downloads 481
3176 Analyses of Soil Volatile Contaminants Extraction by Hot Air Injection

Authors: Abraham Dayan

Abstract:

Remediation of soil containing volatile contaminants is often conducted by vapor extraction (SVE) technique. The operation is based on injection of air at ambient temperatures with or without thermal soil warming. Thermal enhancements of soil vapor extraction (TESVE) processes are usually conducted by soil heating, sometimes assisted by added steam injections. The current study addresses a technique which has not received adequate attention and is based on using exclusively hot air as an alternative to the common TESVE practices. To demonstrate the merit of the hot air TESVE technique, a sandy soil containing contaminated water is studied. Numerical and analytical tools were used to evaluate the rate of decontamination processes for various geometries and operating conditions. The governing equations are based on the Darcy law and are applied to an expanding compressible flow within a sandy soil. The equations were solved to determine the minimal time required for complete soil remediation. An approximate closed form solution was developed based on the assumption of local thermodynamic equilibrium and on a linearized representation of temperature dependence of the vapor to air density ratio. The solution is general in nature and offers insight into the governing processes of the soil remediation operation, where self-similar temperature profiles under certain conditions may exist, and the noticeable role of the contaminants evaporation and recondensation processes in affecting the remediation time. Based on analyses of the hot air TESVE technique, it is shown that it is sufficient to heat the air during a certain period of the decontamination process without compromising its full advantage, and thereby, entailing a minimization of the air-heating-energy requirements. This in effect is achieved by regeneration, leaving the energy stored in the soil during the early period of the remediation process to heat the subsequently injected ambient air, which infiltrates through it for the decontamination of the remaining untreated soil zone. The characteristic time required to complete SVE operations are calculated as a function of, both, the injected air temperature and humidity. For a specific set of conditions, it is demonstrated that elevating the injected air temperature by 20oC, the hot air injection technique reduces the soil remediation time by 50%, while requiring 30% of additional energy consumption. Those evaluations clearly unveil the advantage of the hot air SVE process, which for insignificant cost of added air heating energy, the substantial cost expenditures for manpower and equipment utilization are reduced.

Keywords: Porous Media, Soil Decontamination, Hot Air, Vapor Extraction

Procedia PDF Downloads 10
3175 Rock Thickness Measurement by Using Self-Excited Acoustical System

Authors: Janusz Kwaśniewski, Ireneusz Dominik, Krzysztof Lalik

Abstract:

The knowledge about rock layers thickness, especially above drilled mining pavements are crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-Excited Acoustical System is presented in the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rock layer. The idea is to find two resonance frequencies of the self-exited system, which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented.

Keywords: auto-oscillator, non-destructive testing, rock thickness measurement, geotechnic

Procedia PDF Downloads 374
3174 Study on Heat Transfer Capacity Limits of Heat Pipe with Working Fluids Ammonia and Water

Authors: M. Heydari, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 399
3173 Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations

Authors: Jožef Ritonja, Bojan Grčar, Boštjan Polajžer

Abstract:

In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.

Keywords: power system, stability, oscillations, power system stabilizer, model reference adaptive control

Procedia PDF Downloads 138
3172 Enhancement of Aircraft Longitudinal Stability Using Tubercles

Authors: Muhammad Umer, Aishwariya Giri, Umaiyma Rakha

Abstract:

Mimicked from the humpback whale flippers, the application of tubercle technology is seen to be particularly advantageous at high angles of attack. This particular advantage is of paramount importance when it comes to structures producing lift at high angles of attack. This characteristic of the technology makes it ideal for horizontal stabilizers and selecting the same as the subject of study to identify and exploit the advantage highlighted by researchers on airfoils, this project aims in establishing a foundation for the application of the bio-mimicked technology on an existing aircraft. Using a baseline and 2 tubercle configuration integrated models, the project targets to achieve the twin aim of highlighting the possibility and merits over the base model and also choosing the right configuration in providing the best characteristic suitable for high angles of attack. To facilitate this study, the required models are generated using Solidworks followed by trials in a virtual aerodynamic environment using Fluent in Ansys for resolving the project objectives. Following a structured plan, the aim is to initially identify the advantages mathematically and then selecting the optimal configuration, simulate the end configuration at angles mimicking the actual operation envelope for the particular structure. Upon simulating the baseline configuration at various angles of attack, the stall angle was determined to be 22 degrees. Thus, the tubercle configurations will be simulated and compared at 4 different angles of attacks: 0, 10, 20, and 24. Further, after providing the optimum configuration of horizontal stabilizers, this study aims at the integration of aircraft structure so that the results better imply the end deliverables of real life application. This draws the project scope closer at this point into longitudinal static stability considerations and improvements in the manoeuvrability characteristics. The objective of the study is to achieve a complete overview ready for real life application with marked benefits obtainable from bio morphing of the tubercle technology.

Keywords: flow simulation, horizontal stabilizer, stability enhancement, tubercle

Procedia PDF Downloads 320
3171 Optimal Design of Multi-Machine Power System Stabilizers Using Interactive Honey Bee Mating Optimization

Authors: Hossein Ghadimi, Alireza Alizadeh, Oveis Abedinia, Noradin Ghadimi

Abstract:

This paper presents an enhanced Honey Bee Mating Optimization (HBMO) to solve the optimal design of multi machine power system stabilizer (PSSs) parameters, which is called the Interactive Honey Bee Mating Optimization (IHBMO). Power System Stabilizers (PSSs) are now routinely used in the industry to damp out power system oscillations. The design problem of the proposed controller is formulated as an optimization problem and IHBMO algorithm is employed to search for optimal controller parameters. The proposed method is applied to multi-machine power system (MPS). The method suggested in this paper can be used for designing robust power system stabilizers for guaranteeing the required closed loop performance over a prespecified range of operating and system conditions. The simplicity in design and implementation of the proposed stabilizers makes them better suited for practical applications in real plants. The non-linear simulation results are presented under wide range of operating conditions in comparison with the PSO and CPSS base tuned stabilizer one through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers.

Keywords: power system stabilizer, IHBMO, multimachine, nonlinearities

Procedia PDF Downloads 507
3170 Experimental Investigation of the Thermal Performance of Fe2O3 under Magnetic Field in an Oscillating Heat Pipe

Authors: H. R. Goshayeshi, M. Khalouei, S. Azarberamman

Abstract:

This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions. This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions.

Keywords: experimental, oscillating heat pipe, heat transfer, magnetic field

Procedia PDF Downloads 263
3169 Parameter Selection and Monitoring for Water-Powered Percussive Drilling in Green-Fields Mineral Exploration

Authors: S. J. Addinell, T. Richard, B. Evans

Abstract:

The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising downhole water powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barron cover. This system has shown superior rates of penetration in water-rich hard rock formations at depths exceeding 500 meters. Several key challenges exist regarding the deployment and use of these bottom hole assemblies for mineral exploration, and this paper discusses some of the key technical challenges. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process is presented and shows a strong power law relationship for particle size distributions. Several percussive drilling parameters such as RPM, applied fluid pressure and weight on bit have been shown to influence the particle size distributions of the cuttings generated. This has direct influence on other drilling parameters such as flow loop performance, cuttings dewatering, and solids control. Real-time, accurate knowledge of percussive system operating parameters will assist the driller in maximising the efficiency of the drilling process. The applied fluid flow, fluid pressure, and rock properties are known to influence the natural oscillating frequency of the percussive hammer, but this paper also shows that drill bit design, drill bit wear and the applied weight on bit can also influence the oscillation frequency. Due to the changing drilling conditions and therefore changing operating parameters, real-time understanding of the natural operating frequency is paramount to achieving system optimisation. Several techniques to understand the oscillating frequency have been investigated and presented. With a conventional top drive drilling rig, spectral analysis of applied fluid pressure, hydraulic feed force pressure, hold back pressure and drill string vibrations have shown the presence of the operating frequency of the bottom hole tooling. Unfortunately, however, with the implementation of a coiled tubing drilling rig, implementing a positive displacement downhole motor to provide drill bit rotation, these signals are not available for interrogation at the surface and therefore another method must be considered. The investigation and analysis of ground vibrations using geophone sensors, similar to seismic-while-drilling techniques have indicated the presence of the natural oscillating frequency of the percussive hammer. This method is shown to provide a robust technique for the determination of the downhole percussive oscillation frequency when used with a coiled tubing drill rig.

Keywords: cuttings characterization, drilling optimization, oscillation frequency, percussive drilling, spectral analysis

Procedia PDF Downloads 230