Search results for: protein-protein interaction networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6612

Search results for: protein-protein interaction networks

5862 The Relation Between Protein-Protein and Polysaccharide-Protein Interaction on Aroma Release from Brined Cheese Model

Authors: Mehrnaz Aminifar

Abstract:

The relation between textural parameters and casein network on release of aromatic compounds was investigated over 90-days of ripening. Low DE maltodextrin and WPI were used to modify the textural properties of low fat brined cheese. Hardness, brittleness and compaction of casein network were affected by addition of maltodextrin and WPI. Textural properties and aroma release from cheese texture were affected by interaction of WPI protein-cheese protein and maltodexterin-cheese protein.

Keywords: aroma release, brined cheese, maltodexterin, WPI

Procedia PDF Downloads 354
5861 On Unification of the Electromagnetic, Strong and Weak Interactions

Authors: Hassan Youssef Mohamed

Abstract:

In this paper, we show new wave equations, and by using the equations, we concluded that the strong force and the weak force are not fundamental, but they are quantum effects for electromagnetism. This result is different from the current scientific understanding about strong and weak interactions at all. So, we introduce three evidences for our theory. First, we prove the asymptotic freedom phenomenon in the strong force by using our model. Second, we derive the nuclear shell model as an approximation of our model. Third, we prove that the leptons do not participate in the strong interactions, and we prove the short ranges of weak and strong interactions. So, our model is consistent with the current understanding of physics. Finally, we introduce the electron-positron model as the basic ingredients for protons, neutrons, and all matters, so we can study all particles interactions and nuclear interaction as many-body problems of electrons and positrons. Also, we prove the violation of parity conservation in weak interaction as evidence of our theory in the weak interaction. Also, we calculate the average of the binding energy per nucleon.

Keywords: new wave equations, the strong force, the grand unification theory, hydrogen atom, weak force, the nuclear shell model, the asymptotic freedom, electron-positron model, the violation of parity conservation, the binding energy

Procedia PDF Downloads 185
5860 Interfacial Investigation and Chemical Bonding in Graphene Reinforced Alumina Ceramic Nanocomposites

Authors: Iftikhar Ahmad, Mohammad Islam

Abstract:

Thermally exfoliated graphene nanomaterial was reinforced into Al2O3 ceramic and the nanocomposites were consolidated using rapid high-frequency induction heat sintering route. The resulting nanocomposites demonstrated higher mechanical properties due to efficient GNS incorporation and chemical interaction with the Al2O3 matrix grains. The enhancement in mechanical properties is attributed to (i) uniformly-dispersed GNS in the consolidated structure (ii) ability of GNS to decorate Al2O3 nanoparticles and (iii) strong GNS/Al2O3 chemical interaction during colloidal mixing and pullout/crack bridging toughening mechanisms during mechanical testing. The GNS/Al2O3 interaction during different processing stages was thoroughly examined by thermal and structural investigation of the interfacial area. The formation of an intermediate aluminum oxycarbide phase (Al2OC) via a confined carbothermal reduction reaction at the GNS/Al2O3 interface was observed using advanced electron microscopes. The GNS surface roughness improves GNS/Al2O3 mechanical locking and chemical compatibility. The sturdy interface phase facilitates efficient load transfer and delayed failure through impediment of crack propagation. The resulting nanocomposites, therefore, offer superior toughness.

Keywords: ceramics, nanocomposites, interfaces, nanostructures, electron microscopy, Al2O3

Procedia PDF Downloads 358
5859 Factorial Design Analysis for Quality of Video on MANET

Authors: Hyoup-Sang Yoon

Abstract:

The quality of video transmitted by mobile ad hoc networks (MANETs) can be influenced by several factors, including protocol layers; parameter settings of each protocol. In this paper, we are concerned with understanding the functional relationship between these influential factors and objective video quality in MANETs. We illustrate a systematic statistical design of experiments (DOE) strategy can be used to analyse MANET parameters and performance. Using a 2k factorial design, we quantify the main and interactive effects of 7 factors on a response metric (i.e., mean opinion score (MOS) calculated by PSNR with Evalvid package) we then develop a first-order linear regression model between the influential factors and the performance metric.

Keywords: evalvid, full factorial design, mobile ad hoc networks, ns-2

Procedia PDF Downloads 413
5858 Computational Approach to the Interaction of Neurotoxins and Kv1.3 Channel

Authors: Janneth González, George Barreto, Ludis Morales, Angélica Sabogal

Abstract:

Sea anemone neurotoxins are peptides that interact with Na+ and K+ channels, resulting in specific alterations on their functions. Some of these neurotoxins (1ROO, 1BGK, 2K9E, 1BEI) are important for the treatment of nearly eighty autoimmune disorders due to their specificity for Kv1.3 channel. The aim of this study was to identify the common residues among these neurotoxins by computational methods, and establish whether there is a pattern useful for the future generation of a treatment for autoimmune diseases. Our results showed eight new key common residues between the studied neurotoxins interacting with a histidine ring and the selectivity filter of the receptor, thus showing a possible pattern of interaction. This knowledge may serve as an input for the design of more promising drugs for autoimmune treatments.

Keywords: neurotoxins, potassium channel, Kv1.3, computational methods, autoimmune diseases

Procedia PDF Downloads 374
5857 Artificial Neurons Based on Memristors for Spiking Neural Networks

Authors: Yan Yu, Wang Yu, Chen Xintong, Liu Yi, Zhang Yanzhong, Wang Yanji, Chen Xingyu, Zhang Miaocheng, Tong Yi

Abstract:

Neuromorphic computing based on spiking neural networks (SNNs) has emerged as a promising avenue for building the next generation of intelligent computing systems. Owing to its high-density integration, low power, and outstanding nonlinearity, memristors have attracted emerging attention on achieving SNNs. However, fabricating a low-power and robust memristor-based spiking neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a TiO₂-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, used to realize single layer fully connected (FC) SNNs. Moreover, our TiO₂-based resistive switching (RS) memristors realize spiking-time-dependent-plasticity (STDP), originating from the Ag diffusion-based filamentary mechanism. This work demonstrates that TiO2-based memristors may provide an efficient method to construct hardware neuromorphic computing systems.

Keywords: leaky integrate-and-fire, memristor, spiking neural networks, spiking-time-dependent-plasticity

Procedia PDF Downloads 134
5856 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration

Authors: C. Iraklis, G. Evmiridis, A. Iraklis

Abstract:

Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.

Keywords: congestion, distribution networks, loss reduction, particle swarm optimization, smart grid

Procedia PDF Downloads 445
5855 Dynamical Relation of Poisson Spike Trains in Hodkin-Huxley Neural Ion Current Model and Formation of Non-Canonical Bases, Islands, and Analog Bases in DNA, mRNA, and RNA at or near the Transcription

Authors: Michael Fundator

Abstract:

Groundbreaking application of biomathematical and biochemical research in neural networks processes to formation of non-canonical bases, islands, and analog bases in DNA and mRNA at or near the transcription that contradicts the long anticipated statistical assumptions for the distribution of bases and analog bases compounds is implemented through statistical and stochastic methods apparatus with addition of quantum principles, where the usual transience of Poisson spike train becomes very instrumental tool for finding even almost periodical type of solutions to Fokker-Plank stochastic differential equation. Present article develops new multidimensional methods of finding solutions to stochastic differential equations based on more rigorous approach to mathematical apparatus through Kolmogorov-Chentsov continuity theorem that allows the stochastic processes with jumps under certain conditions to have γ-Holder continuous modification that is used as basis for finding analogous parallels in dynamics of neutral networks and formation of analog bases and transcription in DNA.

Keywords: Fokker-Plank stochastic differential equation, Kolmogorov-Chentsov continuity theorem, neural networks, translation and transcription

Procedia PDF Downloads 406
5854 Experimental Evaluation of UDP in Wireless LAN

Authors: Omar Imhemed Alramli

Abstract:

As Transmission Control Protocol (TCP), User Datagram Protocol (UDP) is transfer protocol in the transportation layer in Open Systems Interconnection model (OSI model) or in TCP/IP model of networks. The UDP aspects evaluation were not recognized by using the pcattcp tool on the windows operating system platform like TCP. The study has been carried out to find a tool which supports UDP aspects evolution. After the information collection about different tools, iperf tool was chosen and implemented on Cygwin tool which is installed on both Windows XP platform and also on Windows XP on virtual box machine on one computer only. Iperf is used to make experimental evaluation of UDP and to see what will happen during the sending the packets between the Host and Guest in wired and wireless networks. Many test scenarios have been done and the major UDP aspects such as jitter, packet losses, and throughput are evaluated.

Keywords: TCP, UDP, IPERF, wireless LAN

Procedia PDF Downloads 354
5853 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms

Authors: Sekkal Nawel, Mahammed Nadir

Abstract:

The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.

Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network

Procedia PDF Downloads 67
5852 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations

Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu

Abstract:

Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.

Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10

Procedia PDF Downloads 111
5851 Older Adults’ Coping during a Pandemic

Authors: Aditya Jayadas

Abstract:

During a pandemic like the one we are in with COVID-19, older adults, especially those who live in a senior retirement facility, experience even bigger challenges as they are often dependent on other individuals for care. Many older adults are dependent on caregivers to assist with their instrumented activities of daily living (IADL). With travel restrictions imposed during a pandemic, there is a critical need to ensure that older adults who are homebound continue to be able to participate in physical exercise, cognitive exercise, and social interaction programs. The objective of this study was to better understand the challenges that older adults faced during the pandemic and what they were doing specifically to cope with the pandemic physically, mentally, and through social interaction. A focus group was conducted with ten older adults (age: 82.70 ± 7.81 years; nine female and one male) who resided in a senior retirement facility. During the course of one hour, seven open-ended questions were posed to the participants: a) What has changed in your life since the start of the pandemic, b) What has been most challenging for you, c) What are you doing to take care of yourself, d) Are you doing anything specifically as it relates to your physical health, e) Are you doing anything specifically as it relates to your mental health, f) What did you do for social interaction during the pandemic, g) Is there anything else you would like to share as it relates to your experience during the pandemic. The focus group session was audio-taped, and verbatim transcripts were created to evaluate the responses of the participants. The transcript consisted of 4,698 words and 293 lines of text. The data was analyzed using content analysis. The unit of analysis was the text from the audio recordings that were transcribed. From the review of the transcribed text, themes and sub-themes were identified, along with salient quotes under each sub-theme. The major themes that emerged from the data were: having a routine, engaging in activities, attending exercise classes, use of technology, family, community, and prayer. The quotes under the sub-themes provided compelling evidence of how older adults coped during the pandemic while addressing the challenges they faced and developing strategies to address their physical and mental health while interacting with others. Lessons learned from this focus group can be used to develop specific physical exercise, cognitive exercise, and social interaction programs that benefit the health and well-being of older adults.

Keywords: cognitive exercise, pandemic, physical exercise, social interaction

Procedia PDF Downloads 73
5850 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50

Procedia PDF Downloads 128
5849 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 150
5848 3D Codes for Unsteady Interaction Problems of Continuous Mechanics in Euler Variables

Authors: M. Abuziarov

Abstract:

The designed complex is intended for the numerical simulation of fast dynamic processes of interaction of heterogeneous environments susceptible to the significant formability. The main challenges in solving such problems are associated with the construction of the numerical meshes. Currently, there are two basic approaches to solve this problem. One is using of Lagrangian or Lagrangian Eulerian grid associated with the boundaries of media and the second is associated with the fixed Eulerian mesh, boundary cells of which cut boundaries of the environment medium and requires the calculation of these cut volumes. Both approaches require the complex grid generators and significant time for preparing the code’s data for simulation. In this codes these problems are solved using two grids, regular fixed and mobile local Euler Lagrange - Eulerian (ALE approach) accompanying the contact and free boundaries, the surfaces of shock waves and phase transitions, and other possible features of solutions, with mutual interpolation of integrated parameters. For modeling of both liquids and gases, and deformable solids the Godunov scheme of increased accuracy is used in Lagrangian - Eulerian variables, the same for the Euler equations and for the Euler- Cauchy, describing the deformation of the solid. The increased accuracy of the scheme is achieved by using 3D spatial time dependent solution of the discontinuity problem (3D space time dependent Riemann's Problem solver). The same solution is used to calculate the interaction at the liquid-solid surface (Fluid Structure Interaction problem). The codes does not require complex 3D mesh generators, only the surfaces of the calculating objects as the STL files created by means of engineering graphics are given by the user, which greatly simplifies the preparing the task and makes it convenient to use directly by the designer at the design stage. The results of the test solutions and applications related to the generation and extension of the detonation and shock waves, loading the constructions are presented.

Keywords: fluid structure interaction, Riemann's solver, Euler variables, 3D codes

Procedia PDF Downloads 439
5847 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 138
5846 Cyber-Social Networks in Preventing Terrorism: Topological Scope

Authors: Alessandra Rossodivita, Alexei Tikhomirov, Andrey Trufanov, Nikolay Kinash, Olga Berestneva, Svetlana Nikitina, Fabio Casati, Alessandro Visconti, Tommaso Saporito

Abstract:

It is well known that world and national societies are exposed to diverse threats: anthropogenic, technological, and natural. Anthropogenic ones are of greater risks and, thus, attract special interest to researchers within wide spectrum of disciplines in efforts to lower the pertinent risks. Some researchers showed by means of multilayered, complex network models how media promotes the prevention of disease spread. To go further, not only are mass-media sources included in scope the paper suggests but also personificated social bots (socbots) linked according to reflexive theory. The novel scope considers information spread over conscious and unconscious agents while counteracting both natural and man-made threats, i.e., infections and terrorist hazards. Contrary to numerous publications on misinformation disseminated by ‘bad’ bots within social networks, this study focuses on ‘good’ bots, which should be mobilized to counter the former ones. These social bots deployed mixture with real social actors that are engaged in concerted actions at spreading, receiving and analyzing information. All the contemporary complex network platforms (multiplexes, interdependent networks, combined stem networks et al.) are comprised to describe and test socbots activities within competing information sharing tools, namely mass-media hubs, social networks, messengers, and e-mail at all phases of disasters. The scope and concomitant techniques present evidence that embedding such socbots into information sharing process crucially change the network topology of actor interactions. The change might improve or impair robustness of social network environment: it depends on who and how controls the socbots. It is demonstrated that the topological approach elucidates techno-social processes within the field and outline the roadmap to a safer world.

Keywords: complex network platform, counterterrorism, information sharing topology, social bots

Procedia PDF Downloads 164
5845 A QoS Aware Cluster Based Routing Algorithm for Wireless Mesh Network Using LZW Lossless Compression

Authors: J. S. Saini, P. P. K. Sandhu

Abstract:

The multi-hop nature of Wireless Mesh Networks and the hasty progression of throughput demands results in multi- channels and multi-radios structures in mesh networks, but the main problem of co-channels interference reduces the total throughput, specifically in multi-hop networks. Quality of Service mentions a vast collection of networking technologies and techniques that guarantee the ability of a network to make available desired services with predictable results. Quality of Service (QoS) can be directed at a network interface, towards a specific server or router's performance, or in specific applications. Due to interference among various transmissions, the QoS routing in multi-hop wireless networks is formidable task. In case of multi-channel wireless network, since two transmissions using the same channel may interfere with each other. This paper has considered the Destination Sequenced Distance Vector (DSDV) routing protocol to locate the secure and optimised path. The proposed technique also utilizes the Lempel–Ziv–Welch (LZW) based lossless data compression and intra cluster data aggregation to enhance the communication between the source and the destination. The use of clustering has the ability to aggregate the multiple packets and locates a single route using the clusters to improve the intra cluster data aggregation. The use of the LZW based lossless data compression has ability to reduce the data packet size and hence it will consume less energy, thus increasing the network QoS. The MATLAB tool has been used to evaluate the effectiveness of the projected technique. The comparative analysis has shown that the proposed technique outperforms over the existing techniques.

Keywords: WMNS, QOS, flooding, collision avoidance, LZW, congestion control

Procedia PDF Downloads 338
5844 Chairussyuhur Arman, Totti Tjiptosumirat, Muhammad Gunawan, Mastur, Joko Priyono, Baiq Tri Ratna Erawati

Authors: Maria M. Giannakou, Athanasios K. Ziliaskopoulos

Abstract:

Transmission pipelines carrying natural gas are often routed through populated cities, industrial and environmentally sensitive areas. While the need for these networks is unquestionable, there are serious concerns about the risk these lifeline networks pose to the people, to their habitat and to the critical infrastructures, especially in view of natural disasters such as earthquakes. This work presents an Integrated Pipeline Risk Management methodology (IPRM) for assessing the hazard associated with a natural gas pipeline failure due to natural or manmade disasters. IPRM aims to optimize the allocation of the available resources to countermeasures in order to minimize the impacts of pipeline failure to humans, the environment, the infrastructure and the economic activity. A proposed knapsack mathematical programming formulation is introduced that optimally selects the proper mitigation policies based on the estimated cost – benefit ratios. The proposed model is demonstrated with a small numerical example. The vulnerability analysis of these pipelines and the quantification of consequences from such failures can be useful for natural gas industries on deciding which mitigation measures to implement on the existing pipeline networks with the minimum cost in an acceptable level of hazard.

Keywords: cost benefit analysis, knapsack problem, natural gas distribution network, risk management, risk mitigation

Procedia PDF Downloads 295
5843 Numerical Multi-Scale Modeling of Rubber Friction on Rough Pavements Using Finite Element Method

Authors: Ashkan Nazari, Saied Taheri

Abstract:

Knowledge of tire-pavement interaction plays a crucial role in designing safer and more reliable tires. Characterizing the tire-pavement frictional interaction leads to a better understanding of vehicle performance in braking and acceleration. In this work, we devise a multi-scale simulation approach to incorporate the effect of pavement surface asperities in different length-scales. We construct two- and three-dimensional Finite Element (FE) models to simulate the interaction between a rubber block and a rough pavement surface with asperities in different scales. To achieve this, the road profile is scanned via a laser profilometer and the obtained asperities are implemented in an FE software (ABAQUS) in micro and macro length-scales. The hysteresis friction, which is due to the dissipative nature of rubber, is the main component of the friction force and therefore is the subject of study in this work. Using different scales not only will assist in characterizing the pavement asperities with sufficient details but also, it is highly effective in preventing extreme local deformations and stress gradients which results in divergence in FE simulations. The simulation results will be validated with experimental results as well as the results reported in the literature.

Keywords: friction, finite element, multi-scale modeling, rubber

Procedia PDF Downloads 136
5842 A Linearly Scalable Family of Swapped Networks

Authors: Richard Draper

Abstract:

A supercomputer can be constructed from identical building blocks which are small parallel processors connected by a network referred to as the local network. The routers have unused ports which are used to interconnect the building blocks. These connections are referred to as the global network. The address space has a global and a local component (g, l). The conventional way to connect the building blocks is to connect (g, l) to (g’,l). If there are K blocks, this requires K global ports in each router. If a block is of size M, the result is a machine with KM routers having diameter two. To increase the size of the machine to 2K blocks, each router connects to only half of the other blocks. The result is a larger machine but also one with greater diameter. This is a crude description of how the network of the CRAY XC® is designed. In this paper, a family of interconnection networks using routers with K global and M local ports is defined. Coordinates are (c,d, p) and the global connections are (c,d,p)↔(c’,p,d) which swaps p and d. The network is denoted D3(K,M) and is called a Swapped Dragonfly. D3(K,M) has KM2 routers and has diameter three, regardless of the size of K. To produce a network of size KM2 conventionally, diameter would be an increasing function of K. The family of Swapped Dragonflies has other desirable properties: 1) D3(K,M) scales linearly in K and quadratically in M. 2) If L < K, D3(K,M) contains many copies of D3(L,M). 3) If L < M, D3(K,M) contains many copies of D3(K,L). 4) D3(K,M) can perform an all-to-all exchange in KM2+KM time which is only slightly more than the time to do a one-to-all. This paper makes several contributions. It is the first time that a swap has been used to define a linearly scalable family of networks. Structural properties of this new family of networks are thoroughly examined. A synchronizing packet header is introduced. It specifies the path to be followed and it makes it possible to define highly parallel communication algorithm on the network. Among these is an all-to-all exchange in time KM2+KM. To demonstrate the effectiveness of the swap properties of the network of the CRAY XC® and D3(K,16) are compared.

Keywords: all-to-all exchange, CRAY XC®, Dragonfly, interconnection network, packet switching, swapped network, topology

Procedia PDF Downloads 121
5841 The Relation Between Social Class, Race Homophily and Mental Health Outcomes of Black College Students

Authors: Omari W. Keeles

Abstract:

Attention to social class and race processes could illuminate within- group differences in Black students' experiences that help explain variation in adjustment. Of interest is how social class relates to development of intragroup connections with other Black students on campus in ways that promote or inhibit well-being. The present study’s findings suggest that students from lower class backgrounds may be more restrictive or limited in opportunities around their intragroup friendship networks than more affluent students. Furthermore, Black social relationship networks were related to positive mental health adjustment important to healthy psychological functioning and development.

Keywords: black students, social class, homophily, psychological adjustment

Procedia PDF Downloads 450
5840 Characterization of Defense-Related Genes and Metabolite Profiling in Oil Palm Elaeis guineensis during Interaction with Ganoderma boninense

Authors: Mohammad Nazri Abdul Bahari, Nurshafika Mohd Sakeh, Siti Nor Akmar Abdullah

Abstract:

Basal stem rot (BSR) is the most devastating disease in oil palm. Among the oil palm pathogenic fungi, the most prevalent and virulent species associated with BSR is Ganoderma boninense. Early detection of G. boninense attack in oil palm wherein physical symptoms has not yet appeared can offer opportunities to prevent the spread of the necrotrophic fungus. However, poor understanding of molecular defense responses and roles of antifungal metabolites in oil palm against G. boninense has complicated the resolving measures. Hence, characterization of defense-related molecular responses and production of antifungal compounds during early interaction with G. boninense is of utmost important. Four month-old oil palm (Elaeis guineensis) seedlings were artificially infected with G. boninense-inoculated rubber wood block via sitting technique. RNA of samples were extracted from roots and leaves tissues at 0, 3, 7 and 11 days post inoculation (d.p.i) followed with sequencing using RNA-Seq method. Differentially-expressed genes (DEGs) of oil palm-G. boninense interaction were identified, while changes in metabolite profile will be scrutinized related to the DEGs. The RNA-Seq data generated a total of 113,829,376 and 313,293,229 paired-end clean reads from untreated (0 d.p.i) and treated (3, 7, 11 d.p.i) samples respectively, each with two biological replicates. The paired-end reads were mapped to Elaeis guineensis reference genome to screen out non-oil palm genes and subsequently generated 74,794 coding sequences. DEG analysis of phytohormone biosynthetic genes in oil palm roots revealed that at p-value ≤ 0.01, ethylene and jasmonic acid may act in antagonistic manner with salicylic acid to coordinate defense response at early interaction with G. boninense. Findings on metabolite profiling of G. boninense-infected oil palm roots and leaves are hoped to explain the defense-related compounds elicited by Elaeis guineensis in response to G. boninense colonization. The study aims to shed light on molecular defense response of oil palm at early interaction with G. boninense and promote prevention measures against Ganoderma infection.

Keywords: Ganoderma boninense, metabolites, phytohormones, RNA-Seq

Procedia PDF Downloads 264
5839 Potency Interaction using Simvastatin and Herbs Cholesterol Lowering Agent, Prevention of Unwanted Effect in Combination Hyperlipidemia Therapy

Authors: Agung A. Ginanjar, Lilitasari, Indra Prasetya, Rizal R. Hanif, Yusrina Rismandini, Atina Hussaana, Nurita P. Sari

Abstract:

Hyperlipidemia is an increase of lipids and cholesterol in the blood that causes the formation of atherosklerosis. The recent pharmacological therapy nowadays is statin. Many Indonesian people use of medicinal plants. There are several medical plants that people always use to cure hyperlipidemia such as bulbs onion sabrang, areca nuts, and seed of fenugreek. Most people often use a combination therapy of conventional medicine and herbs to achieve the desired therapeutic effect of combination therapy. The use of combination therapy might cause the interaction of pharmacodynamic from those medicines so that it influences the pharmacological effect of one of medicine. The aim of this study is to know the interaction of simvastatin and a cholesterol-lowering herb seen in rats pharmacodynamic simvastatin phase. This research used post-test only controlled group design. Analysis of statistical data normality and homogenity were tested by Kolmogorov Smirnov. The ANOVA test is used when the data is obtained homogeneous but if it is found that the data are not homogeneous then kruskal-wallis test is used. Normal (63.196 mg/dl), negative (70.604 mg/dl), positive (62.512 mg/dl), areca nuts (56.564 mg/dl), fenugreek seed (47.538 ,g/dl), onion sabrang (62.312 mg/dl). The results prove that the combination of herbs and simvastatin did not have a significant difference (P>0,05). The conclusion of this study is that the combination of simvastatin and a cholesterol-lowering herb can cause some pharmacodynamic interactions such as a synergistic effect, antagonist, and a powerful additive, so that combination therapy is not more effective than single simvastatin therapy. The use of the combination therapy is not given in the same time. It would be better if there are some period of time when the combination therapy is applied.

Keywords: onion bulb sabrang, areca nuts, seed of fenugreek, interaction medicine, hyperlipidemia

Procedia PDF Downloads 530
5838 Evaluation of Collect Tree Protocol for Structural Health Monitoring System Using Wireless Sensor Networks

Authors: Amira Zrelli, Tahar Ezzedine

Abstract:

Routing protocol may enhance the lifetime of sensor network, it has a highly importance, especially in wireless sensor network (WSN). Therefore, routing protocol has a big effect in these networks, thus the choice of routing protocol must be studied before setting up our network. In this work, we implement the routing protocol collect tree protocol (CTP) which is one of the hierarchic protocols used in structural health monitoring (SHM). Therefore, to evaluate the performance of this protocol, we choice to work with Contiki system and Cooja simulator. By throughput and RSSI evaluation of each node, we will deduce about the utility of CTP in structural monitoring system.

Keywords: CTP, WSN, SHM, routing protocol

Procedia PDF Downloads 296
5837 Fuzzy Neuro Approach for Integrated Water Management System

Authors: Stuti Modi, Aditi Kambli

Abstract:

This paper addresses the need for intelligent water management and distribution system in smart cities to ensure optimal consumption and distribution of water for drinking and sanitation purposes. Water being a limited resource in cities require an effective system for collection, storage and distribution. In this paper, applications of two mostly widely used particular types of data-driven models, namely artificial neural networks (ANN) and fuzzy logic-based models, to modelling in the water resources management field are considered. The objective of this paper is to review the principles of various types and architectures of neural network and fuzzy adaptive systems and their applications to integrated water resources management. Final goal of the review is to expose and formulate progressive direction of their applicability and further research of the AI-related and data-driven techniques application and to demonstrate applicability of the neural networks, fuzzy systems and other machine learning techniques in the practical issues of the regional water management. Apart from this the paper will deal with water storage, using ANN to find optimum reservoir level and predicting peak daily demands.

Keywords: artificial neural networks, fuzzy systems, peak daily demand prediction, water management and distribution

Procedia PDF Downloads 186
5836 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks

Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali

Abstract:

To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.

Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility

Procedia PDF Downloads 197
5835 Structural Characterization of TIR Domains Interaction

Authors: Sara Przetocka, Krzysztof Żak, Grzegorz Dubin, Tadeusz Holak

Abstract:

Toll-like receptors (TLRs) play central role in the innate immune response and inflammation by recognizing pathogen-associated molecular patterns (PAMPs). A fundamental basis of TLR signalling is dependent upon the recruitment and association of adaptor molecules that contain the structurally conserved Toll/interleukin-1 receptor (TIR) domain. MyD88 (myeloid differentiation primary response gene 88) is the universal adaptor for TLRs and cooperates with Mal (MyD88 adapter-like protein, also known as TIRAP) in TLR4 response which is predominantly used in inflammation, host defence and carcinogenesis. Up to date two possible models of MyD88, Mal and TLR4 interactions have been proposed. The aim of our studies is to confirm or abolish presented models and accomplish the full structural characterisation of TIR domains interaction. Using molecular cloning methods we obtained several construct of MyD88 and Mal TIR domain with GST or 6xHis tag. Gel filtration method as well as pull-down analysis confirmed that recombinant TIR domains from MyD88 and Mal are binding in complexes. To examine whether obtained complexes are homo- or heterodimers we carried out cross-linking reaction of TIR domains with BS3 compound combined with mass spectrometry. To investigate which amino acid residues are involved in this interaction the NMR titration experiments were performed. 15N MyD88-TIR solution was complemented with non-labelled Mal-TIR. The results undoubtedly indicate that MyD88-TIR interact with Mal-TIR. Moreover 2D spectra demonstrated that simultaneously Mal-TIR self-dimerization occurs which is necessary to create proper scaffold for Mal-TIR and MyD88-TIR interaction. Final step of this study will be crystallization of MyD88 and Mal TIR domains complex. This crystal structure and characterisation of its interface will have an impact in understanding the TLR signalling pathway and possibly will be used in development of new anti-cancer treatment.

Keywords: cancer, MyD88, TIR domains, Toll-like receptors

Procedia PDF Downloads 296
5834 Analysis of Road Network Vulnerability Due to Merapi Volcano Eruption

Authors: Imam Muthohar, Budi Hartono, Sigit Priyanto, Hardiansyah Hardiansyah

Abstract:

The eruption of Merapi Volcano in Yogyakarta, Indonesia in 2010 caused many casualties due to minimum preparedness in facing disaster. Increasing population capacity and evacuating to safe places become very important to minimize casualties. Regional government through the Regional Disaster Management Agency has divided disaster-prone areas into three parts, namely ring 1 at a distance of 10 km, ring 2 at a distance of 15 km and ring 3 at a distance of 20 km from the center of Mount Merapi. The success of the evacuation is fully supported by road network infrastructure as a way to rescue in an emergency. This research attempts to model evacuation process based on the rise of refugees in ring 1, expanded to ring 2 and finally expanded to ring 3. The model was developed using SATURN (Simulation and Assignment of Traffic to Urban Road Networks) program version 11.3. 12W, involving 140 centroid, 449 buffer nodes, and 851 links across Yogyakarta Special Region, which was aimed at making a preliminary identification of road networks considered vulnerable to disaster. An assumption made to identify vulnerability was the improvement of road network performance in the form of flow and travel times on the coverage of ring 1, ring 2, ring 3, Sleman outside the ring, Yogyakarta City, Bantul, Kulon Progo, and Gunung Kidul. The research results indicated that the performance increase in the road networks existing in the area of ring 2, ring 3, and Sleman outside the ring. The road network in ring 1 started to increase when the evacuation was expanded to ring 2 and ring 3. Meanwhile, the performance of road networks in Yogyakarta City, Bantul, Kulon Progo, and Gunung Kidul during the evacuation period simultaneously decreased in when the evacuation areas were expanded. The results of preliminary identification of the vulnerability have determined that the road networks existing in ring 1, ring 2, ring 3 and Sleman outside the ring were considered vulnerable to the evacuation of Mount Merapi eruption. Therefore, it is necessary to pay a great deal of attention in order to face the disasters that potentially occur at anytime.

Keywords: model, evacuation, SATURN, vulnerability

Procedia PDF Downloads 170
5833 Comprehensive Critical Review for Static and Dynamic Soil-Structure Interaction Between Winkler, Pasternak and Three-Dimensional Method of Buried Pipelines

Authors: N. E.Sam, S. R.Singh

Abstract:

Pipeline infrastructure are a valuable asset to the country that help in transporting fluid and gas from one place to another and contribute in keeping the country functioning both physically and economically. During seismic activity, additional loads are acted on the buried pipelines becoming a salient parameter to be studied in soil pipe interaction. Winkler Beam Theory is a commonly used approach for design of underground buried structures however this theory does not take into account shear and dynamic loading parameters in consideration. Shear can be addressed in Pasternak Theory – an improved model of Winkler Theory. However dynamic loading condition and horizontal displacement is not considered in either method. A comprehensive critical review between Winkler Beam Method, Pasternak Method and Three-Dimensional Method in finite element analysis is to be done in this paper for seismic forces. Study of the influence of depth and displacement of soil in correspondence to stiffness value and influence of horizontal displacement for design of underground structures is considered.

Keywords: finite element, pasternak theory, seismic, soil-structure interaction, three-dimensional theory, winkler theory

Procedia PDF Downloads 74