Search results for: opportunistic budget cycle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2638

Search results for: opportunistic budget cycle

1888 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

In the present time, energy crises are considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which Heat Recovery System Generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.

Keywords: solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction

Procedia PDF Downloads 298
1887 Modeling of Thermo Acoustic Emission Memory Effect in Rocks of Varying Textures

Authors: Vladimir Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied with a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: crack growth, cyclic heating and cooling, rock texture, thermo acoustic emission memory effect

Procedia PDF Downloads 271
1886 Planning for Sustainability in the Built Environment

Authors: Adedayo Jeremiah Adeyekun, Samuel Oluwagbemiga Ishola

Abstract:

This paper aimed to identify the significance of sustainability in the built environment, the economic and environmental importance to building and construction projects. Sustainability in the built environment has been a key objective of research over the past several decades. Sustainability in the built environment requires reconciliation between economic, environmental and social impacts of design and planning decisions made during the life cycle of a project from inception to termination. Planning for sustainability in the built environment needs us to go beyond our individual disciplines to consider the variety of economic, social and environmental impacts of our decisions in the long term. A decision to build a green residential development in an isolated location may pass some of the test of sustainability through its reduction in stormwater runoff, energy efficiency, and ecological sustainability in the building, but it may fail to be sustainable from a transportation perspective. Sustainability is important to the planning, design, construction, and preservation of the built environment; because it helps these activities reflect multiple values and considerations. In fact, the arts and sciences of the built environment have traditionally integrated values and fostered creative expression, capabilities that can and should lead the sustainability movement as society seeks ways to live in dynamic balance with its own diverse needs and the natural world. This research aimed to capture the state-of-the-art in the development of innovative sustainable design and planning strategies for building and construction projects. Therefore, there is a need for a holistic selection and implication approach for identifying potential sustainable strategies applicable to a particular project and evaluating the overall life cycle impact of each alternative by accounting for different applicable impacts and making the final selection among various viable alternatives.

Keywords: sustainability, built environment, planning, design, construction

Procedia PDF Downloads 176
1885 Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube

Authors: Zhipeng Feng, Huanhuan Qi, Pingchuan Shen, Fenggang Zang, Yixiong Zhang

Abstract:

Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35×104. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincaré sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the “lock-in” begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the “out-of-phase” to the “in-phase” mode.

Keywords: vortex induced vibration, limit cycle, LES, CFD, FEM

Procedia PDF Downloads 281
1884 Hydrothermal Synthesis of V₂O₅-Carbon Nanotube Composite for Supercapacitor Application

Authors: Mamta Bulla, Vinay Kumar

Abstract:

The transition to renewable energy sources is essential due to the finite limitations of conventional fossil fuels, which contribute significantly to environmental pollution and greenhouse gas emissions. Traditional energy storage solutions, such as batteries and capacitors, are also hindered by limitations, particularly in capacity, cycle life, and energy density. Conventional supercapacitors, while able to deliver high power, often suffer from low energy density, limiting their efficiency in storing and providing renewable energy consistently. Renewable energy sources, such as solar and wind, produce power intermittently, so efficient energy storage solutions are required to manage this variability. Advanced materials, particularly those with high capacity and long cycle life, are critical to developing supercapacitors capable of effectively storing renewable energy. Among various electrode materials, vanadium pentoxide (V₂O₅) offers high theoretical capacitance, but its poor conductivity and cycling stability limit practical applications. This study explores the hydrothermal synthesis of a V₂O₅-carbon nanotube (CNT) composite to overcome these drawbacks, combining the high capacitance of V₂O₅ with the exceptional conductivity and mechanical stability of CNTs. The resulting V₂O₅-CNT composite demonstrates enhanced electrochemical performance, showing high specific capacitance of 890 F g⁻¹ at 0.1 A g⁻¹ current density, excellent rate capability, and improved cycling stability, making it a promising candidate for next-generation supercapacitors, with significant improvements in energy storage efficiency and durability.

Keywords: cyclability, energy density, nanocomposite, renewable energy, supercapacitor

Procedia PDF Downloads 11
1883 Building Information Modelling Based Value for Money Assessment in Public-Private Partnership

Authors: Guoqian Ren, Haijiang Li, Jisong Zhang

Abstract:

Over the past 40 years, urban development has undergone large-scale, high-speed expansion, beyond what was previously considered normal and in a manner not proportionally related to population growth or physical considerations. With more scientific and refined decision-making in the urban construction process, new urbanization approaches, aligned with public-private partnerships (PPPs) which evolved in the early 1990s, have become acceptable and, in some situations, even better solutions to outstanding urban municipal construction projects, especially in developing countries. However, as the main driving force to deal with urban public services, PPPs are still problematic regarding value for money (VFM) process in most large-scale construction projects. This paper therefore reviews recent PPP articles in popular project management journals and relevant toolkits, published in the last 10 years, to identify the indicators that influence VFM within PPPs across regions. With increasing concerns about profitability and environmental and social impacts, the current PPP structure requires a more integrated platform to manage multi-performance project life cycles. Building information modelling (BIM), a popular approach to the procurement process in AEC sectors, provides the potential to ensure VFM while also working in tandem with the semantic approach to holistically measure life cycle costs (LCC) and achieve better sustainability. This paper suggests that BIM applied to the entire PPP life cycle could support holistic decision-making regarding VFM processes and thus meet service targets.

Keywords: public-private partnership, value for money, building information modelling, semantic approach

Procedia PDF Downloads 209
1882 Development and Validation of Integrated Continuous Improvement Framework for Competitiveness: Mixed Research of Ethiopian Manufacturing Industries

Authors: Haftu Hailu Berhe, Hailekiros Sibhato Gebremichael, Kinfe Tsegay Beyene, Haileselassie Mehari

Abstract:

The purpose of the study is to develop and validate integrated literature-based JIT, TQM, TPM, SCM and LSS framework through a combination of the PDCA cycle and DMAIC methodology. The study adopted a mixed research approach. Accordingly, the qualitative study employed to develop the framework is based on identifying the uniqueness and common practices of JIT, TQM, TPM, SCM and LSS initiatives, the existing practice of the integration, identifying the existing gaps in the framework and practices, developing new integrated JIT, TQM, TPM, SCM and LSS practice framework. Previous very few studies of the uniqueness and common practices of the five initiatives are preserved. Whereas the quantitative study working to validate the framework is based on empirical analysis of the self-administered questionnaire using a statistical package for social science. A combination of the PDCA cycle and DMAIC methodology stand integrated CI framework is developed. The proposed framework is constructed as a project-based framework with five detailed implementation phases. Besides, the empirical analysis demonstrated that the proposed framework is valuable if adopted and implemented correctly. So far, there is no study proposed & validated the integrated CI framework within the scope of the study. Therefore, this is the earliest study that proposed and validated the framework for manufacturing industries. The proposed framework is applicable to manufacturing industries and can assist in achieving competitive advantages when the manufacturing industries, institutions and government offer unconditional efforts in implementing the full contents of the framework.

Keywords: integrated continuous improvement framework, just in time, total quality management, total productive maintenance, supply chain management, lean six sigma

Procedia PDF Downloads 139
1881 A Study on Bicycle Riding Behavior on Bike-Only Road

Authors: Hyeon Jong Yoo, Jae Hwan Yang, Dong Kyu Kim

Abstract:

Recently, riding a bicycle is recommended as an eco-friendly means of transportation. In Seoul, the mayor has secured budget for extending bicycle infrastructure. As bicycle rental centers are adopted in places, more citizens are using bike rental service on bike-only roads for leisure. However, most of the citizens are not experienced in riding bicycles. They usually do not wear helmets, keep the balance of bicycle riding, and pay attention to nearby occasions. Therefore, in this study, bicycles on Han-river bike-only road were tracked, and their behaviors were analyzed in order to show how dangerously beginner riders are riding. The number of conflicts is calculated to evaluate riding safety on the most crowded bike-only road. As a result, conflicts between beginner riders and fast-driving skilled drivers are frequently observed especially at night, and on weekends. In conclusion, it is suggested that the government should acknowledge citizens the fact that bikes are vehicles and adopt a test for bike driving.

Keywords: bicycles, safety, bike-only road, policy proposal

Procedia PDF Downloads 358
1880 The End Is Just the Beginning: The Importance of Project Post-Implementation Reviews

Authors: Catalin-Teodor Dogaru, Ana-Maria Dogaru

Abstract:

Success means different things to different people. For us, project managers, it becomes even harder to find a definition. Many factors have to be included in the evaluation. Moreover, literature is not very helpful, lacking consensus and neutrality. Post-implementation reviews (PIR) can be an efficient tool in evaluating how things worked on a certain project. Despite the visible progress, PIR is not a very detailed subject yet and there is not a common understanding in this matter. This may be the reason that some organizations include it in the projects’ lifecycle and some do not. Through this paper, we point out the reasons why all project managers should pay proper attention to this important step and to the elements, which can be assessed, beside the already famous triple constraints: cost, budget, and time. It is essential to take notice that PIR is not a checklist. It brings the edge in eliminating subjectivity and judging projects based on actual proof. Based on our experience, our success indicator model, presented in this paper, contributes to the success of the project! In the same time, it increases trust among customers who will perceive success more objectively.

Keywords: project, post implementation, review, success, indicators

Procedia PDF Downloads 371
1879 Managing Projects in Practice. A Perspective of Stakeholder Management in Managing Stakeholders within the UK Construction Projects

Authors: Faraz Ali Memon

Abstract:

Stakeholders are a vital part of any organisation. It includes working on the demands of different stakeholders within the projects. However, the reality of construction projects is slightly different when it comes to practice. The UK construction projects have a history of failing to complete projects on time and within the budget. The purpose of this qualitative study is to enhance knowledge of stakeholder engagement. Semi-structured interviews will be carried out using a purposive sampling technique. It includes interviewing and getting knowledge from industry practitioners from top UK construction firms on how to manage stakeholders effectively. The findings from this study will help in understanding stakeholders' impact and how the engagement of stakeholders can affect construction projects. The conclusions of this study add value to the existing body of knowledge on stakeholder management, especially in the UK, where academic studies on construction projects are few. As a contribution, this study will provide a practical guide for the practitioners to engage stakeholders within the scope of the project. In addition, this study is limited to UK construction projects. Therefore, the outcome may not be generalised to other developing and underdeveloped countries.

Keywords: stakeholders, UK construction, project management, cost and time

Procedia PDF Downloads 106
1878 Media (Il) Literacy: An Evaluation of the Curriculum and Implementation of the Department of Education's Special Program in Journalism

Authors: Sarah Isabelle S. Torres

Abstract:

This study evaluated the curriculum and implementation of the Special Program in Journalism (SPJ). By conducting surveys, focus group discussions, and interviews and by analyzing the school publication of five national high schools, the researcher found out that SPJ is ineffective in instilling media literacy to the students. Media Literacy will help the students understand how media operates, thus, they will be able to produce outputs that are socially relevant, critical, and in-depth. For one, the curriculum includes lessons and activities that are mostly technical in nature. There are no theoretical topics such as ethics, history of the press, or media ownership. Second, most of the SPJ teachers have little background on Journalism and they are not trained enough to teach the program effectively. Third, most of the students are not really inclined in Journalism and do not see themselves as media practitioners in the future. Lastly, the Department of Education’s budget for the program is far from what the curriculum needs. All of these lead to the low Media Literacy levels of the students. SPJ, therefore, has to be reevaluated and amended. In conclusion, Media Literacy should be added in the curriculum so the students will not only be equipped with technical skills but with theoretical knowledge, as well.

Keywords: education, journalism, media, media literacy

Procedia PDF Downloads 407
1877 Analysis on the Need of Engineering Drawing and Feasibility Study on 3D Model Based Engineering Implementation

Authors: Parthasarathy J., Ramshankar C. S.

Abstract:

Engineering drawings these days play an important role in every part of an industry. By and large, Engineering drawings are influential over every phase of the product development process. Traditionally, drawings are used for communication in industry because they are the clearest way to represent the product manufacturing information. Until recently, manufacturing activities were driven by engineering data captured in 2D paper documents or digital representations of those documents. The need of engineering drawing is inevitable. Still Engineering drawings are disadvantageous in re-entry of data throughout manufacturing life cycle. This document based approach is prone to errors and requires costly re-entry of data at every stage in the manufacturing life cycle. So there is a requirement to eliminate Engineering drawings throughout product development process and to implement 3D Model Based Engineering (3D MBE or 3D MBD). Adopting MBD appears to be the next logical step to continue reducing time-to-market and improve product quality. Ideally, by fully applying the MBD concept, the product definition will no longer rely on engineering drawings throughout the product lifecycle. This project addresses the need of Engineering drawing and its influence in various parts of an industry and the need to implement the 3D Model Based Engineering with its advantages and the technical barriers that must be overcome in order to implement 3D Model Based Engineering. This project also addresses the requirements of neutral formats and its realisation in order to implement the digital product definition principles in a light format. In order to prove the concepts of 3D Model Based Engineering, the screw jack body part is also demonstrated. At ZF Windpower Coimbatore Limited, 3D Model Based Definition is implemented to Torque Arm (Machining and Casting), Steel tube, Pinion shaft, Cover, Energy tube.

Keywords: engineering drawing, model based engineering MBE, MBD, CAD

Procedia PDF Downloads 435
1876 Disaster Management Approach for Planning an Early Response to Earthquakes in Urban Areas

Authors: Luis Reynaldo Mota-Santiago, Angélica Lozano

Abstract:

Determining appropriate measures to face earthquakesarea challenge for practitioners. In the literature, some analyses consider disaster scenarios, disregarding some important field characteristics. Sometimes, software that allows estimating the number of victims and infrastructure damages is used. Other times historical information of previous events is used, or the scenarios’informationis assumed to be available even if it isnot usual in practice. Humanitarian operations start immediately after an earthquake strikes, and the first hours in relief efforts are important; local efforts are critical to assess the situation and deliver relief supplies to the victims. A preparation action is prepositioning stockpiles, most of them at central warehouses placed away from damage-prone areas, which requires large size facilities and budget. Usually, decisions in the first 12 hours (standard relief time (SRT)) after the disaster are the location of temporary depots and the design of distribution paths. The motivation for this research was the delay in the reaction time of the early relief efforts generating the late arrival of aid to some areas after the Mexico City 7.1 magnitude earthquake in 2017. Hence, a preparation approach for planning the immediate response to earthquake disasters is proposed, intended for local governments, considering their capabilities for planning and for responding during the SRT, in order to reduce the start-up time of immediate response operations in urban areas. The first steps are the generation and analysis of disaster scenarios, which allow estimatethe relief demand before and in the early hours after an earthquake. The scenarios can be based on historical data and/or the seismic hazard analysis of an Atlas of Natural Hazards and Risk as a way to address the limited or null available information.The following steps include the decision processes for: a) locating local depots (places to prepositioning stockpiles)and aid-giving facilities at closer places as possible to risk areas; and b) designing the vehicle paths for aid distribution (from local depots to the aid-giving facilities), which can be used at the beginning of the response actions. This approach allows speeding up the delivery of aid in the early moments of the emergency, which could reduce the suffering of the victims allowing additional time to integrate a broader and more streamlined response (according to new information)from national and international organizations into these efforts. The proposed approachis applied to two case studies in Mexico City. These areas were affectedby the 2017’s earthquake, having limited aid response. The approach generates disaster scenarios in an easy way and plans a faster early response with a short quantity of stockpiles which can be managed in the early hours of the emergency by local governments. Considering long-term storage, the estimated quantities of stockpiles require a limited budget to maintain and a small storage space. These stockpiles are useful also to address a different kind of emergencies in the area.

Keywords: disaster logistics, early response, generation of disaster scenarios, preparation phase

Procedia PDF Downloads 110
1875 Medicinal Plants: An Antiviral Depository with Complex Mode of Action

Authors: Daniel Todorov, Anton Hinkov, Petya Angelova, Kalina Shishkova, Venelin Tsvetkov, Stoyan Shishkov

Abstract:

Human herpes viruses (HHV) are ubiquitous pathogens with a pandemic spread across the globe. HHV type 1 is the main causative agent of cold sores and fever blisters around the mouth and on the face, whereas HHV type 2 is generally responsible for genital herpes outbreaks. The treatment of both viruses is more or less successful with antivirals from the nucleoside analogues group. Their wide application increasingly leads to the emergence of resistant mutants In the past, medicinal plants have been used to treat a number of infectious and non-infectious diseases. Their diversity and ability to produce the vast variety of secondary metabolites according to the characteristics of the environment give them the potential to help us in our warfare with viral infections. The variable chemical characteristics and complex composition is an advantage in the treatment of herpes since the emergence of resistant mutants is significantly complicated. The screening process is difficult due to the lack of standardization. That is why it is especially important to follow the mechanism of antiviral action of plants. On the one hand, it may be expected to interact with its compounds, resulting in enhanced antiviral effects, and the most appropriate environmental conditions can be chosen to maximize the amount of active secondary metabolites. During our study, we followed the activity of various plant extracts on the viral replication cycle as well as their effect on the extracellular virion. We obtained our results following the logical sequence of the experimental settings - determining the cytotoxicity of the extracts, evaluating the overall effect on viral replication and extracellular virion.During our research, we have screened a variety of plant extracts for their antiviral activity against both virus replication and the virion itself. We investigated the effect of the extracts on the individual stages of the viral replication cycle - viral adsorption, penetration and the effect on replication depending on the time of addition. If there are positive results in the later experiments, we had studied the activity over viral adsorption, penetration and the effect of replication according to the time of addition. Our results indicate that some of the extracts from the Lamium album have several targets. The first stages of the viral life cycle are most affected. Several of our active antiviral agents have shown an effect on extracellular virion and adsorption and penetration processes. Our research over the last decade has shown several curative antiviral plants - some of which are from the Lamiacea family. The rich set of active ingredients of the plants in this family makes them a good source of antiviral preparation.

Keywords: human herpes virus, antiviral activity, Lamium album, Nepeta nuda

Procedia PDF Downloads 154
1874 Bio-Hub Ecosystems: Expansion of Traditional Life Cycle Analysis Metrics to Include Zero-Waste Circularity Measures

Authors: Kimberly Samaha

Abstract:

In order to attract new types of investors into the emerging Bio-Economy, a new set of metrics and measurement system is needed to better quantify the environmental, social and economic impacts of circular zero-waste design. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. Lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. In particular, the forestry-based plants which have been an invaluable outlet for woody biomass surplus, forest health improvement, timber production enhancement, and especially reduction of wildfire risk. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. It proposes not only models for integration of forestry, aquaculture, and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. Typically, life cycle analyses measure environmental impacts of different industrial production stages and are not integrated with indicators of material use circularity. This concept paper proposes the further development of a new set of metrics that would illustrate not only the typical life-cycle analysis (LCA), which shows the reduction in greenhouse gas (GHG) emissions, but also the zero-waste circularity measures of mass balance of the full value chain of the raw material and energy content/caloric value. These new measures quantify key impacts in making hyper-efficient use of natural resources and eliminating waste to landfills. The project utilized traditional LCA using the GREET model where the standalone biomass energy plant case was contrasted with the integration of a jet-fuel biorefinery. The methodology was then expanded to include combinations of co-hosts that optimize the life cycle of woody biomass from tree to energy, CO₂, heat and wood ash both from an energy/caloric value and for mass balance to include reuse of waste streams which are typically landfilled. The major findings of both a formal LCA study resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. If proven as a model, the expedited roll-out of these innovative scenarios can set a new standard for circular zero-waste projects that advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable bio-economy paradigm where waste streams become valuable inputs, supporting local and rural communities in simple, sustainable ways.

Keywords: bio-economy, biomass energy, financing, metrics

Procedia PDF Downloads 157
1873 Material Use and Life Cycle GHG Emissions of Different Electrification Options for Long-Haul Trucks

Authors: Nafisa Mahbub, Hajo Ribberink

Abstract:

Electrification of long-haul trucks has been in discussion as a potential strategy to decarbonization. These trucks will require large batteries because of their weight and long daily driving distances. Around 245 million battery electric vehicles are predicted to be on the road by the year 2035. This huge increase in the number of electric vehicles (EVs) will require intensive mining operations for metals and other materials to manufacture millions of batteries for the EVs. These operations will add significant environmental burdens and there is a significant risk that the mining sector will not be able to meet the demand for battery materials, leading to higher prices. Since the battery is the most expensive component in the EVs, technologies that can enable electrification with smaller batteries sizes have substantial potential to reduce the material usage and associated environmental and cost burdens. One of these technologies is an ‘electrified road’ (eroad), where vehicles receive power while they are driving, for instance through an overhead catenary (OC) wire (like trolleybuses and electric trains), through wireless (inductive) chargers embedded in the road, or by connecting to an electrified rail in or on the road surface. This study assessed the total material use and associated life cycle GHG emissions of two types of eroads (overhead catenary and in-road wireless charging) for long-haul trucks in Canada and compared them to electrification using stationary plug-in fast charging. As different electrification technologies require different amounts of materials for charging infrastructure and for the truck batteries, the study included the contributions of both for the total material use. The study developed a bottom-up approach model comparing the three different charging scenarios – plug in fast chargers, overhead catenary and in-road wireless charging. The investigated materials for charging technology and batteries were copper (Cu), steel (Fe), aluminium (Al), and lithium (Li). For the plug-in fast charging technology, different charging scenarios ranging from overnight charging (350 kW) to megawatt (MW) charging (2 MW) were investigated. A 500 km of highway (1 lane of in-road charging per direction) was considered to estimate the material use for the overhead catenary and inductive charging technologies. The study considered trucks needing an 800 kWh battery under the plug-in charger scenario but only a 200 kWh battery for the OC and inductive charging scenarios. Results showed that overall the inductive charging scenario has the lowest material use followed by OC and plug-in charger scenarios respectively. The materials use for the OC and plug-in charger scenarios were 50-70% higher than for the inductive charging scenarios for the overall system including the charging infrastructure and battery. The life cycle GHG emissions from the construction and installation of the charging technology material were also investigated.

Keywords: charging technology, eroad, GHG emissions, material use, overhead catenary, plug in charger

Procedia PDF Downloads 51
1872 Exploring the Role of Building Information Modeling for Delivering Successful Construction Projects

Authors: Muhammad Abu Bakar Tariq

Abstract:

Construction industry plays a crucial role in the progress of societies and economies. Furthermore, construction projects have social as well as economic implications, thus, their success/failure have wider impacts. However, the industry is lagging behind in terms of efficiency and productivity. Building Information Modeling (BIM) is recognized as a revolutionary development in Architecture, Engineering and Construction (AEC) industry. There are numerous interest groups around the world providing definitions of BIM, proponents describing its advantages and opponents identifying challenges/barriers regarding adoption of BIM. This research is aimed at to determine what actually BIM is, along with its potential role in delivering successful construction projects. The methodology is critical analysis of secondary data sources i.e. information present in public domain, which include peer reviewed journal articles, industry and government reports, conference papers, books, case studies etc. It is discovered that clash detection and visualization are two major advantages of BIM. Clash detection option identifies clashes among structural, architectural and MEP designs before construction actually commences, which subsequently saves time as well as cost and ensures quality during execution phase of a project. Visualization is a powerful tool that facilitates in rapid decision-making in addition to communication and coordination among stakeholders throughout project’s life cycle. By eliminating inconsistencies that consume time besides cost during actual construction, improving collaboration among stakeholders throughout project’s life cycle, BIM can play a positive role to achieve efficiency and productivity that consequently deliver successful construction projects.

Keywords: building information modeling, clash detection, construction project success, visualization

Procedia PDF Downloads 260
1871 Efficacy of Preimplantation Genetic Screening in Women with a Spontaneous Abortion History with Eukaryotic or Aneuploidy Abortus

Authors: Jayeon Kim, Eunjung Yu, Taeki Yoon

Abstract:

Most spontaneous miscarriage is believed to be a consequence of embryo aneuploidies. Transferring eukaryotic embryos selected by PGS is expected to decrease the miscarriage rate. Current PGS indications include advanced maternal age, recurrent pregnancy loss, repeated implantation failure. Recently, use of PGS for healthy women without above indications for the purpose of improving in vitro fertilization (IVF) outcomes is on the rise. However, it is still controversy about the beneficial effect of PGS in this population, especially, in women with a history of no more than 2 miscarriages or miscarriage of eukaryotic abortus. This study aimed to investigate if karyotyping result of abortus is a good indicator of preimplantation genetic screening (PGS) in subsequent IVF cycle in women with a history of spontaneous abortion. A single-center retrospective cohort study was performed. Women who had spontaneous abortion(s) (less than 3) and dilatation and evacuation, and subsequent IVF from January 2016 to November 2016 were included. Their medical information was extracted from the charts. Clinical pregnancy was defined as presence of a gestational sac with fetal heart beat detected on ultrasound in week 7. Statistical analysis was performed using SPSS software. Total 234 women were included. 121 out of 234 (51.7%) underwent karyotyping of the abortus, and 113 did not have the abortus karyotyped. Embryo biopsy was performed on 3 or 5 days after oocyte retrieval, followed by embryo transfer (ET) on a fresh or frozen cycle. The biopsied materials were subjected to microarray comparative genomic hybridization. Clinical pregnancy rate per ET was compared between PGS and non-PGS group in each study group. Patients were grouped by two criteria: karyotype of the abortus from previous miscarriage (unknown fetal karyotype (n=89, Group 1), eukaryotic abortus (n=36, Group 2) or aneuploidy abortus (n=67, Group 3)), and pursuing PGS in subsequent IVF cycle (pursuing PGS (PGS group, n=105) or not pursuing PGS (non-PGS group, n=87)). The PGS group was significantly older and had higher number of retrieved oocytes and prior miscarriages compared to non-PGS group. There were no differences in BMI and AMH level between those two groups. In PGS group, the mean number of transferable embryos (eukaryotic embryo) was 1.3 ± 0.7, 1.5 ± 0.5 and 1.4 ± 0.5, respectively (p = 0.049). In 42 cases, ET was cancelled because all embryos biopsied turned out to be abnormal. In all three groups (group 1, 2, and 3), clinical pregnancy rates were not statistically different between PGS and non-PGS group (Group 1: 48.8% vs. 52.2% (p=0.858), Group 2: 70% vs. 73.1% (p=0.730), Group 3: 42.3% vs. 46.7% (p=0.640), in PGS and non-PGS group, respectively). In both groups who had miscarriage with eukaryotic and aneuploidy abortus, the clinical pregnancy rate between IVF cycles with and without PGS was not different. When we compare miscarriage and ongoing pregnancy rate, there were no significant differences between PGS and non-PGS group in all three groups. Our results show that the routine application of PGS in women who had less than 3 miscarriages would not be beneficial, even in cases that previous miscarriage had been caused by fetal aneuploidy.

Keywords: preimplantation genetic diagnosis, miscarriage, kpryotyping, in vitro fertilization

Procedia PDF Downloads 181
1870 A Next-Generation Pin-On-Plate Tribometer for Use in Arthroplasty Material Performance Research

Authors: Lewis J. Woollin, Robert I. Davidson, Paul Watson, Philip J. Hyde

Abstract:

Introduction: In-vitro testing of arthroplasty materials is of paramount importance when ensuring that they can withstand the performance requirements encountered in-vivo. One common machine used for in-vitro testing is a pin-on-plate tribometer, an early stage screening device that generates data on the wear characteristics of arthroplasty bearing materials. These devices test vertically loaded rotating cylindrical pins acting against reciprocating plates, representing the bearing surfaces. In this study, a pin-on-plate machine has been developed that provides several improvements over current technology, thereby progressing arthroplasty bearing research. Historically, pin-on-plate tribometers have been used to investigate the performance of arthroplasty bearing materials under conditions commonly encountered during a standard gait cycle; nominal operating pressures of 2-6 MPa and an operating frequency of 1 Hz are typical. There has been increased interest in using pin-on-plate machines to test more representative in-vivo conditions, due to the drive to test 'beyond compliance', as well as their testing speed and economic advantages over hip simulators. Current pin-on-plate machines do not accommodate the increased performance requirements associated with more extreme kinematic conditions, therefore a next-generation pin-on-plate tribometer has been developed to bridge the gap between current technology and future research requirements. Methodology: The design was driven by several physiologically relevant requirements. Firstly, an increased loading capacity was essential to replicate the peak pressures that occur in the natural hip joint during running and chair-rising, as well as increasing the understanding of wear rates in obese patients. Secondly, the introduction of mid-cycle load variation was of paramount importance, as this allows for an approximation of the loads present in a gait cycle to be applied and to test the fatigue properties of materials. Finally, the rig must be validated against previous-generation pin-on-plate and arthroplasty wear data. Results: The resulting machine is a twelve station device that is split into three sets of four stations, providing an increased testing capacity compared to most current pin-on-plate tribometers. The loading of the pins is generated using a pneumatic system, which can produce contact pressures of up to 201 MPa on a 3.2 mm² round pin face. This greatly exceeds currently achievable contact pressures in literature and opens new research avenues such as testing rim wear of mal-positioned hip implants. Additionally, the contact pressure of each set can be changed independently of the others, allowing multiple loading conditions to be tested simultaneously. Using pneumatics also allows the applied pressure to be switched ON/OFF mid-cycle, another feature not currently reported elsewhere, which allows for investigation into intermittent loading and material fatigue. The device is currently undergoing a series of validation tests using Ultra-High-Molecular-Weight-Polyethylene pins and 316L Stainless Steel Plates (polished to a Ra < 0.05 µm). The operating pressures will be between 2-6 MPa, operating at 1 Hz, allowing for validation of the machine against results reported previously in the literature. The successful production of this next-generation pin-on-plate tribometer will, following its validation, unlock multiple previously unavailable research avenues.

Keywords: arthroplasty, mechanical design, pin-on-plate, total joint replacement, wear testing

Procedia PDF Downloads 94
1869 Evaluation of Quick Covering Machine for Grain Drying Pavement

Authors: Fatima S. Rodriguez, Victorino T. Taylan, Manolito C. Bulaong, Helen F. Gavino, Vitaliana U. Malamug

Abstract:

In sundrying the quality of the grains are greatly reduced when paddy grains were caught by the rain unsacked and unstored resulting to reduced profit. The objectives of this study were to design and fabricate a quick covering machine for grain drying pavement; to test and evaluate the operating characteristics of the machine according to its deployment speed, recovery speed, deployment time, recovery time, power consumption, aesthetics of laminated sack; and to conduct partial budget and cost curve analysis. The machine was able to cover the grains in a 12.8 m x 22.5 m grain drying pavement at an average time of 17.13 s. It consumed 0.53 W-hr for the deployment and recovery of the cover. The machine entailed an investment cost of $1,344.40 and an annual cost charge of $647.32. Moreover, the savings per year using the quick covering machine was $101.83.

Keywords: quick covering machine, grain drying pavement, laminated polypropylene, recovery time

Procedia PDF Downloads 323
1868 Impact of Serum Estrogen and Progesterone Levels in the Outcome Pregnancy Rate in Frozen Embryo Transfer Cycles. A Prospective Cohort Study

Authors: Sayantika Biswas, Dipanshu Sur, Amitoj Athwal, Ratnabali Chakravorty

Abstract:

Title: Impact of serum estrogen and progesterone levels in the outcome pregnancy rate in frozen embryo transfer cycles. A prospective cohort study Objective: The aim of the current study was to evaluate the effect of serum estradiol (E2) and progesterone (P4) levels at different time points on pregnancy outcomes in frozen embryo transfer (FET) cycles. Materials & Method: A prospective cohort study was performed in patients undergoing frozen embryo transfer. Patients under age 37 years of age with at least one good blastocyst or three good day 3 embryos were included in the study. For endometrial preparation, 14 days of oral estradiol use (2X2 mg for 5 days. 3X2 mg for 4 days, and 4X2 mg for 5 days) was followed by vaginal progesterone twice a day and 50 mg intramuscular progesterone twice a day. Embryo transfer was scheduled 72-76 hrs or 116-120hrs after the initiation of progesterone. Serum E2 and P4 levels were examined at 4 times a) at the start of the menstrual cycle prior to the hormone supplementation. b) on the day of P4 start. c) on the day of ET. d) on the third day after ET. Result: A total 41 women were included in this study (mean age 31.8; SD 2.8). Clinical pregnancy rate was 65.55%. Serum E2 levels on at the start of the menstrual cycle prior to the hormone supplementation and on the day of P4 start were high in patients who achieved pregnancy compared to who did not (P=0.005 and P=0.019 respectively). P4 levels on on the day of ET were also high in patients with clinical pregnancy. On the day of P4 start, a serum E2 threshold of 186.4 pg/ml had a sensitivity of 82%, and P4 had a sensitivity of 71% for the prediction of clinical pregnancy at the threshold value 16.00 ng/ml. Conclusion: In women undergoing FET with hormone replacement, serum E2 level >186.4 pg/ml on the day of the start of progesterone and serum P4 levels >16.00 ng/ml on embryo transfer day are associated with clinical pregnancy.

Keywords: serum estradiol, serum progesterone, clinical pregnancy, frozen embryo transfer

Procedia PDF Downloads 80
1867 Induction of G1 Arrest and Apoptosis in Human Cancer Cells by Panaxydol

Authors: Dong-Gyu Leem, Ji-Sun Shin, Sang Yoon Choi, Kyung-Tae Lee

Abstract:

In this study, we focused on the anti-proliferative effects of panaxydol, a C17 polyacetylenic compound derived from Panax ginseng roots, against various human cancer cells. We treated with panaxydol to various cancer cells and panaxydol treatment was found to significantly inhibit the proliferation of human lung cancer cells (A549) and human pancreatic cancer cells (AsPC-1 and MIA PaCa-2), of which AsPC-1 cells were most sensitive to its treatment. DNA flow cytometric analysis indicated that panaxydol blocked cell cycle progression at the G1 phase in A549 cells, which accompanied by a parallel reduction of protein expression of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D1 and cyclin E. CDK inhibitors (CDKIs), such as p21CIP1/WAF1 and p27KIP1, were gradually upregulated after panaxydol treatment at the protein levels. Furthermore, panaxydol induced the activation of p53 in A549 cells. In addition, panaxydol also induced apoptosis of AsPC-1 and MIA PaCa-2 cells, as shown by accumulation of subG1 and apoptotic cell populations. Panaxydol triggered the activation of caspase-3, -8, -9 and the cleavage of poly (ADP-ribose) polymerase (PARP). Reduction of mitochondrial transmembrane potential by panaxydol was determined by staining with dihexyloxacarbocyanine iodide. Furthermore, panaxydol suppressed the levels of anti-apoptotic proteins, XIAP and Bcl-2, and increased the levels of proapoptotic proteins, Bax and Bad. In addition, panaxydol inhibited the activation of Akt and extracellular signal-regulated kinase (ERK) and activated the p38 mitogen-activated protein kinase kinase (MAPK). Our results suggest that panaxydol is an anti-tumor compound that causes p53-mediated cell cycle arrest and apoptosis via mitochondrial apoptotic pathway in various cancer cells.

Keywords: apoptosis, cancer, G1 arrest, panaxydol

Procedia PDF Downloads 322
1866 Typology of Gaming Tourists Based on the Perception of Destination Image

Authors: Mi Ju Choi

Abstract:

This study investigated the perception of gaming tourists toward Macau and developed a typology of gaming tourists. The 1,497 responses from tourists in Macau were collected through convenience sampling method. The dimensions of multi-culture, convenience, economy, gaming, and unsafety, were subsequently extracted as the factors of perception of gaming tourists in Macau. Cluster analysis was performed using the delineated factors (perception of tourists on Macau). Four heterogonous groups were generated, namely, gaming lovers (n = 467, 31.2%), exotic lovers (n = 509, 34.0%), reasonable budget seekers (n = 269, 18.0%), and convenience seekers (n = 252, 16.8%). Further analysis was performed to investigate any difference in gaming behavior and tourist activities. The findings are expected to contribute to the efforts of destination marketing organizations (DMOs) in establishing effective business strategies, provide a profile of gaming tourists in certain market segments, and assist DMOs and casino managers in establishing more effective marketing strategies for target markets.

Keywords: destination image, gaming tourists, Macau, segmentation

Procedia PDF Downloads 301
1865 Assessment of a Coupled Geothermal-Solar Thermal Based Hydrogen Production System

Authors: Maryam Hamlehdar, Guillermo A. Narsilio

Abstract:

To enhance the feasibility of utilising geothermal hot sedimentary aquifers (HSAs) for clean hydrogen production, one approach is the implementation of solar-integrated geothermal energy systems. This detailed modelling study conducts a thermo-economic assessment of an advanced Organic Rankine Cycle (ORC)-based hydrogen production system that uses low-temperature geothermal reservoirs, with a specific focus on hot sedimentary aquifers (HSAs) over a 30-year period. In the proposed hybrid system, solar-thermal energy is used to raise the water temperature extracted from the geothermal production well. This temperature increase leads to a higher steam output, powering the turbine and subsequently enhancing the electricity output for running the electrolyser. Thermodynamic modeling of a parabolic trough solar (PTS) collector is developed and integrated with modeling for a geothermal-based configuration. This configuration includes a closed regenerator cycle (CRC), proton exchange membrane (PEM) electrolyser, and thermoelectric generator (TEG). Following this, the study investigates the impact of solar energy use on the temperature enhancement of the geothermal reservoir. It assesses the resulting consequences on the lifecycle performance of the hydrogen production system in comparison with a standalone geothermal system. The results indicate that, with the appropriate solar collector area, a combined solar-geothermal hydrogen production system outperforms a standalone geothermal system in both cost and rate of production. These findings underscore a solar-assisted geothermal hybrid system holds the potential to generate lower-cost hydrogen with enhanced efficiency, thereby boosting the appeal of numerous low to medium-temperature geothermal sources for hydrogen production.

Keywords: clean hydrogen production, integrated solar-geothermal, low-temperature geothermal energy, numerical modelling

Procedia PDF Downloads 69
1864 An Exploratory Study of Potential Cruisers Preferences Using Choice Experiment and Latent Class Modelling

Authors: Renuka Mahadevan, Sharon Chang

Abstract:

This exploratory study is based on potential cruisers’ monetary valuation of cruise attributes. Using choice experiment, monetary trade-offs between four different cruise attributes are examined with Australians as a case study. We found 50% of the sample valued variety of onboard cruise activities the least while 30% were willing to pay A$87 for cruise-organised activities per day, and the remaining 20% regarded an ocean view to be most valuable at A$125. Latent class modelling was then applied and results revealed that potential cruisers’ valuation of the attributes can be used to segment the market into adventurers, budget conscious and comfort lovers. Evidence showed that socio demographics are not as insightful as lifestyle preferences in developing cruise packages and pricing that would appeal to potential cruisers. Marketing also needs to counter the mindset of potential cruisers’ belief that cruises are often costly and that cruising can be done later in life.

Keywords: latent class modelling, choice experiment, potential cruisers, market segmentation, willingness to pay

Procedia PDF Downloads 81
1863 Computational Methods in Official Statistics with an Example on Calculating and Predicting Diabetes Mellitus [DM] Prevalence in Different Age Groups within Australia in Future Years, in Light of the Aging Population

Authors: D. Hilton

Abstract:

An analysis of the Australian Diabetes Screening Study estimated undiagnosed diabetes mellitus [DM] prevalence in a high risk general practice based cohort. DM prevalence varied from 9.4% to 18.1% depending upon the diagnostic criteria utilised with age being a highly significant risk factor. Utilising the gold standard oral glucose tolerance test, the prevalence of DM was 22-23% in those aged >= 70 years and <15% in those aged 40-59 years. Opportunistic screening in Australian general practice potentially can identify many persons with undiagnosed type 2 DM. An Australian Bureau of Statistics document published three years ago, reported the highest rate of DM in men aged 65-74 years [19%] whereas the rate for women was highest in those over 75 years [13%]. If you consider that the Australian Bureau of Statistics report in 2007 found that 13% of the population was over 65 years of age and that this will increase to 23-25% by 2056 with a further projected increase to 25-28% by 2101, obviously this information has to be factored into the equation when age related diabetes prevalence predictions are calculated. This 10-15% proportional increase of elderly persons within the population demographics has dramatic implications for the estimated number of elderly persons with DM in these age groupings. Computational methodology showing the age related demographic changes reported in these official statistical documents will be done showing estimates for 2056 and 2101 for different age groups. This has relevance for future diabetes prevalence rates and shows that along with many countries worldwide Australia is facing an increasing pandemic. In contrast Japan is expected to have a decrease in the next twenty years in the number of persons with diabetes.

Keywords: epidemiological methods, aging, prevalence, diabetes mellitus

Procedia PDF Downloads 374
1862 Sustainability in Retaining Wall Construction with Geosynthetics

Authors: Sateesh Kumar Pisini, Swetha Priya Darshini, Sanjay Kumar Shukla

Abstract:

This paper seeks to present a research study on sustainability in construction of retaining wall using geosynthetics. Sustainable construction is a way for the building and infrastructure industry to move towards achieving sustainable development, taking into account environmental, socioeconomic and cultural issues. Geotechnical engineering, being very resource intensive, warrants an environmental sustainability study, but a quantitative framework for assessing the sustainability of geotechnical practices, particularly at the planning and design stages, does not exist. In geotechnical projects, major economic issues to be addressed are in the design and construction of stable slopes and retaining structures within space constraints. In this paper, quantitative indicators for assessing the environmental sustainability of retaining wall with geosynthetics are compared with conventional concrete retaining wall through life cycle assessment (LCA). Geosynthetics can make a real difference in sustainable construction techniques and contribute to development in developing countries in particular. Their imaginative application can result in considerable cost savings over the use of conventional designs and materials. The acceptance of geosynthetics in reinforced retaining wall construction has been triggered by a number of factors, including aesthetics, reliability, simple construction techniques, good seismic performance, and the ability to tolerate large deformations without structural distress. Reinforced retaining wall with geosynthetics is the best cost-effective and eco-friendly solution as compared with traditional concrete retaining wall construction. This paper presents an analysis of the theme of sustainability applied to the design and construction of traditional concrete retaining wall and presenting a cost-effective and environmental solution using geosynthetics.

Keywords: sustainability, retaining wall, geosynthetics, life cycle assessment

Procedia PDF Downloads 2060
1861 Effect of Rhythmic Auditory Stimulation on Gait in Patients with Stroke

Authors: Mohamed Ahmed Fouad

Abstract:

Background: Stroke is the most leading cause to functional disability and gait problems. Objectives: The purpose of this study was to determine the effect of rhythmic auditory stimulation combined with treadmill training on selected gait kinematics in stroke patients. Methods: Thirty male stroke patients participated in this study. The patients were assigned randomly into two equal groups, (study and control). Patients in the study group received treadmill training combined with rhythmic auditory stimulation in addition to selected physical therapy program for hemiparetic patients. Patients in the control group received treadmill training in addition to the same selected physical therapy program including strengthening, stretching, weight bearing, balance exercises and gait training. Biodex gait trainer 2 TM was used to assess selected gait kinematics (step length, step cycle, walking speed, time on each foot and ambulation index) before and after six weeks training period (end of treatment) for both groups. Results: There was a statistically significant increase in walking speed, step cycle, step length, percent of the time on each foot and ambulation index in both groups post-treatment. The improvement in gait parameters post-treatment was significantly higher in the study group compared to the control. Conclusion: Rhythmic auditory stimulation combined with treadmill training is effective in improving selected gait kinematics in stroke patients when added to the selected physical therapy program.

Keywords: stroke, rhythmic auditory stimulation, treadmill training, gait kinematics

Procedia PDF Downloads 245
1860 Cost-Effective Hybrid Cloud Framework for Higher Educational Institutes

Authors: Shah Muhammad Butt, Ahmed Masaud Ansair

Abstract:

Present financial crisis in Higher Educational Institutes (HEIs) is causing lots of problems such as considerable budget cuts, which makes it difficult to meet the ever growing IT based research and learning needs. Institutions are rapidly planning and promoting cloud based approaches for their academic and research needs. A cost-effective hybrid cloud framework for HEIs will provide educational services for campus or intercampus communication. Hybrid cloud framework comprises private and public cloud approaches. This paper will propose the framework based on the Open Source Cloud (OpenNebula for Virtualization, Eucalyptus for Infrastructure and Aneka for programming development environment) combined with CSPs services which are delivered to the end-user via the internet from public clouds such as Google, Microsoft, Zoho, and Salesforce.

Keywords: educational services, hybrid campus cloud, open source, higher educational institutes

Procedia PDF Downloads 482
1859 Modeling of Thermally Induced Acoustic Emission Memory Effects in Heterogeneous Rocks with Consideration for Fracture Develo

Authors: Vladimir A. Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied by a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: degree of rock disturbance, non-destructive testing, thermally induced acoustic emission memory effects, structure and texture of rocks

Procedia PDF Downloads 263