Search results for: multiple instance learning
11115 Interpretable Deep Learning Models for Medical Condition Identification
Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji
Abstract:
Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.Keywords: deep learning, interpretability, attention, big data, medical conditions
Procedia PDF Downloads 9111114 Social Processes and Organizational Structures for the Management of Exploration and Exploration within and across Organization Boundaries
Authors: Linda O. N. Nwabunike
Abstract:
The role of internal and external efforts in the management of exploration and exploitation has been highlighted in literature. External ties support ambidexterity at different levels with, for instance: business unit ambidexterity, individual ambidexterity, organizational ambidexterity, and alliance ambidexterity. Recently studies have highlighted the combination of organization, alliance, and acquisition strategies for ambidexterity by conceptualizing ambidexterity across modes of operation. Literature still lacks detailed understanding of how these different processes are combined in the management of ambidexterity across modes of operation. This study plans to propose a conceptual model that illustrates the social processes involved in the management of ambidexterity across modes of operation. Main arguments are integrated from social structures, organizational design, and ambidexterity literature. The framework illustrates that how social capital is promoted by hierarchical relations within the organization and business relations across the boundaries of the organization. Whereby such social relations within and outside the organization are supported by the dual structures of the organization in the coordination of multiple efforts. This paper has potential to contribute to the understanding about how ambidexterity is attained.Keywords: ambidexterity, coordination, external-ties, social-capital
Procedia PDF Downloads 16711113 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning
Procedia PDF Downloads 24311112 Application and Verification of Regression Model to Landslide Susceptibility Mapping
Authors: Masood Beheshtirad
Abstract:
Identification of regions having potential for landslide occurrence is one of the basic measures in natural resources management. Different landslide hazard mapping models are proposed based on the environmental condition and goals. In this research landslide hazard map using multiple regression model were provided and applicability of this model is investigated in Baghdasht watershed. Dependent variable is landslide inventory map and independent variables consist of information layers as Geology, slope, aspect, distance from river, distance from road, fault and land use. For doing this, existing landslides have been identified and an inventory map made. The landslide hazard map is based on the multiple regression provided. The level of similarity potential hazard classes and figures of this model were compared with the landslide inventory map in the SPSS environments. Results of research showed that there is a significant correlation between the potential hazard classes and figures with area of the landslides. The multiple regression model is suitable for application in the Baghdasht Watershed.Keywords: landslide, mapping, multiple model, regression
Procedia PDF Downloads 32411111 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis
Authors: Toktam Khatibi
Abstract:
Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers
Procedia PDF Downloads 8011110 Teacher Professional Development in Saudi Arabia through the Implementation of Universal Design for Learning
Authors: Majed A. Alsalem
Abstract:
Universal Design for Learning (UDL) is common theme in education across the US and an influential model and framework that enables students in general and particularly students who are deaf and hard of hearing (DHH) to access the general education curriculum. UDL helps teachers determine how information will be presented to students and how to keep students engaged. Moreover, UDL helps students to express their understanding and knowledge to others. UDL relies on technology to promote students' interaction with content and their communication of knowledge. This study included 120 DHH students who received daily instruction based on UDL principles. This study presents the results of the study and discusses its implications for the integration of UDL in day-to-day practice as well as in the country's education policy. UDL is a Western concept that began and grew in the US, and it has just begun to transfer to other countries such as Saudi Arabia. It will be very important to researchers, practitioners, and educators to see how UDL is being implemented in a new place with a different culture. UDL is a framework that is built to provide multiple means of engagement, representation, and action and expression that should be part of curricula and lessons for all students. The purpose of this study is to investigate the variables associated with the implementation of UDL in Saudi Arabian schools and identify the barriers that could prevent the implementation of UDL. Therefore, this study used a mixed methods design that use both quantitative and qualitative methods. More insights will be gained by including both quantitative and qualitative rather than using a single method. By having methods that different concepts and approaches, the databases will be enriched. This study uses levels of collecting date through two stages in order to insure that the data comes from multiple ways to mitigate validity threats and establishing trustworthiness in the findings. The rationale and significance of this study is that it will be the first known research that targets UDL in Saudi Arabia. Furthermore, it will deal with UDL in depth to set the path for further studies in the Middle East. From a perspective of content, this study considers teachers’ implementation knowledge, skills, and concerns of implementation. This study deals with effective instructional designs that have not been presented in any conferences, workshops, teacher preparation and professional development programs in Saudi Arabia. Specifically, Saudi Arabian schools are challenged to design inclusive schools and practices as well as to support all students’ academic skills development. The total participants in stage one were 336 teachers of DHH students. The results of the intervention indicated significant differences among teachers before and after taking the training sessions associated with their understanding and level of concern. Teachers have indicated interest in knowing more about UDL and adopting it into their practices; they reported that UDL has benefits that will enhance their performance for supporting student learning.Keywords: deaf and hard of hearing, professional development, Saudi Arabia, universal design for learning
Procedia PDF Downloads 43211109 Pros and Cons of Teaching/Learning Online during COVID-19: English Department at Tahri Muhammed University of Bechar as a Case Study
Authors: Fatiha Guessabi
Abstract:
Students of the Tahri Muhammed University of Bechar shifted to the virtual platform using E-learning platforms when the lockdown started due to the Coronavirus. This paper aims to explore the advantages and inconveniences of online learning and teaching in EFL classes at Tahri Mohammed University. For this investigation, a questionnaire was addressed to EFL students and an interview was arranged with EFL teachers. Data analysis was obtained from 09 teachers and 70 students. After the investigation, the results show that some of the most applied educational technologies and applications are used to turn online EFL classes effectively exciting. Thus, EFL classes became more interactive. Although learners give positive viewpoints about online learning/teaching, they prefer to learn in the classroom.Keywords: advantages, disadvantages, COVID19, EFL, online learning/teaching, university of Bechar
Procedia PDF Downloads 16411108 Self-Reliant and Auto-Directed Learning: Modes, Elements, Fields and Scopes
Authors: Habibollah Mashhady, Behruz Lotfi, Mohammad Doosti, Moslem Fatollahi
Abstract:
An exploration of the related literature reveals that all instruction methods aim at training autonomous learners. After the turn of second language pedagogy toward learner-oriented strategies, learners’ needs were more focused. Yet; the historical, social and political aspects of learning were still neglected. The present study investigates the notion of autonomous learning and explains its various facets from a pedagogical point of view. Furthermore; different elements, fields and scopes of autonomous learning will be explored. After exploring different aspects of autonomy, it is postulated that liberatory autonomy is highlighted since it not only covers social autonomy but also reveals learners’ capabilities and human potentials. It is also recommended that learners consider different elements of autonomy such as motivation, knowledge, confidence, and skills.Keywords: critical pedagogy, social autonomy, academic learning, cultural notions
Procedia PDF Downloads 46111107 Ta(l)king Pictures: Development of an Educational Program (SELVEs) for Adolescents Combining Social-Emotional Learning and Photography Taking
Authors: Adi Gielgun-Katz, Alina S. Rusu
Abstract:
In the last two decades, education systems worldwide have integrated new pedagogical methods and strategies in lesson plans, such as innovative technologies, social-emotional learning (SEL), gamification, mixed learning, multiple literacies, and many others. Visual language, such as photographs, is known to transcend cultures and languages, and it is commonly used by youth to express positions and affective states in social networks. Therefore, visual language needs more educational attention as a linguistic and communicative component that can create connectedness among the students and their teachers. Nowadays, when SEL is gaining more and more space and meaning in the area of academic improvement in relation to social well-being, and taking and sharing pictures is part of the everyday life of the majority of people, it becomes natural to add the visual language to SEL approach as a reinforcement strategy for connecting education to the contemporary culture and language of the youth. This article presents a program conducted in a high school class in Israel, which combines the five SEL with photography techniques, i.e., Social-Emotional Learning Visual Empowerments (SELVEs) program (experimental group). Another class of students from the same institution represents the control group, which is participating in the SEL program without the photography component. The SEL component of the programs addresses skills such as: troubleshooting, uncertainty, personal strengths and collaboration, accepting others, control of impulses, communication, self-perception, and conflict resolution. The aim of the study is to examine the effects of programs on the level of the five SEL aspects in the two groups of high school students: Self-Awareness, Social Awareness, Self-Management, Responsible Decision Making, and Relationship Skills. The study presents a quantitative assessment of the SEL programs’ impact on the students. The main hypothesis is that the students’ questionnaires' analysis will reveal a better understanding and improvement of the five aspects of the SEL in the group of students involved in the photography-enhanced SEL program.Keywords: social-emotional learning, photography, education program, adolescents
Procedia PDF Downloads 8411106 Innovative Teaching Learning Techniques and Learning Difficulties of Adult Learners in Literacy Education Programmes in Calabar Metropolis, Cross River State, Nigeria
Authors: Simon Ibor Akpama
Abstract:
The study investigated the extent to which innovative teaching-learning techniques can influence and attenuate learning difficulties among adult learners participating in different literacy education programmes in Calabar Metropolis, Cross River State, Nigeria. A quasi-experimental design was adopted to collect data from a sample size of 150 participants of the programme. The sample was drawn using the simple random sampling method. As an experimental study, the 150 participants were divided into two equal groups –the first was the experimental group while the second was the control. A pre-test was administered to the two groups which were later exposed to a post-test after treatment. Two instruments were used for data collection. The first was the guide for the Literacy Learning Difficulties Inventory (LLDI). Three hypotheses were postulated and tested as .05 level of significance using Analysis of Covariance (ANOVA) test statistics. Results of the analysis firstly showed that the two groups (treatment and control) did not differ in the pre-test regarding their literacy learning difficulties. Secondly, the result showed that for each hypothesis, innovative teaching-learning techniques significantly influenced adult learners’ (participants) literacy learning difficulties. Based on these findings, the study recommends the use of innovative teaching-learning techniques in adult literacy education centres to mitigate the learning difficulties of adult learners in literacy education programmes in Calabar Metropolis.Keywords: teaching, learning, techniques, innovative, difficulties, programme
Procedia PDF Downloads 12111105 Enhancing Nursing Teams' Learning: The Role of Team Accountability and Team Resources
Authors: Sarit Rashkovits, Anat Drach- Zahavy
Abstract:
The research considers the unresolved question regarding the link between nursing team accountability and team learning and the resulted team performance in nursing teams. Empirical findings reveal disappointing evidence regarding improvement in healthcare safety and quality. Therefore, there is a need in advancing managerial knowledge regarding the factors that enhance constant healthcare teams' proactive improvement efforts, meaning team learning. We first aim to identify the organizational resources that are needed for team learning in nursing teams; second, to test the moderating role of nursing teams' learning resources in the team accountability-team learning link; and third, to test the moderated mediation model suggesting that nursing teams' accountability affects team performance by enhancing team learning when relevant resources are available to the team. We point on the intervening role of three team learning resources, namely time availability, team autonomy and performance data on the relation between team accountability and team learning and test the proposed moderated mediation model on 44 nursing teams (462 nurses and 44 nursing managers). The results showed that, as was expected, there was a positive significant link between team accountability and team learning and the subsequent team performance when time availability and team autonomy were high rather than low. Nevertheless, the positive team accountability- team learning link was significant when team performance feedback was low rather than high. Accordingly, there was a positive mediated effect of team accountability on team performance via team learning when either time availability or team autonomy were high and the availability of team performance data was low. Nevertheless, this mediated effect was negative when time availability and team autonomy were low and the availability of team performance data was high. We conclude that nurturing team accountability is not enough for achieving nursing teams' learning and the subsequent improved team performance. Rather there is need to provide nursing teams with adequate time, autonomy, and be cautious with performance feedback, as the latter may motivate nursing teams to repeat routine work strategies rather than explore improved ones.Keywords: nursing teams' accountability, nursing teams' learning, performance feedback, teams' autonomy
Procedia PDF Downloads 26411104 English Learning Strategy and Proficiency Level of the First Year Students, International College, Suan Sunandha Rajabhat University
Authors: Kanokrat Kunasaraphan
Abstract:
The purpose of the study was to identify whether English language learning strategies commonly used by the first year students at International College, Suan Sunandha Rajabhat University include six direct and indirect strategies. The study served to explore whether there was a difference in these students’ use of six direct and indirect English learning strategies between the different levels of their English proficiency. The questionnaire used as a research instrument was comprised of two parts: General information of participants and the Strategy Inventory for Language Learning (SILL). The researcher employed descriptive statistics and one-way ANOVA (F-test) to analyze the data. The results of the analysis revealed that English learning strategies commonly used by the first year students include six direct and indirect strategies, including differences in strategy use of the students with different levels of English proficiency. Recommendations for future research include the study of language learning strategy use with other research methods focusing on other languages, specific language skills, and/or the relationship of language learning strategy use and other factors in other programs and/or institutions.Keywords: English learning strategies, direct strategies, indirect strategies, proficiency level
Procedia PDF Downloads 30311103 Review on Rainfall Prediction Using Machine Learning Technique
Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya
Abstract:
Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.Keywords: ANN, CNN, supervised learning, machine learning, deep learning
Procedia PDF Downloads 20111102 Bi-Objective Optimization for Sustainable Supply Chain Network Design in Omnichannel
Authors: Veerpaul Maan, Gaurav Mishra
Abstract:
The evolution of omnichannel has revolutionized the supply chain of the organizations by enhancing customer shopping experience. For these organizations need to develop well-integrated multiple distribution channels to leverage the benefits of omnichannel. To adopt an omnichannel system in the supply chain has resulted in structuring and reconfiguring the practices of the traditional supply chain distribution network. In this paper a multiple distribution supply chain network (MDSCN) have been proposed which integrates online giants with a local retailers distribution network in uncertain environment followed by sustainability. To incorporate sustainability, an additional objective function is added to reduce the carbon content through minimizing the travel distance of the product. Through this proposed model, customers are free to access product and services as per their choice of channels which increases their convenience, reach and satisfaction. Further, a numerical illustration is being shown along with interpretation of results to validate the proposed model.Keywords: sustainable supply chain network, omnichannel, multiple distribution supply chain network, integrate multiple distribution channels
Procedia PDF Downloads 22311101 Challenges of Online Education and Emerging E-Learning Technologies in Nigerian Tertiary Institutions Using Adeyemi College of Education as a Case Study
Authors: Oluwatofunmi Otobo
Abstract:
This paper presents a review of the challenges of e-learning and e-learning technologies in tertiary institutions. This review is based on the researchers observations of the challenges of making use of ICT for learning in Nigeria using Adeyemi College of Education as a case study; this is in comparison to tertiary institutions in the UK, US and other more developed countries. In Nigeria and probably Africa as a whole, power is the major challenge. Its inconsistency and fluctuations pose the greatest challenge to making use of online education inside and outside the classroom. Internet and its supporting infrastructures in many places in Nigeria are slow and unreliable. This, in turn, could frustrate any attempt at making use of online education and e-learning technologies. Lack of basic knowledge of computer, its technologies and facilities could also prove to be a challenge as many young people up until now are yet to be computer literate. Personal interest on both the parts of lecturers and students is also a challenge. Many people are not interested in learning how to make use of technologies. This makes them resistant to changing from the ancient methods of doing things. These and others were reviewed by this paper, suggestions, and recommendations were proffered.Keywords: education, e-learning, Nigeria, tertiary institutions
Procedia PDF Downloads 19811100 Influence of the Coarse-Graining Method on a DEM-CFD Simulation of a Pilot-Scale Gas Fluidized Bed
Authors: Theo Ndereyimana, Yann Dufresne, Micael Boulet, Stephane Moreau
Abstract:
The DEM (Discrete Element Method) is used a lot in the industry to simulate large-scale flows of particles; for instance, in a fluidized bed, it allows to predict of the trajectory of every particle. One of the main limits of the DEM is the computational time. The CGM (Coarse-Graining Method) has been developed to tackle this issue. The goal is to increase the size of the particle and, by this means, decrease the number of particles. The method leads to a reduction of the collision frequency due to the reduction of the number of particles. Multiple characteristics of the particle movement and the fluid flow - when there is a coupling between DEM and CFD (Computational Fluid Dynamics). The main characteristic that is impacted is the energy dissipation of the system, to regain the dissipation, an ADM (Additional Dissipative Mechanism) can be added to the model. The objective of this current work is to observe the influence of the choice of the ADM and the factor of coarse-graining on the numerical results. These results will be compared with experimental results of a fluidized bed and with a numerical model of the same fluidized bed without using the CGM. The numerical model is one of a 3D cylindrical fluidized bed with 9.6M Geldart B-type particles in a bubbling regime.Keywords: additive dissipative mechanism, coarse-graining, discrete element method, fluidized bed
Procedia PDF Downloads 7011099 Literature Review of Instructor Perceptions of the Blended Learning Approach
Authors: Syed Ahmed Hasnain
Abstract:
Instructors’ perception of blended learning plays an important role in the field of education. The literature review shows that there is a gap in research. Instructor perception of the blended learning approach has an impact on the motivation of the instructor to use technology in the classroom. The role of the student's perspective on the instructor’s perception is also important. Research also shows that instructor perceptions can be changed based on their past and present experiences with technology and blended learning. This paper draws the attention of the readers to the need for further research and contributions to studying instructor perceptions globally. Instructor perception affects the implementation of technology in the classroom, instructor-student relationship, and the class environment. Various publications, literature reviews, and articles are studied to show the importance of instructor perceptions. A lot of work has been published on student perceptions of the blended learning approach but there is a gap in research on instructor perceptions. The paper also makes recommendations for further research in the area of instructor perceptions of the blended learning approach. Institutions, administrators, senior management, and instructors can benefit from this paper.Keywords: blended learning, education, literature review, instructor perceptions
Procedia PDF Downloads 10411098 Epileptic Seizures in Patients with Multiple Sclerosis
Authors: Anat Achiron
Abstract:
Background: Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system in young adults. It involves the immune system attacking the protective covering of nerve fibers (myelin), leading to inflammation and damage. MS can result in various neurological symptoms, such as muscle weakness, coordination problems, and sensory disturbances. Seizures are not common in MS, and the frequency is estimated between 0.4 to 6.4% over the disease course. Objective: Investigate the frequency of seizures in individuals with multiple sclerosis and to identify associated risk factors. Methods: We evaluated the frequency of seizures in a large cohort of 5686 MS patients followed at the Sheba Multiple Sclerosis Center and studied associated risk factors and comorbidities. Our research was based on data collection using a cohort study design. We applied logistic regression analysis to assess the strength of associations. Results: We found that younger age at onset, longer disease duration, and prolonged time to immunomodulatory treatment initiation were associated with increased risk for seizures. Conclusions: Our findings suggest that seizures in people with MS are directly related to the demyelination process and not associated with other factors like medication side effects or comorbid conditions. Therefore, initiating immunomodulatory treatment early in the disease course could reduce not only disease activity but also decrease seizure risk.Keywords: epilepsy, seizures, multiple sclerosis, white matter, age
Procedia PDF Downloads 7111097 Predicting Customer Purchasing Behaviour in Retail Marketing: A Research for a Supermarket Chain
Authors: Sabri Serkan Güllüoğlu
Abstract:
Analysis can be defined as the process of gathering, recording and researching data related to products and services, in order to learn something. But for marketers, analyses are not only used for learning but also an essential and critical part of the business, because this allows companies to offer products or services which are focused and well targeted. Market analysis also identify market trends, demographics, customer’s buying habits and important information on the competition. Data mining is used instead of traditional research, because it extracts predictive information about customer and sales from large databases. In contrast to traditional research, data mining relies on information that is already available. Simply the goal is to improve the efficiency of supermarkets. In this study, the purpose is to find dependency on products. For instance, which items are bought together, using association rules in data mining. Moreover, this information will be used for improving the profitability of customers such as increasing shopping time and sales of fewer sold items.Keywords: data mining, association rule mining, market basket analysis, purchasing
Procedia PDF Downloads 48311096 The Potential of Cloud Computing in Overcoming the Problems of Collective Learning
Authors: Hussah M. AlShayea
Abstract:
This study aimed to identify the potential of cloud computing, "Google Drive" in overcoming the problems of collective learning from the viewpoint of Princess Noura University students. The study included (92) students from the College of Education. To achieve the goal of the study, several steps have been taken. First, the most important problems of collective learning were identified from the viewpoint of the students. After that, a survey identifying the potential of cloud computing "Google Drive" in overcoming the problems of collective learning was distributed among the students. The study results showed that the students believe that the use of Google Drive contributed to overcoming these problems. In the light of those results, the researcher presented a set of recommendations and proposals, including: encouraging teachers and learners to employ cloud computing to overcome the problems and constraints of collective learning.Keywords: cloud computing, collective learning, Google drive, Princess Noura University
Procedia PDF Downloads 49211095 Applied Complement of Probability and Information Entropy for Prediction in Student Learning
Authors: Kennedy Efosa Ehimwenma, Sujatha Krishnamoorthy, Safiya Al‑Sharji
Abstract:
The probability computation of events is in the interval of [0, 1], which are values that are determined by the number of outcomes of events in a sample space S. The probability Pr(A) that an event A will never occur is 0. The probability Pr(B) that event B will certainly occur is 1. This makes both events A and B a certainty. Furthermore, the sum of probabilities Pr(E₁) + Pr(E₂) + … + Pr(Eₙ) of a finite set of events in a given sample space S equals 1. Conversely, the difference of the sum of two probabilities that will certainly occur is 0. This paper first discusses Bayes, the complement of probability, and the difference of probability for occurrences of learning-events before applying them in the prediction of learning objects in student learning. Given the sum of 1; to make a recommendation for student learning, this paper proposes that the difference of argMaxPr(S) and the probability of student-performance quantifies the weight of learning objects for students. Using a dataset of skill-set, the computational procedure demonstrates i) the probability of skill-set events that have occurred that would lead to higher-level learning; ii) the probability of the events that have not occurred that requires subject-matter relearning; iii) accuracy of the decision tree in the prediction of student performance into class labels and iv) information entropy about skill-set data and its implication on student cognitive performance and recommendation of learning.Keywords: complement of probability, Bayes’ rule, prediction, pre-assessments, computational education, information theory
Procedia PDF Downloads 16111094 Enhancing Students’ Language Competencies through Cooperative Learning
Authors: Raziel Felix-Aguelo
Abstract:
Language competencies refer to the knowledge and abilities to use English in four inter-related skills: Speaking, listening, reading, and writing. Cooperative learning is a type of instruction where learners are grouped together to work on an assignment, project, or task. To become competent in second language, one needs to actively use English in each of four modalities. Learning English is challenging to second language learners. Sometimes, some students feel demotivated and scared to use English during class discussions and recitations. This paper explores the students’ attitude and perception towards cooperative learning in enhancing their language competencies. The primary method for this research is case study. Thirty-two grade 9 students within a single selected class are used as sample. The instruments used in data collection were questionnaire and semi-structured interviews. The finding shows that collaborative learning activities enhance the four skills of the students. The participants consider this approach motivational as they engage and interact with others. This indicates that students develop their language competencies as they rely to one another in doing meaningful language activities.Keywords: language competencies, collaborative learning, motivation, language activities
Procedia PDF Downloads 34411093 Educators’ Adherence to Learning Theories and Their Perceptions on the Advantages and Disadvantages of E-Learning
Authors: Samson T. Obafemi, Seraphin D. Eyono-Obono
Abstract:
Information and Communication Technologies (ICTs) are pervasive nowadays, including in education where they are expected to improve the performance of learners. However, the hope placed in ICTs to find viable solutions to the problem of poor academic performance in schools in the developing world has not yet yielded the expected benefits. This problem serves as a motivation to this study whose aim is to examine the perceptions of educators on the advantages and disadvantages of e-learning. This aim will be subdivided into two types of research objectives. Objectives on the identification and design of theories and models will be achieved using content analysis and literature review. However, the objective on the empirical testing of such theories and models will be achieved through the survey of educators from different schools in the Pinetown District of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyse the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after assessing the validity and the reliability of the data. The main hypothesis driving this study is that there is a relationship between the demographics of educators’ and their adherence to learning theories on one side, and their perceptions on the advantages and disadvantages of e-learning on the other side, as argued by existing research; but this research views these learning theories under three perspectives: educators’ adherence to self-regulated learning, to constructivism, and to progressivism. This hypothesis was fully confirmed by the empirical study except for the demographic factor where teachers’ level of education was found to be the only demographic factor affecting the perceptions of educators on the advantages and disadvantages of e-learning.Keywords: academic performance, e-learning, learning theories, teaching and learning
Procedia PDF Downloads 27311092 Role of Speech Articulation in English Language Learning
Authors: Khadija Rafi, Neha Jamil, Laiba Khalid, Meerub Nawaz, Mahwish Farooq
Abstract:
Speech articulation is a complex process to produce intelligible sounds with the help of precise movements of various structures within the vocal tract. All these structures in the vocal tract are named as articulators, which comprise lips, teeth, tongue, and palate. These articulators work together to produce a range of distinct phonemes, which happen to be the basis of language. It starts with the airstream from the lungs passing through the trachea and into oral and nasal cavities. When the air passes through the mouth, the tongue and the muscles around it form such coordination it creates certain sounds. It can be seen when the tongue is placed in different positions- sometimes near the alveolar ridge, soft palate, roof of the mouth or the back of the teeth which end up creating unique qualities of each phoneme. We can articulate vowels with open vocal tracts, but the height and position of the tongue is different every time depending upon each vowel, while consonants can be pronounced when we create obstructions in the airflow. For instance, the alphabet ‘b’ is a plosive and can be produced only by briefly closing the lips. Articulation disorders can not only affect communication but can also be a hurdle in speech production. To improve articulation skills for such individuals, doctors often recommend speech therapy, which involves various kinds of exercises like jaw exercises and tongue twisters. However, this disorder is more common in children who are going through developmental articulation issues right after birth, but in adults, it can be caused by injury, neurological conditions, or other speech-related disorders. In short, speech articulation is an essential aspect of productive communication, which also includes coordination of the specific articulators to produce different intelligible sounds, which are a vital part of spoken language.Keywords: linguistics, speech articulation, speech therapy, language learning
Procedia PDF Downloads 6211091 Predicting Machine-Down of Woodworking Industrial Machines
Authors: Matteo Calabrese, Martin Cimmino, Dimos Kapetis, Martina Manfrin, Donato Concilio, Giuseppe Toscano, Giovanni Ciandrini, Giancarlo Paccapeli, Gianluca Giarratana, Marco Siciliano, Andrea Forlani, Alberto Carrotta
Abstract:
In this paper we describe a machine learning methodology for Predictive Maintenance (PdM) applied on woodworking industrial machines. PdM is a prominent strategy consisting of all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the challenges with PdM approach is to design and develop of an embedded smart system to enable the health status of the machine. The proposed approach allows screening simultaneously multiple connected machines, thus providing real-time monitoring that can be adopted with maintenance management. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime of woodworking machines. The effectiveness of the methodology is demonstrated by testing an independent sample of additional woodworking machines without presenting machine down event.Keywords: predictive maintenance, machine learning, connected machines, artificial intelligence
Procedia PDF Downloads 22611090 Design, Implementation, and Evaluation of ALS-PBL Model in the EMI Classroom
Authors: Yen-Hui Lu
Abstract:
In the past two decades, in order to increase university visibility and internationalization, English as a medium of instruction (EMI) has become one of the main language policies in higher education institutions where English is not a dominant language. However, given the complex, discipline-embedded nature of academic communication, academic literacy does not come with students’ everyday language experience, and it is a challenge for all students. Particularly, to engage students in the effective learning process of discipline concepts in the EMI classrooms, teachers need to provide explicit academic language instruction to assist students in deep understanding of discipline concepts. To bridge the gap between academic language development and discipline learning in the EMI classrooms, the researcher incorporates academic language strategies and key elements of project-based learning (PBL) into an Academic Language Strategy driven PBL (ALS-PBL) model. With clear steps and strategies, the model helps EMI teachers to scaffold students’ academic language development in the EMI classrooms. ALS-PBL model includes three major stages: preparation, implementation, and assessment. First, in the preparation stage, ALS-PBL teachers need to identify learning goals for both content and language learning and to design PBL topics for investigation. Second, during the implementation stage, ALS-PBL teachers use the model as a guideline to create a lesson structure and class routine. There are five important elements in the implementation stage: (1) academic language preparation, (2) connecting background knowledge, (3) comprehensible input, (4) academic language reinforcement, and (5) sustained inquiry and project presentation. Finally, ALS-PBL teachers use formative assessments such as student learning logs, teachers’ feedback, and peer evaluation to collect detailed information that demonstrates students’ academic language development in the learning process. In this study, ALS-PBL model was implemented in an interdisciplinary course entitled “Science is Everywhere”, which was co-taught by five professors from different discipline backgrounds, English education, civil engineering, business administration, international business, and chemical engineering. The purpose of the course was to cultivate students’ interdisciplinary knowledge as well as English competency in disciplinary areas. This study used a case-study design to systematically investigate students’ learning experiences in the class using ALS-PBL model. The participants of the study were 22 college students with different majors. This course was one of the elective EMI courses in this focal university. The students enrolled in this EMI course to fulfill the school language policy, which requires the students to complete two EMI courses before their graduation. For the credibility, this study used multiple methods to collect data, including classroom observation, teachers’ feedback, peer assessment, student learning log, and student focus-group interviews. Research findings show four major successful aspects of implementing ALS-PBL model in the EMI classroom: (1) clear focus on both content and language learning, (2) meaningful practice in authentic communication, (3) reflective learning in academic language strategies, and (4) collaborative support in content knowledge.This study will be of value to teachers involved in delivering English as well as content lessons to language learners by providing a theoretically-sound practical model for application in the classroom.Keywords: academic language development, content and language integrated learning, english as a medium of instruction, project-based learning
Procedia PDF Downloads 8311089 Building in Language Support in a Hong Kong Chemistry Classroom with English as a Medium of Instruction: An Exploratory Study
Authors: Kai Yip Michael Tsang
Abstract:
Science writing has played a crucial part in science assessments. This paper reports a study in an area that has received little research attention – how Language across the Curriculum (LAC, i.e. science language and literacy) learning activities in science lessons can increase the science knowledge development of English as a foreign language (EFL) students in Hong Kong. The data comes from a school-based interventional study in chemistry classrooms, with written data from questionnaires, assessments and teachers’ logs and verbal data from interviews and classroom observations. The effectiveness of the LAC teaching and learning activities in various chemistry classrooms were compared and evaluated, with discussion of some implications. Students in the treatment group with lower achieving students received LAC learning and teaching activities while students in the control group with higher achieving students received conventional learning and teaching activities. After the study, they performed better in control group in formative assessments. Moreover, they had a better attitude to learning chemistry content with a richer language support. The paper concludes that LAC teaching and learning activities yielded positive learning outcomes among chemistry learners with low English ability.Keywords: science learning and teaching, content and language integrated learning, language across the curriculum, English as a foreign language
Procedia PDF Downloads 19011088 The Effect of Metformin in Combination with Dexamethasone on the CXCR4 Level in Multiple Myeloma Cell Line
Authors: Seyede Sanaz Seyedebrahimi, Shima Rahimi, Shohreh Fakhari, Ali Jalili
Abstract:
Background: CXCR4, as a chemokine receptor, plays well-known roles in various types of cancers. Several studies have been conducted to overcome CXCR4 axis acts in multiple myeloma (MM) pathogenesis and progression. Dexamethasone, a standard treatment for multiple myeloma, has been shown to increase CXCR4 levels in multiple myeloma cell lines. Herein, we focused on the effects of metformin and dexamethasone on CXCR4 at the cellular level and the migration rate of cell lines after exposure to a combination compared to single-agent models. Materials and Method: Multiple myeloma cell lines (U266 and RPMI8226) were cultured with different metformin and dexamethasone concentrations in single-agent and combination models. The simultaneous combination doses were calculated by CompuSyn software. Cell surface and mRNA expression of CXCR4 were determined using flow cytometry and the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay, respectively. The Transwell cell migration assay evaluated the migration ability. Results: In concurred with previous studies, our results showed a dexamethasone up-regulation effect on CXCR4 in a dose-dependent manner. Although, the metformin single-agent model could reduce CXCR4 expression of U266 and RPMI8226 in cell surface and mRNA expression level. Moreover, the administration of metformin and dexamethasone simultaneously exerted a higher suppression effect on CXCR4 expression than the metformin single-agent model. The migration rate through the combination model's matrigel membrane was remarkably lower than the metformin and dexamethasone single-agent model. Discussion: According to our findings, the combination of metformin and dexamethasone effectively inhibited dexamethasone-induced CXCR4 expression in multiple myeloma cell lines. As a result, metformin may be counted as an alternative medicine combined with other chemotherapies to combat multiple myeloma. However, more research is required.Keywords: CXCR4, dexamethasone, metformin, migration, multiple myeloma
Procedia PDF Downloads 15611087 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping
Authors: Delowar Hossain, Genci Capi
Abstract:
This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.Keywords: deep learning, genetic algorithm, object recognition, robot grasping
Procedia PDF Downloads 35311086 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method
Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya
Abstract:
Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms
Procedia PDF Downloads 94