Search results for: magnetic sensing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2500

Search results for: magnetic sensing

1750 Design Development and Qualification of a Magnetically Levitated Blower for C0₂ Scrubbing in Manned Space Missions

Authors: Larry Hawkins, Scott K. Sakakura, Michael J. Salopek

Abstract:

The Marshall Space Flight Center is designing and building a next-generation CO₂ removal system, the Four Bed Carbon Dioxide Scrubber (4BCO₂), which will use the International Space Station (ISS) as a testbed. The current ISS CO2 removal system has faced many challenges in both performance and reliability. Given that CO2 removal is an integral Environmental Control and Life Support System (ECLSS) subsystem, the 4BCO2 Scrubber has been designed to eliminate the shortfalls identified in the current ISS system. One of the key required upgrades was to improve the performance and reliability of the blower that provides the airflow through the CO₂ sorbent beds. A magnetically levitated blower, capable of higher airflow and pressure than the previous system, was developed to meet this need. The design and qualification testing of this next-generation blower are described here. The new blower features a high-efficiency permanent magnet motor, a five-axis, active magnetic bearing system, and a compact controller containing both a variable speed drive and a magnetic bearing controller. The blower uses a centrifugal impeller to pull air from the inlet port and drive it through an annular space around the motor and magnetic bearing components to the exhaust port. Technical challenges of the blower and controller development include survival of the blower system under launch random vibration loads, operation in microgravity, packaging under strict size and weight requirements, and successful operation during 4BCO₂ operational changeovers. An ANSYS structural dynamic model of the controller was used to predict response to the NASA defined random vibration spectrum and drive minor design changes. The simulation results are compared to measurements from qualification testing the controller on a vibration table. Predicted blower performance is compared to flow loop testing measurements. Dynamic response of the system to valve changeovers is presented and discussed using high bandwidth measurements from dynamic pressure probes, magnetic bearing position sensors, and actuator coil currents. The results presented in the paper show that the blower controller will survive launch vibration levels, the blower flow meets the requirements, and the magnetic bearings have adequate load capacity and control bandwidth to maintain the desired rotor position during the valve changeover transients.

Keywords: blower, carbon dioxide removal, environmental control and life support system, magnetic bearing, permanent magnet motor, validation testing, vibration

Procedia PDF Downloads 129
1749 Bimetallic Cu/Au Nanostructures and Bio-Application

Authors: Si Yin Tee

Abstract:

Bimetallic nanostructures have received tremendous interests as a new class of nanomaterials which may have better technological usefulness with distinct properties from those of individual atoms and molecules or bulk matter. They excelled over the monometallic counterparts because of their improved electronic, optical and catalytic performances. The properties and the applicability of these bimetallic nanostructures not only depend on their size and shape, but also on the composition and their fine structure. These bimetallic nanostructures are potential candidates for bio-applications such as biosensing, bioimaging, biodiagnostics, drug delivery, targeted therapeutics, and tissue engineering. Herein, gold-incorporated copper (Cu/Au) nanostructures were synthesized through the controlled disproportionation of Cu⁺-oleylamine complex at 220 ºC to form copper nanowires and the subsequent reaction with Au³⁺ at different temperatures of 140, 220 and 300 ºC. This is to achieve their synergistic effect through the combined use of the merits of low-cost transition and high-stability noble metals. Of these Cu/Au nanostructures, Cu/Au nanotubes display the best performance towards electrochemical non-enzymatic glucose sensing, originating from the high conductivity of gold and the high aspect ratio copper nanotubes with high surface area so as to optimise the electroactive sites and facilitate mass transport. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose.

Keywords: bimetallic, electrochemical sensing, glucose oxidation, gold-incorporated copper nanostructures

Procedia PDF Downloads 515
1748 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication

Authors: Vedant Janapaty

Abstract:

Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.

Keywords: estuary, remote sensing, machine learning, Fourier transform

Procedia PDF Downloads 96
1747 Monitoring Urban Green Space Cover Change Using GIS and Remote Sensing in Two Rapidly Urbanizing Cities, Debre Berhan and Debre Markos, Ethiopia

Authors: Alemaw Kefale, Aramde Fetene, Hayal Desta

Abstract:

Monitoring the amount of green space in urban areas is important for ensuring sustainable development and proper management. The study analyzed changes in urban green space coverage over the past 20 years in two rapidly urbanizing cities in Ethiopia, Debre Berhan and Debre Markos, using GIS and remote sensing. The researchers used Landsat 5 and 8 data with a spatial resolution of 30 m to determine different land use and land cover classes, including urban green spaces, barren and croplands, built-up areas, and water bodies. The classification accuracy ranged between 90% and 91.4%, with a Kappa Statistic of 0.85 to 0.88. The results showed that both cities experienced significant decreases in vegetation cover in their urban cores between 2000 and 2020, with radical changes observed from green spaces and croplands to built-up areas. In Debre Berhan, barren and croplands decreased by 32.96%, while built-up and green spaces increased by 357.9% and 37.4%, respectively, in 2020. In Debre Markos, built-up areas increased by 224.2%, while green spaces and barren and croplands decreased by 41% and 5.71%, respectively. The spatial structure of cities and planning policies were noticed as the major factors for big green cover change. Thus it has an implication for other rapidly urbanized cities in Africa and Asia. Overall, rapid urbanization threatens green spaces and agricultural areas, highlighting the need for ecological-based spatial planning in rapidly urbanizing cities.

Keywords: green space coverage, GIS and remote sensing, Landsat, LULC, Ethiopia

Procedia PDF Downloads 50
1746 FC and ZFC Studies of Nickel Nano Ferrites and Ni Doped Lithium Nano Ferrites by Citrate-Gel Auto Combustion Method

Authors: D. Ravinder

Abstract:

Nickel ferrites and Ni doped Lithium nano ferrites [Li0.5Fe0.5]1-xNixFe2O4 with x= 0.8 and 1.0 synthesized by citrate-gel auto combustion method. The broad peaks in the X-ray diffraction pattern (XRD) indicate a crystalline behavior of the prepared samples. Low temperature magnetization studies i,e Field Cooled (FC) and Zero Field Cooled (ZFC) magnetic studies of the investigated samples are measured by using vibrating sample magnetometer (VSM). The magnetization of the prepared samples as a function of an applied magnetic field 10 T was measured at two different temperatures 5 K and 310 K. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetization measurements under an applied field of 100 Oe and 1000 Oe in the temperature range of 5–375 K were carried out.

Keywords: ferro-spinels, field cooled (FC), Zero Field Cooled (ZFC) and blocking temperature, superpara magnetism, drug delivery applications

Procedia PDF Downloads 547
1745 Design of a Permanent Magnet Based Focusing Lens for a Miniature Klystron

Authors: Kumud Singh, Janvin Itteera, Priti Ukarde, Sanjay Malhotra, P. PMarathe, Ayan Bandyopadhay, Rakesh Meena, Vikram Rawat, L. M. Joshi

Abstract:

Application of Permanent magnet technology to high frequency miniature klystron tubes to be utilized for space applications improves the efficiency and operational reliability of these tubes. But nevertheless the task of generating magnetic focusing forces to eliminate beam divergence once the beam crosses the electrostatic focusing regime and enters the drift region in the RF section of the tube throws several challenges. Building a high quality magnet focusing lens to meet beam optics requirement in cathode gun and RF interaction region is considered to be one of the critical issues for these high frequency miniature tubes. In this paper, electromagnetic design and particle trajectory studies in combined electric and magnetic field for optimizing the magnetic circuit using 3D finite element method (FEM) analysis software is presented. A rectangular configuration of the magnet was constructed to accommodate apertures for input and output waveguide sections and facilitate coupling of electromagnetic fields into the input klystron cavity and out from output klystron cavity through coupling loops. Prototype lenses have been built and have been tested after integration with the klystron tube. We discuss the design requirements and challenges, and the results from beam transmission of the prototype lens.

Keywords: beam transmission, Brillouin, confined flow, miniature klystron

Procedia PDF Downloads 439
1744 Hypothesis about the Origin of the Lighting

Authors: Igor Kuzminov

Abstract:

Till now, the nature of lightning is not established. A hypothesis of the origin of lightning is proposed. The lightning charge is formed by electromagnetic induction. The role of the conductor is performed by the air mass of the cloud. This conductor moves in the Earth's magnetic field. The upper and lower edges of the cloud are the plates of the capacitor. Lightning is a special case of electromagnetic processes in an atmosphere. The category of lightning occurs in the process of accumulation of a charge. The process of accumulation goes constantly, but the charge is not fixed. Naturally, the hypothesis demands the carrying out of additional experiments and official acknowledgement. As the proof of a hypothesis can serve that the maximal lighting activity in an equatorial zone where cosφ it is close to 1. An experiment conducted privately showed that there is a potential difference in the atmosphere at different levels. The probability of applied value development of power installation is great.

Keywords: electromagnetic induction, Earth's magnetic field, plates of the capacitors, charge accumulation

Procedia PDF Downloads 82
1743 Magnetic Fluctuations in the Terrestrial Magnetosheath

Authors: Alexandre Gurchumelia, Luca Sorriso-Valvo, David Burgess, Khatuna Elbakidze, Oleg Kharshiladze, Diana Kvaratskhelia

Abstract:

The terrestrial magnetosheath is a highly turbulent medium, with a high level of magnetic1field fluctuations throughout a broad range of scales. These often include an inertial range where a2magnetohydrodynamic turbulent cascade is observed. The multifractal properties of the turbulent3cascade, strictly related to intermittency, are observed here during the transition from quasi-parallel to4quasi-perpendicular magnetic field with respect to the bow-shock normal. The different multifractal5behavior in the two regions is analyzed. A standard coarse-graining technique has been used6to evaluate the generalized dimensions and the corresponding multifractal spectrumf(α). A7p-model fit provided a quantitative measure of multifractality and intermittency, to be compared with8standard indicators: the width of the multifractal spectrum, the peak of the kurtosis, and its scaling9exponent. Results show a clear transition and sharp differences in the intermittency properties for the two regions.

Keywords: magnetos heath, turbulence, multifractal, instabilities

Procedia PDF Downloads 173
1742 Frame Camera and Event Camera in Stereo Pair for High-Resolution Sensing

Authors: Khen Cohen, Daniel Yankelevich, David Mendlovic, Dan Raviv

Abstract:

We present a 3D stereo system for high-resolution sensing in both the spatial and the temporal domains by combining a frame-based camera and an event-based camera. We establish a method to merge both devices into one unite system and introduce a calibration process, followed by a correspondence technique and interpolation algorithm for 3D reconstruction. We further provide quantitative analysis about our system in terms of depth resolution and additional parameter analysis. We show experimentally how our system performs temporal super-resolution up to effectively 1ms and can detect fast-moving objects and human micro-movements that can be used for micro-expression analysis. We also demonstrate how our method can extract colored events for an event-based camera without any degradation in the spatial resolution, compared to a colored filter array.

Keywords: DVS-CIS stereo vision, micro-movements, temporal super-resolution, 3D reconstruction

Procedia PDF Downloads 293
1741 Magnetic Nanoparticles Coated with Modified Polysaccharides for the Immobilization of Glycoproteins

Authors: Kinga Mylkie, Pawel Nowak, Marta Z. Borowska

Abstract:

The most important proteins in human serum responsible for drug binding are human serum albumin (HSA) and α1-acid glycoprotein (AGP). The AGP molecule is a glycoconjugate containing a single polypeptide chain composed of 183 amino acids (the core of the protein), and five glycan branched chains (sugar part) covalently linked by an N-glycosidic bond with aspartyl residues (Asp(N) -15, -38, -54, -75, - 85) of polypeptide chain. This protein plays an important role in binding alkaline drugs, a large group of drugs used in psychiatry, some acid drugs (e.g., coumarin anticoagulants), and neutral drugs (steroid hormones). The main goal of the research was to obtain magnetic nanoparticles coated with biopolymers in a chemically modified form, which will have highly reactive functional groups able to effectively immobilize the glycoprotein (acid α1-glycoprotein) without losing the ability to bind active substances. The first phase of the project involved the chemical modification of biopolymer starch. Modification of starch was carried out by methods of organic synthesis, leading to the preparation of a polymer enriched on its surface with aldehyde groups, which in the next step was coupled with 3-aminophenylboronic acid. Magnetite nanoparticles coated with starch were prepared by in situ co-precipitation and then oxidized with a 1 M sodium periodate solution to form a dialdehyde starch coating. Afterward, the reaction between the magnetite nanoparticles coated with dialdehyde starch and 3-aminophenylboronic acid was carried out. The obtained materials consist of a magnetite core surrounded by a layer of modified polymer, which contains on its surface dihydroxyboryl groups of boronic acids which are capable of binding glycoproteins. Magnetic nanoparticles obtained as carriers for plasma protein immobilization were fully characterized by ATR-FTIR, TEM, SEM, and DLS. The glycoprotein was immobilized on the obtained nanoparticles. The amount of mobilized protein was determined by the Bradford method.

Keywords: glycoproteins, immobilization, magnetic nanoparticles, polysaccharides

Procedia PDF Downloads 119
1740 La0.80Ag0.15MnO3 Magnetic Nanoparticles for Self-Controlled Magnetic Fluid Hyperthermia

Authors: Marian Mihalik, Kornel Csach, Martin Kovalik, Matúš Mihalik, Martina Kubovčíková, Maria Zentková, Martin Vavra, Vladimír Girman, Jaroslav Briančin, Marija Perovic, Marija Boškovic, Magdalena Fitta, Robert Pelka

Abstract:

Current nanomaterials for use in biomedicine are based mainly on iron oxides and on present knowledge on magnetic nanostructures. Manganites can represent another material which can be used optionally. Manganites and their unique electronic properties have been extensively studied in the last decades not only due to fundamental interest but to possible applications of colossal magnetoresistance, magnetocaloric effect, and ferroelectric properties. It was found that the oxygen-reduction reaction on perovskite oxide is intimately connected with metal ion e.g., orbital occupation. The effect of oxygen deviation from the stoichiometric composition on crystal structure was studied very carefully by many authors on LaMnO₃. Depending on oxygen content, the crystal structure changes from orthorhombic one to rhombohedric for oxygen content 3.1. In the case of hole-doped manganites, the change from the orthorhombic crystal structure, which is typical for La1-xCaxMnO3 based manganites, to the rhombohedric crystal structure (La1-xMxMnO₃ where M = K, Ag, and Sr based materials) results in an enormous increase of the Curie temperature. In our paper, we study the effect of oxygen content on crystal structure, thermal, and magnetic properties (including magnetocaloric effect) of La1-xAgxMnO₃nano particle system. The content of oxygen in samples was tuned by heat treatment in different thermal regimes and in various environment (air, oxygen, argon). Water nanosuspensions based on La0.80Ag0.15MnO₃ magnetic particles with the Curie temperature of about 43oC were prepared by two different approaches. First, by using a laboratory circulation mill for milling of powder in the presence of sodium dodecyl sulphate (SDS) and subsequent centrifugation. Second nanosuspension was prepared using an agate bowl, etching in citric acid and HNO3, ultrasound homogeniser, centrifugation, and dextran 40 kDA or 15 kDA as surfactant. Electrostatic stabilisation obtained by the first approach did not offer long term kinetic and aggregation colloidal stability and was unable to compensate for attractive forces between particles under a magnetic field. By the second approach, we prepared suspension oversaturated by dextran 40 kDA for steric stabilisation, with evidence of the presence of superparamagnetic behaviour. Low concentration of nanoparticles and not ideal coverage of nanoparticles impacting the stability of ferrofluids was the disadvantage of this approach. Strong steric stabilisation was observable at alcaic conditions under pH = ~10. Application of dextran 15 kDA leads to relatively stable ferrofluid with pH around physiological conditions, but desegregation of powder by HNO₃ was not effective enough, and the average size of fragments was to large of about 150 nm, and we did not see any signature of superparamagnetic behaviour. The prepared ferrofluids were characterised by scanning and transition microscope method, thermogravimetry, magnetization, and AC susceptibility measurements. Specific Absorption Rate measurements were undertaken on powder as well on ferrofluids in order to estimate the potential application of La₀.₈₀Ag₀.₁₅MnO₃ magnetic particles based ferrofluid for hyperthermia. Our complex study contains an investigation of biocompatibility and potential biohazard of this material.

Keywords: manganites, magnetic nanoparticles, oxygen content, magnetic phase transition, magnetocaloric effect, ferrofluid, hyperthermia

Procedia PDF Downloads 83
1739 Joubert Syndrome and Related Disorders: A Single Center Experience

Authors: Ali Al Orf, Khawaja Bilal Waheed

Abstract:

Background and objective: Joubert syndrome (JS) is a rare, autosomal-recessive condition. Early recognition is important for management and counseling. Magnetic resonance imaging (MRI) can help in diagnosis. Therefore, we sought to evaluate clinical presentation and MRI findings in Joubert syndrome and related disorders. Method: A retrospective review of genetically proven cases of Joubert syndromes and related disorders was reviewed for their clinical presentation, demographic information, and magnetic resonance imaging findings in a period of the last 10 years. Two radiologists documented magnetic resonance imaging (MRI) findings. The presence of hypoplasia of the cerebellar vermis with hypoplasia of the superior cerebellar peduncle resembling the “Molar Tooth Sign” in the mid-brain was documented. Genetic testing results were collected to label genes linked to the diagnoses. Results: Out of 12 genetically proven JS cases, most were females (9/12), and nearly all presented with hypotonia, ataxia, developmental delay, intellectual impairment, and speech disorders. 5/12 children presented at age of 1 or below. The molar tooth sign was seen in 10/12 cases. Two cases were associated with other brain findings. Most of the cases were found associated with consanguineous marriage Conclusion and discussion: The molar tooth sign is a frequent and reliable sign of JS and related disorders. Genes related to defective cilia result in malfunctioning in the retina, renal tubule, and neural cell migration, thus producing heterogeneous syndrome complexes known as “ciliopathies.” Other ciliopathies like Senior-Loken syndrome, Bardet Biedl syndrome, and isolated nephronophthisis must be considered as the differential diagnosis of JS. The main imaging findings are the partial or complete absence of the cerebellar vermis, hypoplastic cerebellar peduncles (giving MTS), and (bat-wing appearance) fourth ventricular deformity. LimitationsSingle-center, small sample size, and retrospective nature of the study were a few of the study limitations.

Keywords: Joubart syndrome, magnetic resonance imaging, molar tooth sign, hypotonia

Procedia PDF Downloads 89
1738 Sparse Signal Restoration Algorithm Based on Piecewise Adaptive Backtracking Orthogonal Least Squares

Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang

Abstract:

the traditional greedy compressed sensing algorithm needs to know the signal sparsity when recovering the signal, but the signal sparsity in the practical application can not be obtained as a priori information, and the recovery accuracy is low, which does not meet the needs of practical application. To solve this problem, this paper puts forward Piecewise adaptive backtracking orthogonal least squares algorithm. The algorithm is divided into two stages. In the first stage, the sparsity pre-estimation strategy is adopted, which can quickly approach the real sparsity and reduce time consumption. In the second stage iteration, the correction strategy and adaptive step size are used to accurately estimate the sparsity, and the backtracking idea is introduced to improve the accuracy of signal recovery. Through experimental simulation, the algorithm can accurately recover the estimated signal with fewer iterations when the sparsity is unknown.

Keywords: compressed sensing, greedy algorithm, least square method, adaptive reconstruction

Procedia PDF Downloads 139
1737 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths

Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi

Abstract:

Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.

Keywords: Concentration, resovist, field strength, relaxivity, signal intensity

Procedia PDF Downloads 350
1736 A Mathematical Study of Magnetic Field, Heat Transfer and Brownian Motion of Nanofluid over a Nonlinear Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

Thermal conductivity of ordinary heat transfer fluids is not adequate to meet today’s cooling rate requirements. Nanoparticles have been shown to increase the thermal conductivity and convective heat transfer to the base fluids. One of the possible mechanisms for anomalous increase in the thermal conductivity of nanofluids is the Brownian motions of the nanoparticles in the basefluid. In this paper, the natural convection of incompressible nanofluid over a nonlinear stretching sheet in the presence of magnetic field is studied. The flow and heat transfer induced by stretching sheets is important in the study of extrusion processes and is a subject of considerable interest in the contemporary literature. Appropriate similarity variables are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary (similarity) differential equations. For computational purpose, Finite Element Method is used. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo – Klienstreuer – Li) correlation. In this model effect of Brownian motion on thermal conductivity is considered. The effect of important parameter i.e. nonlinear parameter, volume fraction, Hartmann number, heat source parameter is studied on velocity and temperature. Skin friction and heat transfer coefficients are also calculated for concerned parameters.

Keywords: Brownian motion, convection, finite element method, magnetic field, nanofluid, stretching sheet

Procedia PDF Downloads 209
1735 Lattice Network Model for Calculation of Eddy Current Losses in a Solid Permanent Magnet

Authors: Jan Schmidt, Pierre Köhring

Abstract:

Permanently excited machines are set up with magnets that are made of highly energetic magnetic materials. Inherently, the permanent magnets warm up while the machine is operating. With an increasing temperature, the electromotive force and hence the degree of efficiency decrease. The reasons for this are slot harmonics and distorted armature currents arising from frequency inverter operation. To prevent or avoid demagnetizing of the permanent magnets it is necessary to ensure that the magnets do not excessively heat up. Demagnetizations of permanent magnets are irreversible and a breakdown of the electrical machine is inevitable. For the design of an electrical machine, the knowledge of the behavior of heating under operating conditions of the permanent magnet is of crucial importance. Therefore, a calculation model is presented with which the machine designer can easily calculate the eddy current losses in the magnetic material.

Keywords: analytical model, eddy current, losses, lattice network, permanent magnet

Procedia PDF Downloads 417
1734 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry

Authors: Dhanuj M. Gandikota

Abstract:

Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.

Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry

Procedia PDF Downloads 97
1733 Research Analysis of Urban Area Expansion Based on Remote Sensing

Authors: Sheheryar Khan, Weidong Li, Fanqian Meng

Abstract:

The Urban Heat Island (UHI) effect is one of the foremost problems out of other ecological and socioeconomic issues in urbanization. Due to this phenomenon that human-made urban areas have replaced the rural landscape with the surface that increases thermal conductivity and urban warmth; as a result, the temperature in the city is higher than in the surrounding rural areas. To affect the evidence of this phenomenon in the Zhengzhou city area, an observation of the temperature variations in the urban area is done through a scientific method that has been followed. Landsat 8 satellite images were taken from 2013 to 2015 to calculate the effect of Urban Heat Island (UHI) along with the NPP-VRRIS night-time remote sensing data to analyze the result for a better understanding of the center of the built-up area. To further support the evidence, the correlation between land surface temperatures and the normalized difference vegetation index (NDVI) was calculated using the Red band 4 and Near-infrared band 5 of the Landsat 8 data. Mono-window algorithm was applied to retrieve the land surface temperature (LST) distribution from the Landsat 8 data using Band 10 and 11 accordingly to convert the top-of-atmosphere radiance (TOA) and to convert the satellite brightness temperature. Along with Landsat 8 data, NPP-VIIRS night-light data is preprocessed to get the research area data. The analysis between Landsat 8 data and NPP night-light data was taken to compare the output center of the Built-up area of Zhengzhou city.

Keywords: built-up area, land surface temperature, mono-window algorithm, NDVI, remote sensing, threshold method, Zhengzhou

Procedia PDF Downloads 134
1732 A Magnetic Hydrochar Nanocomposite as a Potential Adsorbent of Emerging Pollutants

Authors: Aura Alejandra Burbano Patino, Mariela Agotegaray, Veronica Lassalle, Fernanda Horst

Abstract:

Water pollution is of worldwide concern due to its importance as an essential resource for life. Industrial and urbanistic growth are anthropogenic activities that have caused an increase of undesirable compounds in water. In the last decade, emerging pollutants have become of great interest since, at very low concentrations (µg/L and ng/L), they exhibit a hazardous effect on wildlife, aquatic ecosystems, and human organisms. One group of emerging pollutants that are a matter of study are pharmaceuticals. Their high consumption rate and their inappropriate disposal have led to their detection in wastewater treatment plant influent, effluent, surface water, and drinking water. In consequence, numerous technologies have been developed to efficiently treat these pollutants. Adsorption appears like an easy and cost-effective technology. One of the most used adsorbents of emerging pollutants removal is carbon-based materials such as hydrochars. This study aims to use a magnetic hydrochar nanocomposite to be employed as an adsorbent for diclofenac removal. Kinetics models and the adsorption efficiency in real water samples were analyzed. For this purpose, a magnetic hydrochar nanocomposite was synthesized through the hydrothermal carbonization (HTC) technique hybridized to co-precipitation to add the magnetic component into the hydrochar, based on iron oxide nanoparticles. The hydrochar was obtained from sunflower husk residue as the precursor. TEM, TGA, FTIR, Zeta potential as a function of pH, DLS, BET technique, and elemental analysis were employed to characterize the material in terms of composition and chemical structure. Adsorption kinetics were carried out in distilled water and real water at room temperature, pH of 5.5 for distilled water and natural pH for real water samples, 1:1 adsorbent: adsorbate dosage ratio, contact times from 10-120 minutes, and 50% dosage concentration of DCF. Results have demonstrated that magnetic hydrochar presents superparamagnetic properties with a saturation magnetization value of 55.28 emu/g. Besides, it is mesoporous with a surface area of 55.52 m²/g. It is composed of magnetite nanoparticles incorporated into the hydrochar matrix, as can be proven by TEM micrographs, FTIR spectra, and zeta potential. On the other hand, kinetic studies were carried out using DCF models, finding percent removal efficiencies up to 85.34% after 80 minutes of contact time. In addition, after 120 minutes of contact time, desorption of emerging pollutants from active sites took place, which indicated that the material got saturated after that t time. In real water samples, percent removal efficiencies decrease up to 57.39%, ascribable to a possible mechanism of competitive adsorption of organic or inorganic compounds, ions for active sites of the magnetic hydrochar. The main suggested adsorption mechanism between the magnetic hydrochar and diclofenac include hydrophobic and electrostatic interactions as well as hydrogen bonds. It can be concluded that the magnetic hydrochar nanocomposite could be valorized into a by-product which appears as an efficient adsorbent for DCF removal as a model emerging pollutant. These results are being complemented by modifying experimental variables such as pollutant’s initial concentration, adsorbent: adsorbate dosage ratio, and temperature. Currently, adsorption assays of other emerging pollutants are being been carried out.

Keywords: environmental remediation, emerging pollutants, hydrochar, magnetite nanoparticles

Procedia PDF Downloads 184
1731 Flood Devastation Assessment Through Mapping in Nigeria-2022 using Geospatial Techniques

Authors: Hafiz Muhammad Tayyab Bhatti, Munazza Usmani

Abstract:

One of nature's most destructive occurrences, floods do immense damage to communities and economic losses. Nigeria country, specifically southern Nigeria, is known for being prone to flooding. Even though periodic flooding occurs in Nigeria frequently, the floods of 2022 were the worst since those in 2012. Flood vulnerability analysis and mapping are still lacking in this region due to the very limited historical hydrological measurements and surveys on the effects of floods, which makes it difficult to develop and put into practice efficient flood protection measures. Remote sensing and Geographic Information Systems (GIS) are useful approaches to detecting, determining, and estimating the flood extent and its impacts. In this study, NOAA VIIR has been used to extract the flood extent using the flood water fraction data and afterward fused with GIS data for some zonal statistical analysis. The estimated possible flooding areas are validated using satellite imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS). The goal is to map and studied flood extent, flood hazards, and their effects on the population, schools, and health facilities for each state of Nigeria. The resulting flood hazard maps show areas with high-risk levels clearly and serve as an important reference for planning and implementing future flood mitigation and control strategies. Overall, the study demonstrated the viability of using the chosen GIS and remote sensing approaches to detect possible risk regions to secure local populations and enhance disaster response capabilities during natural disasters.

Keywords: flood hazards, remote sensing, damage assessment, GIS, geospatial analysis

Procedia PDF Downloads 126
1730 The Inversion of Helical Twist Sense in Liquid Crystal by Spectroscopy Methods

Authors: Anna Drzewicz, Marzena Tykarska

Abstract:

The chiral liquid crystal phases form the helicoidal structure, which is characterized by the helical pitch and the helical twist sense. In anticlinic smectic phase with antiferroelectric properties three types of helix temperature dependence have been obtained: increased helical pitch with temperature and right-handed helix, decreased helical pitch with temperature and left-handed helix and the inversion of both. The change of helical twist sense may be observed during the transition from one liquid crystal phase to another or within one phase for the same substance. According to Gray and McDonnell theory, the helical handedness depends on the absolute configuration of the assymetric carbon atom and its position related to the rigid core of the molecule. However, this theory does not explain the inversion of helical twist sense phenomenon. It is supposed, that it may be caused by the presence of different conformers with opposite handendess, which concentration may change with temperature. In this work, the inversion of helical twist sense in the chiral liquid crystals differing in the length of alkyl chain, in the substitution the benzene ring by fluorine atoms and in the type of helix handedness was tested by vibrational spectroscopy (infrared and raman spectroscopy) and by nuclear magnetic resonance spectroscopy. The results obtained from the vibrational spectroscopy confirm the presence of different conformers. Moreover, the analysis of nuclear magnetic resonance spectra is very useful to check, on which structural fragments the change of conformations are important for the change of helical twist sense.

Keywords: helical twist sense, liquid crystals, nuclear magnetic resonance spectroscopy, vibrational spectroscopy

Procedia PDF Downloads 278
1729 Possible Approach for Interlinking of Ponds to Mitigate Drought in Sivaganga Villages at Micro Level

Authors: Manikandan Sathianarayanan, Pernaidu Pasala

Abstract:

This paper presents the results of our studies concerning the implementation and exploitation of a Geographical Information System (GIS) dedicated to the support and assistance of decisions requested by drought management. In this study on diverting of surplus water through canals, pond sand check dams in the study area was carried out. The remote sensing data and GIS data was used to identify the drought prone villages in sivaganga taluk and to generate present land use, drainage pattern as well as slope and contour. This analysis was carried out for diverting surplus water through proposed canal and pond. The results of the study indicate that if the surplus water from the ponds and streams are diverted to the drought villages in Sivaganga taluk, it will definitely improve the agricultural production due to availability of water in the ponds. The improvements in agricultural production will help to improve the economical condition of the farmers in the region.

Keywords: interlinking, spatial analysis, remote sensing, GIS

Procedia PDF Downloads 248
1728 Immobilizing Quorum Sensing Inhibitors on Biomaterial Surfaces

Authors: Aditi Taunk, George Iskander, Kitty Ka Kit Ho, Mark Willcox, Naresh Kumar

Abstract:

Bacterial infections on biomaterial implants and medical devices accounts for 60-70% of all hospital acquired infections (HAIs). Treatment or removal of these infected devices results in high patient mortality and morbidity along with increased hospital expenses. In addition, with no effective strategies currently available and rapid development of antibacterial resistance has made device-related infections extremely difficult to treat. Therefore, in this project we have developed biomaterial surfaces using antibacterial compounds that inhibit biofilm formation by interfering with the bacterial communication mechanism known as quorum sensing (QS). This study focuses on covalent attachment of potent quorum sensing (QS) inhibiting compounds, halogenated furanones (FUs) and dihydropyrrol-2-ones (DHPs), onto glass surfaces. The FUs were attached by photoactivating the azide groups on the surface, and the acid functionalized DHPs were immobilized on amine surface via EDC/NHS coupling. The modified surfaces were tested in vitro against pathogenic organisms such as Staphylococcus aureus and Pseudomonas aeruginosa using confocal laser scanning microscopy (CLSM). Successful attachment of compounds on the substrates was confirmed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antibacterial efficacy was assessed, and significant reduction in bacterial adhesion and biofilm formation was observed on the FU and DHP coated surfaces. The activity of the coating was dependent upon the type of substituent present on the phenyl group of the DHP compound. For example, the ortho-fluorophenyl DHP (DHP-2) exhibited 79% reduction in bacterial adhesion against S. aureus and para-fluorophenyl DHP (DHP-3) exhibited 70% reduction against P. aeruginosa. The results were found to be comparable to DHP coated surfaces prepared in earlier study via Michael addition reaction. FUs and DHPs were able to retain their in vitro antibacterial efficacy after covalent attachment via azide chemistry. This approach is a promising strategy to develop efficient antibacterial biomaterials to reduce device related infections.

Keywords: antibacterial biomaterials, biomedical device-related infections, quorum sensing, surface functionalization

Procedia PDF Downloads 260
1727 Synthesis by Mechanical Alloying and Characterization of FeNi₃ Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest on the synthesis and characterization of nanoalloys since the unique chemical, and physical properties of nanoalloys can be tuned and, consequently, new structural motifs can be created by varying the type of constituent elements, atomic and magnetic ordering, as well as size and shape of the nanoparticles. Due to the fine size effects, magnetic nanoalloys have considerable attention with their enhanced mechanical, electrical, optical and magnetic behavior. As an important magnetic nanoalloy, the novel application area of Fe-Ni based nanoalloys is expected to be widened in the chemical, aerospace industry and magnetic biomedical applications. Noble metals have been using in biomedical applications for several years because of their surface plasmon properties. In this respect, iron-nickel nanoalloys are promising materials for magnetic biomedical applications because they show novel properties such as superparamagnetism and surface plasmon resonance property. Also, there is great attention for the usage Fe-Ni based nanoalloys as radar absorbing materials in aerospace and stealth industry due to having high Curie temperature, high permeability and high saturation magnetization with good thermal stability. In this study, FeNi₃ bimetallic nanoalloys were synthesized by mechanical alloying in a planetary high energy ball mill. In mechanical alloying, micron size powders are placed into the mill with milling media. The powders are repeatedly deformed, fractured and alloyed by high energy collision under the impact of balls until the desired composition and particle size is achieved. The experimental studies were carried out in two parts. Firstly, dry mechanical alloying with high energy dry planetary ball milling was applied to obtain FeNi₃ nanoparticles. Secondly, dry milling was followed by surfactant-assisted ball milling to observe the surfactant and solvent effect on the structure, size, and properties of the FeNi₃ nanoalloys. In the first part, the powder sample of iron-nickel was prepared according to the 1:3 iron to nickel ratio to produce FeNi₃ nanoparticles and the 1:10 powder to ball weight ratio. To avoid oxidation during milling, the vials had been filled with Ar inert gas before milling started. The powders were milled for 80 hours in total and the synthesis of the FeNi₃ intermetallic nanoparticles was succeeded by mechanical alloying in 40 hours. Also, regarding the particle size, it was found that the amount of nano-sized particles raised with increasing milling time. In the second part of the study, dry milling of the Fe and Ni powders with the same stoichiometric ratio was repeated. Then, to prevent agglomeration and to obtain smaller sized nanoparticles with superparamagnetic behavior, surfactants and solvent are added to the system, after 40-hour milling time, with the completion of the mechanical alloying. During surfactant-assisted ball milling, heptane was used as milling medium, and as surfactants, oleic acid and oleylamine were used in the high energy ball milling processes. The characterization of the alloyed particles in terms of microstructure, morphology, particle size, thermal and magnetic properties with respect to milling time was done by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, vibrating-sample magnetometer, and differential scanning calorimetry.

Keywords: iron-nickel systems, magnetic nanoalloys, mechanical alloying, nanoalloy characterization, surfactant-assisted ball milling

Procedia PDF Downloads 177
1726 Magnetoelectric Coupling in Hetero-Structured Nano-Composite of BST-BLFM Films

Authors: Navneet Dabra, Jasbir S. HUndal

Abstract:

Hetero-structured nano-composite thin film of Ba0.5Sr0.5TiO3/Bi0.9La0.1Fe0.9Mn0.1O3 (BST/BLFM) has been prepared by chemical solution deposition method with various BST to BLFM thickness ratios. These films have been deposited over on p-type Si (100) substrate. These samples exhibited low leakage current, large grain size and uniform distribution of particles. The maximum remanent polarization (Pr) was achieved in the heterostructures with thickness ratio of 2.65. The dielectric tenability, electric hysteresis (P-E), ME coupling coefficient, magnetic hysteresis (M-H), ferromagnetic exchange interaction and magnetoelectric measurements were carried out. Field Emission Scanning Electron Microscopy has been employed to investigate the surface morphology of these heterostructured nano-composite films.

Keywords: magnetoelectric, Schottky emission, interface coupling, dielectric tenability, electric hysteresis (P-E), ME coupling coefficient, magnetic hysteresis (M-H)

Procedia PDF Downloads 425
1725 Comparison of the Classification of Cystic Renal Lesions Using the Bosniak Classification System with Contrast Enhanced Ultrasound and Magnetic Resonance Imaging to Computed Tomography: A Prospective Study

Authors: Dechen Tshering Vogel, Johannes T. Heverhagen, Bernard Kiss, Spyridon Arampatzis

Abstract:

In addition to computed tomography (CT), contrast enhanced ultrasound (CEUS), and magnetic resonance imaging (MRI) are being increasingly used for imaging of renal lesions. The aim of this prospective study was to compare the classification of complex cystic renal lesions using the Bosniak classification with CEUS and MRI to CT. Forty-eight patients with 65 cystic renal lesions were included in this study. All participants signed written informed consent. The agreement between the Bosniak classifications of complex renal lesions ( ≥ BII-F) on CEUS and MRI were compared to that of CT and were tested using Cohen’s Kappa. Sensitivity, specificity, positive and negative predictive values (PPV/NPV) and the accuracy of CEUS and MRI compared to CT in the detection of complex renal lesions were calculated. Twenty-nine (45%) out of 65 cystic renal lesions were classified as complex using CT. The agreement between CEUS and CT in the classification of complex cysts was fair (agreement 50.8%, Kappa 0.31), and was excellent between MRI and CT (agreement 93.9%, Kappa 0.88). Compared to CT, MRI had a sensitivity of 96.6%, specificity of 91.7%, a PPV of 54.7%, and an NPV of 54.7% with an accuracy of 63.1%. The corresponding values for CEUS were sensitivity 100.0%, specificity 33.3%, PPV 90.3%, and NPV 97.1% with an accuracy 93.8%. The classification of complex renal cysts based on MRI and CT scans correlated well, and MRI can be used instead of CT for this purpose. CEUS can exclude complex lesions, but due to higher sensitivity, cystic lesions tend to be upgraded. However, it is useful for initial imaging, for follow up of lesions and in those patients with contraindications to CT and MRI.

Keywords: Bosniak classification, computed tomography, contrast enhanced ultrasound, cystic renal lesions, magnetic resonance imaging

Procedia PDF Downloads 139
1724 Evaluation of the Urban Landscape Structures and Dynamics of Hawassa City, Using Satellite Images and Spatial Metrics Approaches, Ethiopia

Authors: Berhanu Terfa, Nengcheng C.

Abstract:

The study deals with the analysis of urban expansion and land transformation of Hawass City using remote sensing data and landscape metrics during last three decades (1987–2017). Remote sensing data from Various multi-temporal satellite images viz., TM (1987), TM (1995), ETM+ (2005) and OLI (2017) were used to examine the urban expansion, growth types, and spatial isolation within the urban landscape to develop an understanding the trends of built-up growth in Hawassa City, Ethiopia. Landscape metrics and built-up density were employed to analyze the pattern, process and overall growth status. The area under investigation was divided into concentric circles with a consecutive circle of 1 km incremental radius from the central pixel (Central Business District) for analysis. The result exhibited that the built-up area had increased by 541.32% between 1987 and 2017and an extension growth types (more than 67 %) was observed. The major growth took place in north-west direction followed by north direction in haphazard manner during 1987–1995 period, whereas predominant built-up development was observed in south and southwest direction during 1995–2017 period. Land scape metrics result revealed that the of urban patches density, total edge and edge density increased, while mean nearest neighbors’ distance decreased showing the tendency of sprawl.

Keywords: landscape metrics, spatial patterns, remote sensing, multi-temporal, urban sprawl

Procedia PDF Downloads 274
1723 A Study of Rapid Replication of Square-Microlens Structures

Authors: Ting-Ting Wen, Jung-Ruey Tsai

Abstract:

This paper reports a method for the replication of micro-scale structures. By using electromagnetic force-assisted imprinting system with magnetic soft stamp written square-microlens cavity, a photopolymer square-microlens structures can be rapidly fabricated. Under the proper processing conditions, the polymeric square-microlens structures with feature size of width 100.3um and height 15.2um across a large area can be successfully fabricated. Scanning electron microscopy (SEM) and surface profiler observations confirm that the micro-scale polymer structures are produced without defects or distortion and with good pattern fidelity over a 60x60mm2 area. This technique shows great potential for the efficient replication of the micro-scale structure array at room temperature and with high productivity and low cost.

Keywords: square-microlens structures, electromagnetic force-assisted imprinting, magnetic soft stamp

Procedia PDF Downloads 324
1722 Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria

Authors: Amina Naidja, Zedira Khammar, Ines Soltani

Abstract:

This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.

Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception

Procedia PDF Downloads 33
1721 Electromagnetic Simulation of Underground Cable Perforation by Nail

Authors: Ahmed Nour El Islam Ayad, Tahar Rouibah, Wafa Krika, Houari Boudjella, Larab Moulay, Farid Benhamida, Selma Benmoussa

Abstract:

The purpose of this study is to evaluate the electromagnetic field of an underground cable of very high voltage perforated by nail. The aim of this work shows a numerical simulation of the electromagnetic field of 400 kV line after perforation through a ferrous nail in four positions for the pinch pin at different distances. From results for a longitudinal section, we observe and evaluate the distribution and the variation of the electromagnetic field in the cable and the earth. When the nail approaches the underground power cable, the distribution of the magnetic field changes and takes several forms, the magnetic field increase and become very important when the nail breaks the metal screen and will produce a significant leak of the electric field, characterized by a large electric arc and or electric discharge to earth and then a fault in the electrical network. These electromagnetic analysis results help to detect defects in underground cables.

Keywords: underground, electromagnetic, nail, defect

Procedia PDF Downloads 223