Search results for: informed decision making
7000 Factors that Predict Pre-Service Teachers' Decision to Integrate E-Learning: A Structural Equation Modeling (SEM) Approach
Authors: Mohd Khairezan Rahmat
Abstract:
Since the impetus of becoming a develop country by the year 2020, the Malaysian government have been proactive in strengthening the integration of ICT into the national educational system. Teacher-education programs have the responsibility to prepare the nation future teachers by instilling in them the desire, confidence, and ability to fully utilized the potential of ICT into their instruction process. In an effort to fulfill this responsibility, teacher-education program are beginning to create alternatives means for preparing cutting-edge teachers. One of the alternatives is the student’s learning portal. In line with this mission, this study investigates the Faculty of Education, University Teknologi MARA (UiTM) pre-service teachers’ perception of usefulness, attitude, and ability toward the usage of the university learning portal, known as iLearn. The study also aimed to predict factors that might hinder the pre-service teachers’ decision to used iLearn as their platform in learning. The Structural Equation Modeling (SEM), was employed in analyzed the survey data. The suggested findings informed that pre-service teacher’s successful integration of the iLearn was highly influenced by their perception of usefulness of the system. The findings also suggested that the more familiar the pre-service teacher with the iLearn, the more possibility they will use the system. In light of similar study, the present findings hope to highlight the important to understand the user’s perception toward any proposed technology.Keywords: e-learning, prediction factors, pre-service teacher, structural equation modeling (SEM)
Procedia PDF Downloads 3406999 Enhancing Sustainable Stingless Beekeeping Production through Technology Transfer and Human Resource Development in Relationship with Extension Agents Work Performance among Malaysian Beekeepers
Authors: Ibrahim Aliyu Isah, Mohd Mansor Ismail, Salim Hassan, Norsida Man, Oluwatoyin Olagunju
Abstract:
Stingless beekeeping is not only a profitable activity for Malaysian beekeepers but also for the Malaysian economy. However, natural honey has faced some difficulties, which resulted in low production due to a lack of information on improved technology as well as the capacity and potential building of stingless beekeeping farmers, which depend mostly on information received from the extension agents. Hence, it is the responsibility of the extension agents to give useful information on the available technology and develop the capacity of the farmers to make the right decision that will improve their level of production. This study assessed how technology transfer and human resource development skills influence the work performance of the extension agents toward sustainable beekeeping production among beekeepers. The study sought to establish the role of relevant technology transfer and human resource development skills in effective performance. The research design was a descriptive and quantitative survey of stingless beekeepers on technology transfer and human resource development by the extension agent. Data was obtained from 54 beekeeping farmers and was analyzed using descriptive and inferential statistics. The results revealed that technology skill, technology dissemination skill, technology evaluation skill, Decision-making process skill, Leadership development skill and work performance were rated moderate by stingless beekeeping farmers, while Social skill was rated high. A significant and positive correlation (P<0.01) existed between all variables and performance. Regression results showed that leadership development skills, Decision-making process skills, and social skills are significant (P=.05), while technology skills, technology dissemination skills, and technology evaluation skills are not significant. The highest contributing factor is social skill (β=.446). Beekeeping is a profitable project in Malaysia and can be sustained if the extension services and programs are well carried out by competent extension agents and relevant agricultural government agencies.Keywords: beekeeping, extension agents, human resource development, sustainable, technology transfer, work performance
Procedia PDF Downloads 656998 Shared Decision-Making in Holistic Healthcare: Integrating Evidence-Based Medicine and Values-Based Medicine
Authors: Ling-Lang Huang
Abstract:
Research Background: Historically, the evolution of medicine has not only aimed to extend life but has also inadvertently introduced suffering in the process of maintaining life, presenting a contemporary challenge. We must carefully assess the conflict between the length of life and the quality of living. Evidence-Based Medicine (EBM) exists primarily to ensure the quality of cures. However, EBM alone does not fulfill our ultimate medical goals; we must also evaluate Value-Based Medicine (VBM) to find the best treatment for patients. Research Methodology: We can attempt to integrate EBM with VBM. Within the five steps of EBM, the first three steps (Ask—Acquire—Appraise) focus on the physical aspect of humans. However, in the fourth and fifth steps (Apply—Assess), the focus shifts from the physical to applying evidence-based treatment to the patient and assessing its effectiveness, considering a holistic approach to the individual. To consider VBM for patients, we can divide the process into three steps: The first step is "awareness," recognizing that each patient inhabits a different life-world and possesses unique differences. The second step is "integration," akin to the hermeneutic concept of the Fusion of Horizons. This means being aware of differences and also understanding the origins of these patient differences. The third step is "respect," which involves setting aside our adherence to medical objectivity and scientific rigor to respect the ultimate healthcare decisions made by individuals regarding their lives. Discussion and Conclusion: After completing these three steps of VBM, we can return to the fifth step of EBM: Assess. Our assessment can now transcend the physical treatment focus of the initial steps to align with a holistic care philosophy.Keywords: shared decision-making, evidence-based medicine, values-based medicine, holistic healthcare
Procedia PDF Downloads 526997 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation
Procedia PDF Downloads 706996 The Application of Participatory Social Media in Collaborative Planning: A Systematic Review
Authors: Yujie Chen , Zhen Li
Abstract:
In the context of planning transformation, how to promote public participation in the formulation and implementation of collaborative planning has been the focused issue of discussion. However, existing studies have often been case-specific or focused on a specific design field, leaving the role of participatory social media (PSM) in urban collaborative planning generally questioned. A systematic database search was conducted in December 2019. Articles and projects were eligible if they reported a quantitative empirical study applying participatory social media in the collaborative planning process (a prospective, retrospective, experimental, longitudinal research, or collective actions in planning practices). Twenty studies and seven projects were included in the review. Findings showed that social media are generally applied in public spatial behavior, transportation behavior, and community planning fields, with new technologies and new datasets. PSM has provided a new platform for participatory design, decision analysis, and collaborative negotiation most widely used in participatory design. Findings extracted several existing forms of PSM. PSM mainly act as three roles: the language of decision-making for communication, study mode for spatial evaluation, and decision agenda for interactive decision support. Three optimization content of PSM were recognized, including improving participatory scale, improvement of the grass-root organization, and promotion of politics. However, basically, participants only could provide information and comment through PSM in the future collaborative planning process, therefore the issues of low data response rate, poor spatial data quality, and participation sustainability issues worth more attention and solutions.Keywords: participatory social media, collaborative planning, planning workshop, application mode
Procedia PDF Downloads 1346995 A Supervised Goal Directed Algorithm in Economical Choice Behaviour: An Actor-Critic Approach
Authors: Keyvanl Yahya
Abstract:
This paper aims to find a algorithmic structure that affords to predict and explain economic choice behaviour particularly under uncertainty (random policies) by manipulating the prevalent Actor-Critic learning method that complies with the requirements we have been entrusted ever since the field of neuroeconomics dawned on us. Whilst skimming some basics of neuroeconomics that might be relevant to our discussion, we will try to outline some of the important works which have so far been done to simulate choice making processes. Concerning neurological findings that suggest the existence of two specific functions that are executed through Basal Ganglia all the way down to sub-cortical areas, namely 'rewards' and 'beliefs', we will offer a modified version of actor/critic algorithm to shed a light on the relation between these functions and most importantly resolve what is referred to as a challenge for actor-critic algorithms, that is lack of inheritance or hierarchy which avoids the system being evolved in continuous time tasks whence the convergence might not emerge.Keywords: neuroeconomics, choice behaviour, decision making, reinforcement learning, actor-critic algorithm
Procedia PDF Downloads 3976994 Developing a Product Circularity Index with an Emphasis on Longevity, Repairability, and Material Efficiency
Authors: Lina Psarra, Manogj Sundaresan, Purjeet Sutar
Abstract:
In response to the global imperative for sustainable solutions, this article proposes the development of a comprehensive circularity index applicable to a wide range of products across various industries. The absence of a consensus on using a universal metric to assess circularity performance presents a significant challenge in prioritizing and effectively managing sustainable initiatives. This circularity index serves as a quantitative measure to evaluate the adherence of products, processes, and systems to the principles of a circular economy. Unlike traditional distinct metrics such as recycling rates or material efficiency, this index considers the entire lifecycle of a product in one single metric, also incorporating additional factors such as reusability, scarcity of materials, reparability, and recyclability. Through a systematic approach and by reviewing existing metrics and past methodologies, this work aims to address this gap by formulating a circularity index that can be applied to diverse product portfolio and assist in comparing the circularity of products on a scale of 0%-100%. Project objectives include developing a formula, designing and implementing a pilot tool based on the developed Product Circularity Index (PCI), evaluating the effectiveness of the formula and tool using real product data, and assessing the feasibility of integration into various sustainability initiatives. The research methodology involves an iterative process of comprehensive research, analysis, and refinement where key steps include defining circularity parameters, collecting relevant product data, applying the developed formula, and testing the tool in a pilot phase to gather insights and make necessary adjustments. Major findings of the study indicate that the PCI provides a robust framework for evaluating product circularity across various dimensions. The Excel-based pilot tool demonstrated high accuracy and reliability in measuring circularity, and the database proved instrumental in supporting comprehensive assessments. The PCI facilitated the identification of key areas for improvement, enabling more informed decision-making towards circularity and benchmarking across different products, essentially assisting towards better resource management. In conclusion, the development of the Product Circularity Index represents a significant advancement in global sustainability efforts. By providing a standardized metric, the PCI empowers companies and stakeholders to systematically assess product circularity, track progress, identify improvement areas, and make informed decisions about resource management. This project contributes to the broader discourse on sustainable development by offering a practical approach to enhance circularity within industrial systems, thus paving the way towards a more resilient and sustainable future.Keywords: circular economy, circular metrics, circularity assessment, circularity tool, sustainable product design, product circularity index
Procedia PDF Downloads 296993 Building Information Modelling Based Value for Money Assessment in Public-Private Partnership
Authors: Guoqian Ren, Haijiang Li, Jisong Zhang
Abstract:
Over the past 40 years, urban development has undergone large-scale, high-speed expansion, beyond what was previously considered normal and in a manner not proportionally related to population growth or physical considerations. With more scientific and refined decision-making in the urban construction process, new urbanization approaches, aligned with public-private partnerships (PPPs) which evolved in the early 1990s, have become acceptable and, in some situations, even better solutions to outstanding urban municipal construction projects, especially in developing countries. However, as the main driving force to deal with urban public services, PPPs are still problematic regarding value for money (VFM) process in most large-scale construction projects. This paper therefore reviews recent PPP articles in popular project management journals and relevant toolkits, published in the last 10 years, to identify the indicators that influence VFM within PPPs across regions. With increasing concerns about profitability and environmental and social impacts, the current PPP structure requires a more integrated platform to manage multi-performance project life cycles. Building information modelling (BIM), a popular approach to the procurement process in AEC sectors, provides the potential to ensure VFM while also working in tandem with the semantic approach to holistically measure life cycle costs (LCC) and achieve better sustainability. This paper suggests that BIM applied to the entire PPP life cycle could support holistic decision-making regarding VFM processes and thus meet service targets.Keywords: public-private partnership, value for money, building information modelling, semantic approach
Procedia PDF Downloads 2116992 A Tool for Facilitating an Institutional Risk Profile Definition
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for the easy creation of an institutional risk profile for endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support risk factors set up with just the most important values that are important for a particular organisation. Subsequently, the risk profile employs fuzzy models and associated configurations for the file format metadata aggregator to support digital preservation experts with a semi-automatic estimation of endangerment level for file formats. Our goal is to make use of a domain expert knowledge base aggregated from a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation and analysis of risk factors for a requried dimension. The proposed methods improve the visibility of risk factor information and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and automatically aggregated file format metadata from linked open data sources. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.Keywords: digital information management, file format, endangerment analysis, fuzzy models
Procedia PDF Downloads 4056991 Business Strategy, Crisis and Digitalization
Authors: Flora Xu, Marta Fernandez Olmos
Abstract:
This article is mainly about critical assessment and comprehensive understanding of the business strategy in the post COVID-19 scenario. This study aims to elucidate how companies are responding to the unique challenges posed by the pandemic and how these measures are shaping the future of the business environment. The pandemic has exposed the fragility and flexibility of the global supply chain, and procurement and production strategies should be reconsidered. It should increase the diversity of suppliers and the flexibility of the supply chain, and some companies are considering transferring their survival to the local market. This can increase local employment and reduce international transportation disruptions and customs issues. By shortening the distance between production and market, companies can respond more quickly to changes in demand and unforeseen events. The demand for remote work and online solutions will increase the adoption of digital technology and accelerate the digital transformation of many organizations. Marketing and communication strategies need to adapt to a constantly changing environment. The business resilience strategy was emphasized as a key component of the response to the COVID-19. The company is seeking to strengthen its risk management capabilities and develop a business continuity plan to cope with future unexpected disruptions. The pandemic has reconfigured human resource practices and changed the way companies manage their employees. Remote work has become the norm, and companies focus on managing workers' health and well-being, as well as flexible work policies to ensure operations and support for employees during crises. This change in human resources practice has a lasting impact on how companies apply talent and labor management in the post COVID-19 world. The pandemic has prompted a significant review of business strategies as companies adapt to constantly changing environments and seek to ensure their sustainability and profitability in times of crisis. This strategic reassessment has led to product diversification, exploring international markets and adapting to the changing market. Companies have responded to the unprecedented challenges brought by the COVID-19. The COVID-19 has promoted innovation effort in key areas and focused on the responsibility in today's business strategy for sustainability and the importance of corporate society. The important challenge of formulating and implementing business strategies in uncertain times. These challenges include making quick and agile decisions in turbulent environments, risk management, and adaptability to constantly changing market conditions. The COVID-19 highlights the importance of strategic planning and informed decision-making - making in a business environment characterized by uncertainty and complexity. In short, the pandemic has reconfigured the way companies handle business strategies and emphasized the necessity of preparing for future challenges in a business world marked by uncertainty and complexity.Keywords: business strategy, crisis, digitalization, uncertainty
Procedia PDF Downloads 196990 Suitable Site Selection of Small Dams Using Geo-Spatial Technique: A Case Study of Dadu Tehsil, Sindh
Authors: Zahid Khalil, Saad Ul Haque, Asif Khan
Abstract:
Decision making about identifying suitable sites for any project by considering different parameters is difficult. Using GIS and Multi-Criteria Analysis (MCA) can make it easy for those projects. This technology has proved to be an efficient and adequate in acquiring the desired information. In this study, GIS and MCA were employed to identify the suitable sites for small dams in Dadu Tehsil, Sindh. The GIS software is used to create all the spatial parameters for the analysis. The parameters that derived are slope, drainage density, rainfall, land use / land cover, soil groups, Curve Number (CN) and runoff index with a spatial resolution of 30m. The data used for deriving above layers include 30-meter resolution SRTM DEM, Landsat 8 imagery, and rainfall from National Centre of Environment Prediction (NCEP) and soil data from World Harmonized Soil Data (WHSD). Land use/Land cover map is derived from Landsat 8 using supervised classification. Slope, drainage network and watershed are delineated by terrain processing of DEM. The Soil Conservation Services (SCS) method is implemented to estimate the surface runoff from the rainfall. Prior to this, SCS-CN grid is developed by integrating the soil and land use/land cover raster. These layers with some technical and ecological constraints are assigned weights on the basis of suitability criteria. The pairwise comparison method, also known as Analytical Hierarchy Process (AHP) is taken into account as MCA for assigning weights on each decision element. All the parameters and group of parameters are integrated using weighted overlay in GIS environment to produce suitable sites for the Dams. The resultant layer is then classified into four classes namely, best suitable, suitable, moderate and less suitable. This study reveals a contribution to decision-making about suitable sites analysis for small dams using geospatial data with minimal amount of ground data. This suitability maps can be helpful for water resource management organizations in determination of feasible rainwater harvesting structures (RWH).Keywords: Remote sensing, GIS, AHP, RWH
Procedia PDF Downloads 3896989 Decision-Making Strategies on Smart Dairy Farms: A Review
Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, G. Corkery, E. Broderick, J. Walsh
Abstract:
Farm management and operations will drastically change due to access to real-time data, real-time forecasting, and tracking of physical items in combination with Internet of Things developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm-based management and decision-making does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyse on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue, and environmental impact. Evolutionary computing can be very effective in finding the optimal combination of sets of some objects and, finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and evolutionary computing in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management, and its uptake has become a continuing trend.Keywords: big data, evolutionary computing, cloud, precision technologies
Procedia PDF Downloads 1896988 Real-Time Classification of Marbles with Decision-Tree Method
Authors: K. S. Parlak, E. Turan
Abstract:
The separation of marbles according to the pattern quality is a process made according to expert decision. The classification phase is the most critical part in terms of economic value. In this study, a self-learning system is proposed which performs the classification of marbles quickly and with high success. This system performs ten feature extraction by taking ten marble images from the camera. The marbles are classified by decision tree method using the obtained properties. The user forms the training set by training the system at the marble classification stage. The system evolves itself in every marble image that is classified. The aim of the proposed system is to minimize the error caused by the person performing the classification and achieve it quickly.Keywords: decision tree, feature extraction, k-means clustering, marble classification
Procedia PDF Downloads 3836987 Ecological-Economics Evaluation of Water Treatment Systems
Authors: Hwasuk Jung, Seoi Lee, Dongchoon Ryou, Pyungjong Yoo, Seokmo Lee
Abstract:
The Nakdong River being used as drinking water sources for Pusan metropolitan city has the vulnerability of water management due to the fact that industrial areas are located in the upper Nakdong River. Most citizens of Busan think that the water quality of Nakdong River is not good, so they boil or use home filter to drink tap water, which causes unnecessary individual costs to Busan citizens. We need to diversify water intake to reduce the cost and to change the weak water source. Under this background, this study was carried out for the environmental accounting of Namgang dam water treatment system compared to Nakdong River water treatment system by using emergy analysis method to help making reasonable decision. Emergy analysis method evaluates quantitatively both natural environment and human economic activities as an equal unit of measure. The emergy transformity of Namgang dam’s water was 1.16 times larger than that of Nakdong River’s water. Namgang Dam’s water shows larger emergy transformity than that of Nakdong River’s water due to its good water quality. The emergy used in making 1 m3 tap water from Namgang dam water treatment system was 1.26 times larger than that of Nakdong River water treatment system. Namgang dam water treatment system shows larger emergy input than that of Nakdong river water treatment system due to its construction cost of new pipeline for intaking Namgang daw water. If the Won used in making 1 m3 tap water from Nakdong river water treatment system is 1, Namgang dam water treatment system used 1.66. If the Em-won used in making 1 m3 tap water from Nakdong river water treatment system is 1, Namgang dam water treatment system used 1.26. The cost-benefit ratio of Em-won was smaller than that of Won. When we use emergy analysis, which considers the benefit of a natural environment such as good water quality of Namgang dam, Namgang dam water treatment system could be a good alternative for diversifying intake source.Keywords: emergy, emergy transformity, Em-won, water treatment system
Procedia PDF Downloads 3066986 An Analysis of the Relationship between Consumer Perception and Purchase Behavior towards Green Fashion in India
Authors: Upasna Bhandari, Indranil Saha, Deepak John Mathew
Abstract:
The green fashion market is growing rapidly as eco-friendly consumers are willing to expand their organic lifestyle to include clothing. With an increasing share of fashion consumers globally, Indian consumers are observed to consider the social and environmental ethics while making purchasing decisions. While some research clearly identifies the efforts of responsible consumers towards green fashion, some argue that fashion-orientated consumers who are sensitive towards environment do not actively participate towards supporting green fashion. This study aims to analyze the current perception of green fashion among Indian consumers. A small-scale exploratory study is conducted where consumers’ perception of green fashion is examined followed by an analysis of translation of this perception into purchase decision making. This research paper gives insight into consumer awareness on green fashion and provides scope towards the expansion of ethical fashion consumption within the demography of India.Keywords: consumer perception, environmental attitudes, fashion retailing, green fashion, sustainability
Procedia PDF Downloads 4416985 AI Applications in Accounting: Transforming Finance with Technology
Authors: Alireza Karimi
Abstract:
Artificial Intelligence (AI) is reshaping various industries, and accounting is no exception. With the ability to process vast amounts of data quickly and accurately, AI is revolutionizing how financial professionals manage, analyze, and report financial information. In this article, we will explore the diverse applications of AI in accounting and its profound impact on the field. Automation of Repetitive Tasks: One of the most significant contributions of AI in accounting is automating repetitive tasks. AI-powered software can handle data entry, invoice processing, and reconciliation with minimal human intervention. This not only saves time but also reduces the risk of errors, leading to more accurate financial records. Pattern Recognition and Anomaly Detection: AI algorithms excel at pattern recognition. In accounting, this capability is leveraged to identify unusual patterns in financial data that might indicate fraud or errors. AI can swiftly detect discrepancies, enabling auditors and accountants to focus on resolving issues rather than hunting for them. Real-Time Financial Insights: AI-driven tools, using natural language processing and computer vision, can process documents faster than ever. This enables organizations to have real-time insights into their financial status, empowering decision-makers with up-to-date information for strategic planning. Fraud Detection and Prevention: AI is a powerful tool in the fight against financial fraud. It can analyze vast transaction datasets, flagging suspicious activities and reducing the likelihood of financial misconduct going unnoticed. This proactive approach safeguards a company's financial integrity. Enhanced Data Analysis and Forecasting: Machine learning, a subset of AI, is used for data analysis and forecasting. By examining historical financial data, AI models can provide forecasts and insights, aiding businesses in making informed financial decisions and optimizing their financial strategies. Artificial Intelligence is fundamentally transforming the accounting profession. From automating mundane tasks to enhancing data analysis and fraud detection, AI is making financial processes more efficient, accurate, and insightful. As AI continues to evolve, its role in accounting will only become more significant, offering accountants and finance professionals powerful tools to navigate the complexities of modern finance. Embracing AI in accounting is not just a trend; it's a necessity for staying competitive in the evolving financial landscape.Keywords: artificial intelligence, accounting automation, financial analysis, fraud detection, machine learning in finance
Procedia PDF Downloads 636984 The Optimization of TICSI in the Convergence Mechanism of Urban Water Management
Authors: M. Macchiaroli, L. Dolores, V. Pellecchia
Abstract:
With the recent Resolution n. 580/2019/R/idr, the Italian Regulatory Authority for Energy, Networks, and Environment (ARERA) for the Urban Water Management has introduced, for water managements characterized by persistent critical issues regarding the planning and organization of the service and the implementation of the necessary interventions for the improvement of infrastructures and management quality, a new mechanism for determining tariffs: the regulatory scheme of Convergence. The aim of this regulatory scheme is the overcoming of the Water Service Divided in order to improve the stability of the local institutional structures, technical quality, contractual quality, as well as in order to guarantee transparency elements for Users of the Service. Convergence scheme presupposes the identification of the cost items to be considered in the tariff in parametric terms, distinguishing three possible cases according to the type of historical data available to the Manager. The study, in particular, focuses on operations that have neither data on tariff revenues nor data on operating costs. In this case, the Manager's Constraint on Revenues (VRG) is estimated on the basis of a reference benchmark and becomes the starting point for defining the structure of the tariff classes, in compliance with the TICSI provisions (Integrated Text for tariff classes, ARERA's Resolution n. 665/2017/R/idr). The proposed model implements the recent studies on optimization models for the definition of tariff classes in compliance with the constraints dictated by TICSI in the application of the Convergence mechanism, proposing itself as a support tool for the Managers and the local water regulatory Authority in the decision-making process.Keywords: decision-making process, economic evaluation of projects, optimizing tools, urban water management, water tariff
Procedia PDF Downloads 1206983 A Literature Review on the Effect of Financial Knowledge toward Corporate Growth: The Important Role of Financial Risk Attitude
Authors: Risna Wijayanti, Sumiati, Hanif Iswari
Abstract:
This study aims to analyze the role of financial risk attitude as a mediation between financial knowledge and business growth. The ability of human resources in managing capital (financial literacy) can be a major milestone for a company's business to grow and build its competitive advantage. This study analyzed the important role of financial risk attitude in bringing about financial knowledge on corporate growth. There have been many discussions arguing that financial knowledge is one of the main abilities of corporate managers in determining the success of managing a company. However, a contrary argument of other scholars also enlightened that financial knowledge did not have a significant influence on corporate growth. This study used literatures' review to analyze whether there is another variable that can mediate the effect of financial knowledge toward corporate growth. Research mapping was conducted to analyze the concept of risk tolerance. This concept was related to people's risk aversion effects when making a decision under risk and the role of financial knowledge on changes in financial income. Understanding and managing risks and investments are complicated, in particular for corporate managers, who are always demanded to maintain their corporate growth. Substantial financial knowledge is extremely needed to identify and take accurate information for corporate financial decision-making. By reviewing several literature, this study hypothesized that financial knowledge of corporate managers would be meaningless without manager's courage to bear risks for taking favorable business opportunities. Therefore, the level of risk aversion from corporate managers will determine corporate action, which is a reflection of corporate-level investment behavior leading to attain corporate success or failure for achieving the company's expected growth rate.Keywords: financial knowledge, financial risk attitude, corporate growth, risk tolerance
Procedia PDF Downloads 1296982 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops
Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha
Abstract:
The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.Keywords: artificial neural networks, cellular automata, decision support system, pattern recognition
Procedia PDF Downloads 4566981 Willingness to Pay for the Preservation of Geothermal Areas in Iceland: The Contingent Valuation Studies of Eldvörp and Hverahlíð
Authors: David Cook, Brynhildur Davidsdottir, Dadi. M. Kristofersson
Abstract:
The approval of development projects with significant environmental impacts implies that the economic costs of the affected environmental resources must be less than the financial benefits, but such irreversible decisions are frequently made without ever attempting to estimate the monetary value of the losses. Due to this knowledge gap in the processes informing decision-making, development projects are commonly approved despite the potential for social welfare to be undermined. Heeding a repeated call by the OECD to commence economic accounting of environmental impacts as part of the cost-benefit analysis process for Icelandic energy projects, this paper sets out the results pertaining to the nation’s first two contingent valuation studies of geothermal areas likely to be developed in the near future. Interval regression using log-transformation was applied to estimate willingness to pay (WTP) for the preservation of the high-temperature Eldvörp and Hverahlíð fields. The estimated mean WTP was 8,333 and 7,122 ISK for Eldvörp and Hverahlíð respectively. Scaled up to the Icelandic population of national taxpayers, this equates to estimated total economic value of 2.10 and 1.77 billion ISK respectively. These results reinforce arguments in favour of accounting for the environmental impacts of Iceland’s future geothermal power projects as a mandatory component of the exploratory and production license application process. Further research is necessary to understand the economic impacts to specific ecosystem services associated with geothermal environments, particularly connected to changes in recreational amenity. In so doing, it would be possible to gain greater comprehension of the various components of total economic value, evolving understanding of why one geothermal area – in this case, Eldvörp – has a higher preservation value than another.Keywords: decision-making, contingent valuation, geothermal energy, preservation
Procedia PDF Downloads 2146980 Obstruction to Treatments Meeting International Standards for Lyme and Relapsing Fever Borreliosis Patients
Authors: J. Luché-Thayer, C. Perronne, C. Meseko
Abstract:
We reviewed how certain institutional policies and practices, as well as questionable research, are creating obstacles to care and informed consent for Lyme and relapsing fever Borreliosis patients. The interference is denying access to treatments that meet the internationally accepted standards as set by the Institute of Medicine. This obstruction to care contributes to significant human suffering, disability and negative economic effect across many nations and in many regions of the world. We note how evidence based medicine emphasizes the importance of clinical experience and patient-centered care and how these patients benefit significantly when their rights to choose among treatment options are upheld.Keywords: conflicts of interest, obstacles to healthcare accessibility, patient-centered care, the right to informed consent
Procedia PDF Downloads 2076979 Development of Medical Intelligent Process Model Using Ontology Based Technique
Authors: Emmanuel Chibuogu Asogwa, Tochukwu Sunday Belonwu
Abstract:
An urgent demand for creative solutions has been created by the rapid expansion of medical knowledge, the complexity of patient care, and the requirement for more precise decision-making. As a solution to this problem, the creation of a Medical Intelligent Process Model (MIPM) utilizing ontology-based appears as a promising way to overcome this obstacle and unleash the full potential of healthcare systems. The development of a Medical Intelligent Process Model (MIPM) using ontology-based techniques is motivated by a lack of quick access to relevant medical information and advanced tools for treatment planning and clinical decision-making, which ontology-based techniques can provide. The aim of this work is to develop a structured and knowledge-driven framework that leverages ontology, a formal representation of domain knowledge, to enhance various aspects of healthcare. Object-Oriented Analysis and Design Methodology (OOADM) were adopted in the design of the system as we desired to build a usable and evolvable application. For effective implementation of this work, we used the following materials/methods/tools: the medical dataset for the test of our model in this work was obtained from Kaggle. The ontology-based technique was used with Confusion Matrix, MySQL, Python, Hypertext Markup Language (HTML), Hypertext Preprocessor (PHP), Cascaded Style Sheet (CSS), JavaScript, Dreamweaver, and Fireworks. According to test results on the new system using Confusion Matrix, both the accuracy and overall effectiveness of the medical intelligent process significantly improved by 20% compared to the previous system. Therefore, using the model is recommended for healthcare professionals.Keywords: ontology-based, model, database, OOADM, healthcare
Procedia PDF Downloads 796978 Predicting Match Outcomes in Team Sport via Machine Learning: Evidence from National Basketball Association
Authors: Jacky Liu
Abstract:
This paper develops a team sports outcome prediction system with potential for wide-ranging applications across various disciplines. Despite significant advancements in predictive analytics, existing studies in sports outcome predictions possess considerable limitations, including insufficient feature engineering and underutilization of advanced machine learning techniques, among others. To address these issues, we extend the Sports Cross Industry Standard Process for Data Mining (SRP-CRISP-DM) framework and propose a unique, comprehensive predictive system, using National Basketball Association (NBA) data as an example to test this extended framework. Our approach follows a holistic methodology in feature engineering, employing both Time Series and Non-Time Series Data, as well as conducting Explanatory Data Analysis and Feature Selection. Furthermore, we contribute to the discourse on target variable choice in team sports outcome prediction, asserting that point spread prediction yields higher profits as opposed to game-winner predictions. Using machine learning algorithms, particularly XGBoost, results in a significant improvement in predictive accuracy of team sports outcomes. Applied to point spread betting strategies, it offers an astounding annual return of approximately 900% on an initial investment of $100. Our findings not only contribute to academic literature, but have critical practical implications for sports betting. Our study advances the understanding of team sports outcome prediction a burgeoning are in complex system predictions and pave the way for potential profitability and more informed decision making in sports betting markets.Keywords: machine learning, team sports, game outcome prediction, sports betting, profits simulation
Procedia PDF Downloads 1026977 Designing a Model to Increase the Flow of Circular Economy Startups Using a Systemic and Multi-Generational Approach
Authors: Luís Marques, João Rocha, Andreia Fernandes, Maria Moura, Cláudia Caseiro, Filipa Figueiredo, João Nunes
Abstract:
The implementation of circularity strategies other than recycling, such as reducing the amount of raw material, as well as reusing or sharing existing products, remains marginal. The European Commission announced that the transition towards a more circular economy could lead to the net creation of about 700,000 jobs in Europe by 2030, through additional labour demand from recycling plants, repair services and other circular activities. Efforts to create new circular business models in accordance with completely circular processes, as opposed to linear ones, have increased considerably in recent years. In order to create a societal Circular Economy transition model, it is necessary to include innovative solutions, where startups play a key role. Early-stage startups based on new business models according to circular processes often face difficulties in creating enough impact. The StartUp Zero Program designs a model and approach to increase the flow of startups in the Circular Economy field, focusing on a systemic decision analysis and multi-generational approach, considering Multi-Criteria Decision Analysis to support a decision-making tool, which is also supported by the use of a combination of an Analytical Hierarchy Process and Multi-Attribute Value Theory methods. We define principles, criteria and indicators for evaluating startup prerogatives, quantifying the evaluation process in a unique result. Additionally, this entrepreneurship program spanning 16 months involved more than 2400 young people, from ages 14 to 23, in more than 200 interaction activities.Keywords: circular economy, entrepreneurship, startups;, multi-criteria decision analysis
Procedia PDF Downloads 1086976 The Location Problem of Electric Vehicle Charging Stations: A Case Study of Istanbul
Authors: Müjde Erol Genevois, Hatice Kocaman
Abstract:
Growing concerns about the increasing consumption of fossil energy and the improved recognition of environmental protection require sustainable road transportation technology. Electric vehicles (EVs) can contribute to improve environmental sustainability and to solve the energy problem with the right infrastructure. The problem of where to locate electric vehicle charging station can be grouped as decision-making problems because of including many criteria and alternatives that have to be considered simultaneously. The purpose of this paper is to present an integrated AHP and TOPSIS model to rank the optimal sites of EVs charging station in Istanbul, Turkey. Ten different candidate points and three decision criteria are identified. The performances of each candidate points with respect to criteria are obtained according to AHP calculations. These performances are used as an input for TOPSIS method to rank the candidate points. It is obtained accurate and robust results by integrating AHP and TOPSIS methods.Keywords: electric vehicle charging station (EVCS), AHP, TOPSIS, location selection
Procedia PDF Downloads 3246975 Identifying Large-Scale Photovoltaic and Concentrated Solar Power Hot Spots: Multi-Criteria Decision-Making Framework
Authors: Ayat-Allah Bouramdane
Abstract:
Solar Photovoltaic (PV) and Concentrated Solar Power (CSP) do not burn fossil fuels and, therefore, could meet the world's needs for low-carbon power generation as they do not release greenhouse gases into the atmosphere as they generate electricity. The power output of the solar PV module and CSP collector is proportional to the temperature and the amount of solar radiation received by their surface. Hence, the determination of the most convenient locations of PV and CSP systems is crucial to maximizing their output power. This study aims to provide a hands-on and plausible approach to the multi-criteria evaluation of site suitability of PV and CSP plants using a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP). Applying the GRI-based AHP approach is meant to specify the criteria and sub-criteria, to identify the unsuitable areas, the low-, moderate-, high- and very high suitable areas for each layer of GRI, to perform the pairwise comparison matrix at each level of the hierarchy structure based on experts' knowledge, and calculate the weights using AHP to create the final map of solar PV and CSP plants suitability in Morocco with a particular focus on the Dakhla city. The results recognize that solar irradiation is the main decision factor for the integration of these technologies on energy policy goals of Morocco but explicitly account for other factors that cannot only limit the potential of certain locations but can even exclude the Dakhla city classified as unsuitable area. We discuss the sensitivity of the PV and CSP site suitability to different aspects, such as the methodology, the climate conditions, and the technology used in each source, and provide the final recommendations to the Moroccan energy strategy by analyzing if actual Morocco's PV and CSP installations are located within areas deemed suitable and by discussing several cases to provide mutual benefits across the Food-Energy-Water nexus. The adapted methodology and conducted suitability map could be used by researchers or engineers to provide helpful information for decision-makers in terms of sites selection, design, and planning of future solar plants, especially in areas suffering from energy shortages, such as the Dakhla city, which is now one of Africa's most promising investment hubs and it is especially attractive to investors looking to root their operations in Africa and import to European markets.Keywords: analytic hierarchy process, concentrated solar power, dakhla, geographic referenced information, Morocco, multi-criteria decision-making, photovoltaic, site suitability
Procedia PDF Downloads 1806974 Reading Knowledge Development and Its Phases with Generation Z
Authors: Onur Özdemir, M.Erhan ORHAN
Abstract:
Knowledge Development (KD) is just one of the important phases of Knowledge Management (KM). KD is the phase in which intelligence is used to see the big picture. In order to understand whether information is important or not, we have to use the intelligence cycle that includes four main steps: aiming, collecting data, processing and utilizing. KD also needs these steps. To make a precise decision, the decision maker has to be aware of his subordinates’ ideas. If the decision maker ignores the ideas of his subordinates or participants of the organization, it is not possible for him to get the target. KD is a way of using wisdom to accumulate the puzzle. If the decision maker does not bring together the puzzle pieces, he cannot get the big picture, and this shows its effects on the battlefield. In order to understand the battlefield, the decision maker has to use the intelligence cycle. To convert information to knowledge, KD is the main means for the intelligence cycle. On the other hand, the “Z Generation” born after the millennium are really the game changers. They have different attitudes from their elders. Their understanding of life is different - the definition of freedom and independence have different meanings to them than others. Decision makers have to consider these factors and rethink their decisions accordingly. This article tries to explain the relation between KD and Generation Z. KD is the main method of target managing. But if leaders neglect their people, the world will be seeing much more movements like the Arab Spring and other insurgencies.Keywords: knowledge development, knowledge management, generation Z, intelligence cycle
Procedia PDF Downloads 5186973 The Significance of ‘Practice’ in Art Research: Indian and Western Perspective
Authors: Mukta Avachat-Shirke
Abstract:
The process of manifestation in art has been studied deeply by various Indian and Western philosophers through times. In the art of painting, ‘Practice’ is always considered as techniques or making and ‘Theory’ is related to intelligence or the ‘conceptual.' The question about the significance of ‘Practice’ in artistic research has been a topic of debate. The aim of this qualitative study is to find the relevance of practice and theory while creating artworks. This study analyzes the thoughts and philosophy of Abhinavgupta, Hegel, and Croce to find a new perspective for looking at practice and theory within artistic research. With the method of grounded theory, the study attempts to establish the importance of both in artistic research. It discusses the issues like stages of creating art, role of tacit knowledge and importance of the decision-making the ability of the artist. This comparative analysis of these three philosophers along with the present systems can be used as a point of reference for further developments in the pedagogy of art research and artists, to understand the psychology and to follow the process of creativity effectively.Keywords: artistic research, Indian philosophy, practice, Western Philosophy
Procedia PDF Downloads 2996972 Understanding Farmers’ Perceptions Towards Agrivoltaics Using Decision Tree Algorithms
Authors: Mayuri Roy Choudhury
Abstract:
In recent times the concept of agrivoltaics has gained popularity due to the dual use of land and the added value provided by photovoltaics in terms of renewable energy and crop production on farms. However, the transition towards agrivoltaics has been slow, and our research tries to investigate the obstacles leading towards the slow progress of agrivoltaics. We applied data science decision tree algorithms to quantify qualitative perceptions of farmers in the United States for agrivoltaics. To date, there has not been much research that mentions farmers' perceptions, as most of the research focuses on the benefits of agrivoltaics. Our study adds value by putting forward the voices of farmers, which play a crucial towards the transition to agrivoltaics in the future. Our results show a mixture of responses in favor of agrivoltaics. Furthermore, it also portrays significant concerns of farmers, which is useful for decision-makers when it comes to formulating policies for agrivoltaics.Keywords: agrivoltaics, decision-tree algorithms, farmers perception, transition
Procedia PDF Downloads 1916971 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion
Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao
Abstract:
Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.Keywords: image classification, decision fusion, multi-temporal, remote sensing
Procedia PDF Downloads 124