Search results for: hand gesture classification
5077 Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter
Authors: Razak Zakariya, Fazliana Mustajap, Lenny Sharinee Sakai
Abstract:
A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand.Keywords: sediment type, MBES echo sounder, backscatter, ArcGIS
Procedia PDF Downloads 845076 Classification of Political Affiliations by Reduced Number of Features
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
By the evolvement in technology, the way of expressing opinions switched the direction to the digital world. The domain of politics as one of the hottest topics of opinion mining research merged together with the behavior analysis for affiliation determination in text which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 are constituted by Linguistic Inquiry and Word Count (LIWC) features are tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that Decision Tree, Rule Induction and M5 Rule classifiers when used with SVM and IGR feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “function” as an aggregate feature of the linguistic category, is obtained as the most differentiating feature among the 68 features with 81% accuracy by itself in classifying articles either as Republican or Democrat.Keywords: feature selection, LIWC, machine learning, politics
Procedia PDF Downloads 3815075 The Usefulness and Usability of a Linkedin Group for the Maintenance of a Community of Practice among Hand Surgeons Worldwide
Authors: Vaikunthan Rajaratnam
Abstract:
Maintaining continuous professional development among clinicians has been a challenge. Hand surgery is a unique speciality with the coming together of orthopaedics, plastics and trauma surgeons. The requirements for a team-based approach to care with the inclusion of other experts such as occupational, physiotherapist and orthotic and prosthetist provide the impetus for the creation of communities of practice. This study analysed the community of practice in hand surgery that was created through a social networking website for professionals. The main objectives were to discover the usefulness of this community of practice created in the platform of the group function of LinkedIn. The second objective was to determine the usability of this platform for the purposes of continuing professional development among members of this community of practice. The methodology used was one of mixed methods which included a quantitative analysis on the usefulness of the social network website as a community of practice, using the analytics provided by the LinkedIn platform. Further qualitative analysis was performed on the various postings that were generated by the community of practice within the social network website. This was augmented by a respondent driven survey conducted online to assess the usefulness of the platform for continuous professional development. A total of 31 respondents were involved in this study. This study has shown that it is possible to create an engaging and interactive community of practice among hand surgeons using the group function of this professional social networking website LinkedIn. Over three years the group has grown significantly with members from multiple regions and has produced engaging and interactive conversations online. From the results of the respondents’ survey, it can be concluded that there was satisfaction of the functionality and that it was an excellent platform for discussions and collaboration in the community of practice with a 69 % of satisfaction. Case-based discussions were the most useful functions of the community of practice. This platform usability was graded as excellent using the validated usability tool. This study has shown that the social networking site LinkedIn’s group function can be easily used as a community of practice effectively and provides convenience to professionals and has made an impact on their practice and better care for patients. It has also shown that this platform was easy to use and has a high level of usability for the average healthcare professional. This platform provided the improved connectivity among professionals involved in hand surgery care which allowed for the community to grow and with proper support and contribution of relevant material by members allowed for a safe environment for the exchange of knowledge and sharing of experience that is the foundation of a community practice.Keywords: community of practice, online community, hand surgery, lifelong learning, LinkedIn, social media, continuing professional development
Procedia PDF Downloads 3145074 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 1285073 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults
Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead
Abstract:
Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.Keywords: classification, falls, health risk factors, machine learning, older adults
Procedia PDF Downloads 1465072 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network
Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan
Abstract:
Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.Keywords: deep convolution networks, Yolo, machine learning, agriculture
Procedia PDF Downloads 1165071 Commercialization of Film Festivals: An Autobiographical Analysis
Authors: Önder M. Özdem
Abstract:
Producing and circulating films of professional standards have become technically easier with the development and widespread use of digital recording and distribution technologies. Additionally, film festivals on common platforms have rapidly increased in numbers and diversity. On the one hand, no-charge applications result in excessive submissions; thus, it complicates the evaluation and selection process. On the other hand, festival’s high submission fees may make the distribution of films with a limited budget very difficult. Inspired by the author’s engagement with the film industry as both a pre-jury member of an international film festival and an applicant to many festivals, this study discusses the causes and consequences of the increasing commercialization of film festivals. The author’s double identity, both as a jury and an applicant, provides a comparative perspective through which one can unfold the different dimensions and dynamics in the film production and distribution processes.Keywords: commercialization, film distribution, film festivals, film production
Procedia PDF Downloads 745070 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 3155069 An Ergonomic Handle Design for Instruments in Laparoscopic Surgery
Authors: Ramon Sancibrian, Carlos Redondo-Figuero, Maria C. Gutierrez-Diez, Esther G. Sarabia, Maria A. Benito-Gonzalez, Jose C. Manuel-Palazuelos
Abstract:
In this paper, the design and evaluation of a handle for laparoscopic surgery is presented. The design of the handle is based on ergonomic principles and tries to avoid awkward postures for surgeons. The handle combines the so-called power-grip and accurate-grip in order to provide strength and accuracy in the performance of surgery. The handle is tested using both objective and subjective approaches. The objective approach uses motion capture techniques to obtain the angles of forearm, arm, wrist and hand. The muscular effort is obtained with electromyography electrodes. On the other hand, a subjective survey has been carried out using questionnaires. Results confirm that the handle is preferred by the majority of the surgeons.Keywords: laparoscopic surgery, ergonomics, mechanical design, biomechanics
Procedia PDF Downloads 5015068 Hand-Held X-Ray Fluorescence Spectroscopy for Pre-Diagnostic Studies in Conservation, and Limitations
Authors: Irmak Gunes Yuceil
Abstract:
This paper outlines interferences and analytical errors which are encountered in the qualification and quantification of archaeological and ethnographic artifacts, by means of handheld x-ray fluorescence. These shortcomings were evaluated through case studies carried out on metallic artifacts related to various periods and cultures around Anatolia. An Innov-X Delta Standard 2000 handheld x-ray fluorescence spectrometer was used to collect data from 1361 artifacts, through 6789 measurements and 70 hours’ tube usage, in between 2013-2017. Spectrum processing was done by Delta Advanced PC Software. Qualitative and quantitative results screened by the device were compared with the spectrum graphs, and major discrepancies associated with physical and analytical interferences were clarified in this paper.Keywords: hand-held x-ray fluorescence spectroscopy, art and archaeology, interferences and analytical errors, pre-diagnosis in conservation
Procedia PDF Downloads 1945067 From Restraint to Obligation: The Protection of the Environment in Times of Armed Conflict
Authors: Aaron Walayat
Abstract:
Protection of the environment in international law has been one of the most developed in the context of international humanitarian law. This paper examines the history of the protection of the environment in times of armed conflict, beginning with the traditional notion of restraint observed in antiquity towards the obligation to protect the environment, examining the treaties and agreements, both binding and non-binding which have contributed to environmental protection in war. The paper begins with a discussion of the ancient concept of restraint. This section examines the social norms in favor of protection of the environment as observed in the Bible, Greco-Roman mythology, and even more contemporary literature. The study of the traditional rejection of total war establishes the social foundation on which the current legal regime has stemmed. The paper then studies the principle of restraint as codified in international humanitarian law. It mainly examines Additional Protocol I of the Geneva Convention of 1949 and existing international law concerning civilian objects and the principles of international humanitarian law in the classification between civilian objects and military objectives. The paper then explores the environment’s classification as both a military objective and as a civilian object as well as explores arguments in favor of the classification of the whole environment as a civilian object. The paper will then discuss the current legal regime surrounding the protection of the environment, discussing some declarations and conventions including the 1868 Declaration of St. Petersburg, the 1907 Hague Convention No. IV, the Geneva Conventions, and the 1976 Environmental Modification Convention. The paper concludes with the outline noting the movement from codification of the principles of restraint into the various treaties, agreements, and declarations of the current regime of international humanitarian law. This paper provides an analysis of the history and significance of the relationship between international humanitarian law as a major contributor to the growing field of international environmental law.Keywords: armed conflict, environment, legal regime, restraint
Procedia PDF Downloads 2005066 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 5135065 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph
Authors: Youhang Zhou, Weimin Zeng, Qi Xie
Abstract:
Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.Keywords: guide surface, wear defects, feature extraction, data visualization
Procedia PDF Downloads 5175064 Combined Analysis of Land use Change and Natural Flow Path in Flood Analysis
Authors: Nowbuth Manta Devi, Rasmally Mohammed Hussein
Abstract:
Flood is one of the most devastating climate impacts that many countries are facing. Many different causes have been associated with the intensity of floods being recorded over time. Unplanned development, low carrying capacity of drains, clogged drains, construction in flood plains or increasing intensity of rainfall events. While a combination of these causes can certainly aggravate the flood conditions, in many cases, increasing drainage capacity has not reduced flood risk to the level that was expected. The present study analyzed the extent to which land use is contributing to aggravating impacts of flooding in a city. Satellite images have been analyzed over a period of 20 years at intervals of 5 years. Both unsupervised and supervised classification methods have been used with the image processing module of ArcGIS. The unsupervised classification was first compared to the basemap available in ArcGIS to get a first overview of the results. These results also aided in guiding data collection on-site for the supervised classification. The island of Mauritius is small, and there are large variations in land use over small areas, both within the built areas and in agricultural zones involving food crops. Larger plots of agricultural land under sugar cane plantations are relatively more easily identified. However, the growth stage and health of plants vary and this had to be verified during ground truthing. The results show that although there have been changes in land use as expected over a span of 20 years, this was not significant enough to cause a major increase in flood risk levels. A digital elevation model was analyzed for further understanding. It could not be noted that overtime, development tampered with natural flow paths in addition to increasing the impermeable areas. This situation results in backwater flows, hence increasing flood risks.Keywords: climate change, flood, natural flow paths, small islands
Procedia PDF Downloads 05063 Classification of Echo Signals Based on Deep Learning
Authors: Aisulu Tileukulova, Zhexebay Dauren
Abstract:
Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.Keywords: radar, neural network, convolutional neural network, echo signals
Procedia PDF Downloads 3515062 A Machine Learning Approach for Assessment of Tremor: A Neurological Movement Disorder
Authors: Rajesh Ranjan, Marimuthu Palaniswami, A. A. Hashmi
Abstract:
With the changing lifestyle and environment around us, the prevalence of the critical and incurable disease has proliferated. One such condition is the neurological disorder which is rampant among the old age population and is increasing at an unstoppable rate. Most of the neurological disorder patients suffer from some movement disorder affecting the movement of their body parts. Tremor is the most common movement disorder which is prevalent in such patients that infect the upper or lower limbs or both extremities. The tremor symptoms are commonly visible in Parkinson’s disease patient, and it can also be a pure tremor (essential tremor). The patients suffering from tremor face enormous trouble in performing the daily activity, and they always need a caretaker for assistance. In the clinics, the assessment of tremor is done through a manual clinical rating task such as Unified Parkinson’s disease rating scale which is time taking and cumbersome. Neurologists have also affirmed a challenge in differentiating a Parkinsonian tremor with the pure tremor which is essential in providing an accurate diagnosis. Therefore, there is a need to develop a monitoring and assistive tool for the tremor patient that keep on checking their health condition by coordinating them with the clinicians and caretakers for early diagnosis and assistance in performing the daily activity. In our research, we focus on developing a system for automatic classification of tremor which can accurately differentiate the pure tremor from the Parkinsonian tremor using a wearable accelerometer-based device, so that adequate diagnosis can be provided to the correct patient. In this research, a study was conducted in the neuro-clinic to assess the upper wrist movement of the patient suffering from Pure (Essential) tremor and Parkinsonian tremor using a wearable accelerometer-based device. Four tasks were designed in accordance with Unified Parkinson’s disease motor rating scale which is used to assess the rest, postural, intentional and action tremor in such patient. Various features such as time-frequency domain, wavelet-based and fast-Fourier transform based cross-correlation were extracted from the tri-axial signal which was used as input feature vector space for the different supervised and unsupervised learning tools for quantification of severity of tremor. A minimum covariance maximum correlation energy comparison index was also developed which was used as the input feature for various classification tools for distinguishing the PT and ET tremor types. An automatic system for efficient classification of tremor was developed using feature extraction methods, and superior performance was achieved using K-nearest neighbors and Support Vector Machine classifiers respectively.Keywords: machine learning approach for neurological disorder assessment, automatic classification of tremor types, feature extraction method for tremor classification, neurological movement disorder, parkinsonian tremor, essential tremor
Procedia PDF Downloads 1535061 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System
Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli
Abstract:
This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.Keywords: feature selection, genetic algorithm, optimization, wood recognition system
Procedia PDF Downloads 5445060 Analysis of Patent Protection of Bone Tissue Engineering Scaffold Technology
Authors: Yunwei Zhang, Na Li, Yuhong Niu
Abstract:
Bone tissue engineering scaffold was regarded as an important clinical technology of curing bony defect. The patent protection of bone tissue engineering scaffold had been paid more attention and strengthened all over the world. This study analyzed the future development trends of international technologies in the field of bone tissue engineering scaffold and its patent protection. This study used the methods of data classification and classification indexing to analyze 2718 patents retrieved in the patent database. Results showed that the patents coming from United States had a competitive advantage over other countiries in the field of bone tissue engineering scaffold. The number of patent applications by a single company in U.S. was a quarter of that of the world. However, the capability of R&D in China was obviously weaker than global level, patents mainly coming from universities and scientific research institutions. Moreover, it would be predicted that synthetic organic materials as new materials would be gradually replaced by composite materials. The patent technology protections of composite materials would be more strengthened in the future.Keywords: bone tissue engineering, patent analysis, Scaffold material, patent protection
Procedia PDF Downloads 1325059 A Review of Renewable Energy Conditions in Iran Country
Authors: Ehsan Atash Zaban, Mehdi Beyk
Abstract:
In recent years, concerns over the depletion of non-renewable fuels and environmental pollution have led countries around the world to look for alternative energy sources for these fuels. An energy source that can have the necessary reliability, be a suitable alternative to fossil fuels, be technologically achievable, comply with environmental standards to the maximum, and at the same time cause countries to meet domestic consumption for electricity production. Iran is one of the richest countries in the world in terms of various energy sources because, on the one hand, it has extensive sources of fossil and non-renewable fuels such as oil and gas, and on the other hand, it has great potential for renewable energy. In this paper, the potential of renewable energy in Iran, which includes solar, wind, geothermal, hydrogen technology, and biomass, has been reviewed and analyzed.Keywords: renewable energy, solar stations, wind, biomass, hydropower
Procedia PDF Downloads 885058 Gaze Patterns of Skilled and Unskilled Sight Readers Focusing on the Cognitive Processes Involved in Reading Key and Time Signatures
Authors: J. F. Viljoen, Catherine Foxcroft
Abstract:
Expert sight readers rely on their ability to recognize patterns in scores, their inner hearing and prediction skills in order to perform complex sight reading exercises. They also have the ability to observe deviations from expected patterns in musical scores. This increases the “Eye-hand span” (reading ahead of the point of playing) in order to process the elements in the score. The study aims to investigate the gaze patterns of expert and non-expert sight readers focusing on key and time signatures. 20 musicians were tasked with playing 12 sight reading examples composed for one hand and five examples composed for two hands to be performed on a piano keyboard. These examples were composed in different keys and time signatures and included accidentals and changes of time signature to test this theory. Results showed that the experts fixate more and for longer on key and time signatures as well as deviations in examples for two hands than the non-expert group. The inverse was true for the examples for one hand, where expert sight readers showed fewer and shorter fixations on key and time signatures as well as deviations. This seems to suggest that experts focus more on the key and time signatures as well as deviations in complex scores to facilitate sight reading. The examples written for one appeared to be too easy for the expert sight readers, compromising gaze patterns.Keywords: cognition, eye tracking, musical notation, sight reading
Procedia PDF Downloads 1385057 [Keynote Talk]: Determination of Metal Content in the Surface Sediments of the Istanbul Bosphorus Strait
Authors: Durata Haciu, Elif Sena Tekin, Gokce Ozturk, Patricia Ramey Balcı
Abstract:
Coastal zones are under increasing threat due to anthropogenic activities that introduce considerable pollutants such as heavy metals into marine ecosystems. As part of a larger experimental study examining species responses to contaminated marine sediments, surface sediments (top 5cm) were analysed for major trace elements at three locations in Istanbul Straight. Samples were randomly collected by divers (May 2018) using hand-corers from Istinye (n=4), Garipce (n=10) and Poyrazköy (n=6), at water depths of 4-8m. Twelve metals were examined: As, arsenic; Pb, lead; Cd, cadmium; Cr, chromium; Cu, Copper; Fe, Iron; Ni, Nickel; Zn, Zinc; V, vanadium; Mn, Manganese; Ba, Barium; and Ag, silver by wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) and Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). Preliminary results indicate that the average concentrations of metals (mg kg⁻¹) varied considerably among locations. In general, concentrations were relatively lower at Garipce compared to either Istinye or Poyrazköy. For most metals mean concentrations were highest at Poyrazköy and Ag and Cd were below detection limits (exception= Ag in a few samples). While Cd and As were undetected in all stations, the concentrations of Fe and Ni fall in the criteria of moderately polluted range and the rest of the metals in the range of low polluted range as compared to Effects Range Low (ERL) and Effects Range median (ERM) values determined by US Environmental Protection Agency (EPA).Keywords: effect-range classification, ICP/MS, marine sediments, XRF
Procedia PDF Downloads 1305056 Classifying Affective States in Virtual Reality Environments Using Physiological Signals
Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley
Abstract:
Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28 4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.Keywords: affective computing, biosignals, machine learning, stress database
Procedia PDF Downloads 1405055 Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field
Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen
Abstract:
Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure.Keywords: smart structures, piezolamintes, material nonlinearity, strong electric field
Procedia PDF Downloads 4245054 A Tool for Assessing Performance and Structural Quality of Business Process
Authors: Mariem Kchaou, Wiem Khlif, Faiez Gargouri
Abstract:
Modeling business processes is an essential task when evaluating, improving, or documenting existing business processes. To be efficient in such tasks, a business process model (BPM) must have high structural quality and high performance. Evidently, evaluating the performance of a business process model is a necessary step to reduce time, cost, while assessing the structural quality aims to improve the understandability and the modifiability of the BPMN model. To achieve these objectives, a set of structural and performance measures have been proposed. Since the diversity of measures, we propose a framework that integrates both structural and performance aspects for classifying them. Our measure classification is based on business process model perspectives (e.g., informational, functional, organizational, behavioral, and temporal), and the elements (activity, event, actor, etc.) involved in computing the measures. Then, we implement this framework in a tool assisting the structural quality and the performance of a business process. The tool helps the designers to select an appropriate subset of measures associated with the corresponding perspective and to calculate and interpret their values in order to improve the structural quality and the performance of the model.Keywords: performance, structural quality, perspectives, tool, classification framework, measures
Procedia PDF Downloads 1525053 Optimization of Beneficiation Process for Upgrading Low Grade Egyptian Kaolin
Authors: Nagui A. Abdel-Khalek, Khaled A. Selim, Ahmed Hamdy
Abstract:
Kaolin is naturally occurring ore predominantly containing kaolinite mineral in addition to some gangue minerals. Typical impurities present in kaolin ore are quartz, iron oxides, titanoferrous minerals, mica, feldspar, organic matter, etc. The main coloring impurity, particularly in the ultrafine size range, is titanoferrous minerals. Kaolin is used in many industrial applications such as sanitary ware, table ware, ceramic, paint, and paper industries, each of which should be of certain specifications. For most industrial applications, kaolin should be processed to obtain refined clay so as to match with standard specifications. For example, kaolin used in paper and paint industries need to be of high brightness and low yellowness. Egyptian kaolin is not subjected to any beneficiation process and the Egyptian companies apply selective mining followed by, in some localities, crushing and size reduction only. Such low quality kaolin can be used in refractory and pottery production but not in white ware and paper industries. This paper aims to study the amenability of beneficiation of an Egyptian kaolin ore of El-Teih locality, Sinai, to be suitable for different industrial applications. Attrition scrubbing and classification followed by magnetic separation are applied to remove the associated impurities. Attrition scrubbing and classification are used to separate the coarse silica and feldspars. Wet high intensity magnetic separation was applied to remove colored contaminants such as iron oxide and titanium oxide. Different variables affecting of magnetic separation process such as solid percent, magnetic field, matrix loading capacity, and retention time are studied. The results indicated that substantial decrease in iron oxide (from 1.69% to 0.61% ) and TiO2 (from 3.1% to 0.83%) contents as well as improving iso-brightness (from 63.76% to 75.21% and whiteness (from 79.85% to 86.72%) of the product can be achieved.Keywords: Kaolin, titanoferrous minerals, beneficiation, magnetic separation, attrition scrubbing, classification
Procedia PDF Downloads 3585052 Proposed Solutions Based on Affective Computing
Authors: Diego Adrian Cardenas Jorge, Gerardo Mirando Guisado, Alfredo Barrientos Padilla
Abstract:
A system based on Affective Computing can detect and interpret human information like voice, facial expressions and body movement to detect emotions and execute a corresponding response. This data is important due to the fact that a person can communicate more effectively with emotions than can be possible with words. This information can be processed through technological components like Facial Recognition, Gait Recognition or Gesture Recognition. As of now, solutions proposed using this technology only consider one component at a given moment. This research investigation proposes two solutions based on Affective Computing taking into account more than one component for emotion detection. The proposals reflect the levels of dependency between hardware devices and software, as well as the interaction process between the system and the user which implies the development of scenarios where both proposals will be put to the test in a live environment. Both solutions are to be developed in code by software engineers to prove the feasibility. To validate the impact on society and business interest, interviews with stakeholders are conducted with an investment mind set where each solution is labeled on a scale of 1 through 5, being one a minimum possible investment and 5 the maximum.Keywords: affective computing, emotions, emotion detection, face recognition, gait recognition
Procedia PDF Downloads 3665051 Sattriya: Its Transformation as a Principal Medium of Preaching Vaishnava Religion to Performing Art
Authors: Smita Lahkar
Abstract:
Sattriya, the youngest of the eight principal Classical Indian dance traditions, has undergone too many changes and modifications to arrive at its present stage of performing art form extracting itself from age-old religious confinement. Although some of the other traditions have been revived in the recent past, Sattriya has a living tradition since its inception in the 15th century by Srimanta Sankardeva, the great Vaishnavite saint, poet, playwright, lyricist, painter, singer and dancer of Assam, a primary north-eastern state of India. This living dance tradition from the Sattras, the Vaishnavite monasteries, has been practiced for over five hundred years by celibate male monks, as a powerful medium for propagating the Vaishnava religious faith. Sankardeva realised the potential of the vocalised word integrated with the visual image as a powerful medium of expression and communication. So he used this principal medium for propagating his newly found message of devotion among the people of his time. Earlier, Sattriya was performed by male monks alone in monasteries (Sattras) as a part of daily rituals. The females were not even allowed to learn this art form. But, in present time, Sattriya has come out from the Sattras to proscenium stage, performed mostly by female as well as few male dancers also. The technique of performing movements, costumes, ornaments, music and style of performance too have experienced too many changes and modifications. For example, earlier and even today in Sattra, the ‘Pataka’ hand gesture is depicted in conformity with the original context (religious) of creation of the dance form. But, today stage-performers prefer the instructions of the scripture ‘Srihastamuktavali’ and depict the ‘Pataka’ in a sophisticated manner affecting decontextualisation to a certain extent. This adds aesthetic beauty to the dance form as an art distancing it from its context of being a vehicle for propagating Vaishnava religion. The Sattriya dance today stands at the crossroads of past and future, tradition and modernity, devotion and display, spirituality and secularism. The traditional exponents trained under the tutelage of Sattra maestros and imbibing a devotionally inspired rigour of the religion, try to retain the traditional nuances; while the young artists being trained outside the monasteries are more interested in taking up the discipline purely from the perspective of ‘performing arts’ bereft of the philosophy of religion or its sacred associations. Hence, this paper will be an endeavor to establish the hypothesis that the Sattriya, whose origin was for propagating Vaishnava faith, has now entered the world of performing arts with highly aesthetical components. And as a transformed art form, Sattriya may be expected to carve a niche in world dance arena. This will be done with the help of historical evidences, observations from the recorded past and expert rendezvous.Keywords: dance, performing art, religion, Sattriya
Procedia PDF Downloads 2185050 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 875049 Central Palmar Necrosis Following Steroid Injections for the Treatment of Carpal Tunnel Syndrome: A Case Report
Authors: M. Ridwanul Hassan, Samuel George
Abstract:
Aims: Steroid injections are commonly used as a diagnostic tool or an alternative to surgical management of carpal tunnel syndrome (CTS) and are generally safe. Ischaemia is a rare complication with very few cases reported in the literature. Methods: We report a case of a 50-year-old female that presented with a necrotic wound to her left palm one month after a steroid injection into the carpal tunnel. She had a 2-year history of CTS in her left hand that was treated with six previous steroid injections in primary care during this period. The wound evolved from a blister to a necrotic ulcer which led to a painful, hollow defect in the centre of her palm. She did not report any history of trauma, nor did she have any co-morbidities. Clinical photographs were taken. Results: On examination, she had a 0.5 cmx1 cm defect in the palm of her left hand down to aponeurosis. There was purulent discharge in the wound with surrounding erythema but no spreading cellulitis. She had full function of her fingers but was very tender on movements and at rest. She was admitted for intravenous antibiotics and underwent a debridement, washout, and carpal tunnel release the next day. The defect was packed to heal by secondary intention and has now fully healed one month following her operation. Conclusions: This is an extremely rare complication of steroid injections to the carpal tunnel and may have been avoided by earlier referral for surgery rather than treatment using multiple steroid injections.Keywords: hand surgery, complication, rare, carpal tunnel syndrome
Procedia PDF Downloads 1105048 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 11