Search results for: green extracts
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2923

Search results for: green extracts

2173 Interference among Lambsquarters and Oil Rapeseed Cultivars

Authors: Reza Siyami, Bahram Mirshekari

Abstract:

Seed and oil yield of rapeseed is considerably affected by weeds interference including mustard (Sinapis arvensis L.), lambsquarters (Chenopodium album L.) and redroot pigweed (Amaranthus retroflexus L.) throughout the East Azerbaijan province in Iran. To formulate the relationship between four independent growth variables measured in our experiment with a dependent variable, multiple regression analysis was carried out for the weed leaves number per plant (X1), green cover percentage (X2), LAI (X3) and leaf area per plant (X4) as independent variables and rapeseed oil yield as a dependent variable. The multiple regression equation is shown as follows: Seed essential oil yield (kg/ha) = 0.156 + 0.0325 (X1) + 0.0489 (X2) + 0.0415 (X3) + 0.133 (X4). Furthermore, the stepwise regression analysis was also carried out for the data obtained to test the significance of the independent variables affecting the oil yield as a dependent variable. The resulted stepwise regression equation is shown as follows: Oil yield = 4.42 + 0.0841 (X2) + 0.0801 (X3); R2 = 81.5. The stepwise regression analysis verified that the green cover percentage and LAI of weed had a marked increasing effect on the oil yield of rapeseed.

Keywords: green cover percentage, independent variable, interference, regression

Procedia PDF Downloads 401
2172 Green Building for Positive Energy Districts in European Cities

Authors: Paola Clerici Maestosi

Abstract:

Positive Energy District (PED) is a rather recent concept whose aim is to contribute to the main objectives of the Energy Union strategy. It is based on an integrated multi-sectoral approach in response to Europe's most complex challenges. PED integrates energy efficiency, renewable energy production, and energy flexibility in an integrated, multi-sectoral approach at the city level. The core idea behind Positive Energy Districts (PEDs) is to establish an urban area that can generate more energy than it consumes. Additionally, it should be flexible enough to adapt to changes in the energy market. This is crucial because a PED's goal is not just to achieve an annual surplus of net energy but also to help reduce the impact on the interconnected centralized energy networks. It achieves this by providing options to increase on-site load matching and self-consumption, employing technologies for short- and long-term energy storage, and offering energy flexibility through smart control. Thus, it seems that PEDs can encompass all types of buildings in the city environment. Given this which is the added value of having green buildings being constitutive part of PEDS? The paper will present a systematic literature review identifying the role of green building in Positive Energy District to provide answer to following questions: (RQ1) the state of the art of PEDs implementation; (RQ2) penetration of green building in Positive Energy District selected case studies. Methodological approach is based on a broad holistic study of bibliographic sources according to Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) further data will be analysed, mapped and text mining through VOSviewer. Main contribution of research is a cognitive framework on Positive Energy District in Europe and a selection of case studies where green building supported the transition to PED. The inclusion of green buildings within Positive Energy Districts (PEDs) adds significant value for several reasons. Firstly, green buildings are designed and constructed with a focus on environmental sustainability, incorporating energy-efficient technologies, materials, and design principles. As integral components of PEDs, these structures contribute directly to the district's overall ability to generate more energy than it consumes. Secondly, green buildings typically incorporate renewable energy sources, such as solar panels or wind turbines, further boosting the district's capacity for energy generation. This aligns with the PED objective of achieving a surplus of net energy. Moreover, green buildings often feature advanced systems for on-site energy management, load-matching, and self-consumption. This enhances the PED's capability to respond to variations in the energy market, making the district more agile and flexible in optimizing energy use. Additionally, the environmental considerations embedded in green buildings align with the broader sustainability goals of PEDs. By reducing the ecological footprint of individual structures, PEDs with green buildings contribute to minimizing the overall impact on centralized energy networks and promote a more sustainable urban environment. In summary, the incorporation of green buildings within PEDs not only aligns with the district's energy objectives but also enhances environmental sustainability, energy efficiency, and the overall resilience of the urban environment.

Keywords: positive energy district, renewables energy production, energy flexibility, energy efficiency

Procedia PDF Downloads 28
2171 Willingness to Purchase and Pay a Price Premium for an Apartment with Exterior Green Walls

Authors: Tamar Trop, Michal Roffeh

Abstract:

One of the emerging trends in construction is installing an exterior “green wall” (GW). GW is an overarching and most common term for various techniques of incorporating greenery into buildings’ vertical elements, mainly facades. This green infrastructure yields numerous benefits for the urban environment, the public, and the buildings’ tenants and users, such as enhancing air quality and biodiversity, managing stormwater runoff, mitigating urban heat island and climate change, improving urban aesthetics and mental wellbeing, improving indoor comfort conditions, and saving energy. Yet, the penetration rate of GWs into the construction market, especially into the housing sector, is still very slow. Furthermore, the research regarding prospective homebuyers’ willingness to purchase and pay a price premium for GW apartments is scarce and does not refer to newly built buildings and specific GW types. This research aims to narrow these knowledge gaps by exploring the willingness of prospective homebuyers in Israel to purchase a newly built apartment with a hydroponic living wall, the size of the PP that they would be willing to pay for it, and the various factors ̶ knowledge-related, concern, economic, and personal ̶ that influence these motivations. A nationwide online survey was conducted among a sample of 514 adults using a structured questionnaire. Findings show that despite low familiarity with GWs and strong concerns about various kinds of nuisance, technical issues, and maintenance costs, potential homebuyers express a relatively high willingness to purchase and pay a significant price premium for such an apartment. The main motivations behind this willingness were found to be potential energy savings and governmental incentives. Study findings can contribute to a better understanding of the maturity of the housing market in Israel to adopt GWs and to better tailor intervention tools for increasing GWs’ uptake among potential homebuyers.

Keywords: green façade, green wall, living wall, willingness to pay

Procedia PDF Downloads 10
2170 Virtualizing Attendance and Reducing Impacts on the Environment with a Mobile Application

Authors: Paulo R. M. Andrade, Adriano B. Albuquerque, Otávio F. Frota, Robson V. Silveira, Fátima A. da Silva

Abstract:

Information technology has been gaining more and more space whether in industry, commerce or even for personal use, but the misuse of it brings harm to the environment and human health as a result. Contribute to the sustainability of the planet is to compensate the environment, all or part of what withdraws it. The green computing also came to propose practical for use in IT in an environmentally correct way in aid of strategic management and communication. This work focuses on showing how a mobile application can help businesses reduce costs and reduced environmental impacts caused by its processes, through a case study of a public company in Brazil.

Keywords: green computing, information technology, e-government, sustainable development, mobile computing

Procedia PDF Downloads 398
2169 Productivity, Phenolic Composition and Antioxidant Activity of Arrowroot (Maranta arundinacea)

Authors: Maira C. M. Fonseca, Maria Aparecida N. Sediyama, Rosana Goncalves R. das Dores, Sanzio Mollica Vidigal, Alberto C. P. Dias

Abstract:

Among Brazilian plant diversity, many species are used as food and considered minor crops (non-conventional plant foods) (NCPF). Arrowroot (Maranta arundinacea) is a NCPF from which starch is extracted from rhizome do not have gluten. Thus, arrowroot flower starch can be consumed by celiac people. Additional, some medicinal and functional proprieties are assigned to arrowroot leaves which currently are underutilized. In Brazil, it’s cultivated mainly by small scale farmers and there is no specific recommendation for fertilization. This work aimed to determinate the best fertilization for rhizome production and to verify its influence in phenolic composition and antioxidant activity of leaf extracts. Two arrowroot varieties, “Common” and “Seta”, were cultivated in organic system at state of Minas Gerais, Brazil, using cattle manure with three levels of nitrogen (N) (0, 300 and 900 kg N ha-1). The experiment design was in randomized block with four replicates. The highest production of rhizomes in both varieties, “Common” (38198.24 kg ha-1) and “Seta” (43567.71 kg ha-1), were obtained with the use of 300 kg N ha-1. With this fertilization, the total aerial part, petiole and leaf production in the varieties were respectively: “Common” (190.312 kg ha-1; 159.312 kg ha-1; 31.100 kg ha-1) and “Seta” (207.656 kg ha-1; 180.539 kg ha-1; 27.062 kg ha-1). Methanolic leaf extracts were analysed by HPLC-DAD. The major phenolic compounds found were caffeioylquinic acids, p-coumaric derivatives and flavonoids. In general, the production of these compounds significantly decreases with the increase levels of nitrogen (900 kg N ha-1). With 300 kg N ha-1 the phenolic production was similar to control. The antioxidant activity was evaluated using DPPH method and was detected around 60% of radical scavenging when 0.1 mg/mL of plant extracts were used. We concluded that fertilization with 300 kg N ha-1 increased arrowroot rhizome production, maintaining phenolic compounds yield at leaves.

Keywords: antioxidant activity, non-conventional plants, organic fertilization, phenolic compounds

Procedia PDF Downloads 181
2168 A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy

Authors: Jian Yu

Abstract:

Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor.

Keywords: bioplastics, carbon dioxide fixation, drop-in liquid fuels, green process

Procedia PDF Downloads 172
2167 Physiological Effects of Myrrh and Ginseng Extracts in Diabetic Rats

Authors: Ismail I. Abo-Ghanema, Faheim E. Wehaish, Rasha M. Saleh , Walaa F. Awadin, Mohamed F. Elshal

Abstract:

The antidiabetic activity of myrrh and ginseng ethanolic extracts were investigated in streptozotocin (STZ)-induced diabetic rats. Thirty male albino rats were divided into five groups, each consisted of six rats. The first group (G1) is the negative control that was fed basal diet, the second group (G2) was injected with STZ and received no treatment, the third group (G3) injected with STZ and received metformin (50 mg/kg, b.wt) as standard anti-diabetic drug, the fourth group (G4) injected with STZ and ginseng (50 mg/kg, b.wt), the fifth group (G5) injected with STZ and received myrrh (500 mg/kg, b.wt). As compared with G1-group, STZ injection increased blood concentrations of glucose (6.2 fold), glycated hemoglobin (HbA1c) (2.51 fold), aspartateaminotransferase (AST), and alanine aminotransferase (ALT) (2.64, 4.60 fold respectively), creatinine (2.91 fold), cholesterol (1.79 fold), triglycerides (2.06 fold), low density lipoprotein-cholesterol (LDL) (2.92 fold), nitric oxide (NO) (20.18 fold), and malondialdehyde (MDA) (2.25 fold), whereas it decreased blood insulin (0.40 fold), albumin (0.60 fold), high density lipoprotein-cholesterol (HDL) (0.33 fold), and reduced glutathione (GSH) (0.49 fold). Vascular permeability index (VPI as measured by Evan's Blue; EB extravasations test) was significantly increased in the skin of diabetic animals (9.6 fold) when compared with the G1-group. In addition, histological alterations in liver, pancreas, kidneys and heart were observed. After 4 weeks of treatment, rats in G4 and G5 showed significant corrections in the all measured parameters and indices. In conclusions, the ethanolic extracts of ginseng and myrrh exhibited promising and safe anti-diabetic activity especially on peripheral circulation as manifested by decreased vascular permeability and improved histopathological alterations of examined organs and insulin secretion. Hence, it may be pursued for their clinical usefulness in the management of diabetes mellitus (DM) and associated vascular complications.

Keywords: diabetic rats, peripheral circulation, natural plants, myrrh, ginseng

Procedia PDF Downloads 632
2166 The Use of Sustainability Criteria on Infrastructure Design to Encourage Sustainable Engineering Solutions on Infrastructure Projects

Authors: Shian Saroop, Dhiren Allopi

Abstract:

In order to stay competitive and to meet upcoming stricter environmental regulations and customer requirements, designers have a key role in designing civil infrastructure so that it is environmentally sustainable. There is an urgent need for engineers to apply technologies and methods that deliver better and more sustainable performance of civil infrastructure as well as a need to establish a standard of measurement for greener infrastructure, rather than merely use tradition solutions. However, there are no systems in place at the design stage that assesses the environmental impact of design decisions on township infrastructure projects. This paper identifies alternative eco-efficient civil infrastructure design solutions and developed sustainability criteria and a toolkit to analyse the eco efficiency of infrastructure projects. The proposed toolkit is aimed at promoting high-performance, eco-efficient, economical and environmentally friendly design decisions on stormwater, roads, water and sanitation related to township infrastructure projects. These green solutions would bring a whole new class of eco-friendly solutions to current infrastructure problems, while at the same time adding a fresh perspective to the traditional infrastructure design process. A variety of projects were evaluated using the green infrastructure toolkit and their results are compared to each other, to assess the results of using greener infrastructure verses the traditional method of designing infrastructure. The application of ‘green technology’ would ensure a sustainable design of township infrastructure services assisting the design to consider alternative resources, the environmental impacts of design decisions, ecological sensitivity issues, innovation, maintenance and materials, at the design stage of a project.

Keywords: eco-efficiency, green infrastructure, infrastructure design, sustainable development

Procedia PDF Downloads 209
2165 Green approach of Anticorrosion Coating of Steel Based on Polybenzoxazine/Henna Nanocomposites

Authors: Salwa M. Elmesallamy, Ahmed A. Farag, Magd M. Badr, Dalia S. Fathy, Ahmed Bakry, Mona A. El-Etre

Abstract:

The term green environment is an international trend. It is become imperative to treat the corrosion of steel with a green coating to protect the environment. From the potential adverse effects of the traditional materials.A series of polybenzoxazine/henna composites (PBZ/henna), with different weight percent (3,5, and 7 wt % (of henna), were prepared for corrosion protection of carbon steel. The structures of the prepared composites were verified using FTIR analysis. The mechanical properties of the resins, such as adhesion, hardness, binding, and tensile strength, were also measured. It was found that the tensile strength increases by henna loading up to 25% higher than the tidy resin. The thermal stability was investigated by thermogravimetric analysis (TGA) the loading of lawsone (henna) molecules into the PBZ matrix increases the thermal stability of the composite. UV stability was tested by the UV weathering accelerator to examine the possibility that henna can also act as an aging UV stabilizer. The effect of henna content on the corrosion resistance of composite coatings was tested using potentiostatic polarization and electrochemical spectroscopy. The presence of henna in the coating matrix enhances the protection efficiency of polybenzoxazine coats. Increasing henna concentration increases the protection efficiency of composites. The quantum chemical calculations for polybenzoxazine/henna composites have resulted that the highest corrosion inhibition efficiency, has the highest EHOMO and lowest ELUMO; which is in good agreement with results obtained from experiments.

Keywords: polybenzoxazine, corrosion, green chemistry, carbon steel

Procedia PDF Downloads 81
2164 Evaluation of Certain Medicinal Plants for in vitro Anti-Oxidant and Anti-Glycation Activities

Authors: K. Shailaja

Abstract:

The advanced glycation end products (AGEs) formed between the reducing sugar and protein as a result of Oxidative stress and non-enzymatic glycosylation play an important role in pathogenesis of diabetes and aging complication. Glycation results in the production of free radicals. The oxidation process is believed to play an important role in AGEs formation. Thus agents with antioxidative property and antiglycation activity may retard the process of AGEs formation. Selected medicinal plants for the present study include Catharanthus roseus, Bougainvillea spectabilis (pink flowers), Cinnamomum tamala, Cinnamomum zeylanica, Abutilon indicum, Asparagus racemosus, and Sapindus emarginatus. The crude ethanolic extracts of the selected medicinal plants at varying concentrations ranging from 1-100 mg/ml were evaluated for in vitro antioxidant and protein glycation activities by FRAP and glucose-BSA assay respectively. Among all the plants tested, Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum showed strong antioxidant activity The antioxidant activity was expressed as mg of Gallic acid/ gm sample which was found to be 4.3 mg, 1.3mg, and 1.3mg respectively for Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum. The results of inhibition of the initial glycation product i.e., fructosamine was found to be 35% for Asparagus racemosus, Cinnamomum tamala and Abutilon indicum followed by the other plant extracts. The results indicate that these plants are potential sources of natural antioxidants which have free radical scavenging activity and might be used not only for reducing oxidative stress in diabetes but also open a new research avenues in the field of Natural Products.

Keywords: in vitro antioxidant activity, anti-glycation activity, ethanol extracts, polyphenols, Catharanthus roseus, Cinnamomum tamala

Procedia PDF Downloads 411
2163 Green Extraction of Patchoulol from Patchouli Leaves Using Ultrasound-Assisted Ionic Liquids

Authors: G. C. Jadeja, M. A. Desai, D. R. Bhatt, J. K. Parikh

Abstract:

Green extraction techniques are fast paving ways into various industrial sectors due to the stringent governmental regulations leading to the banning of toxic chemicals’ usage and also due to the increasing health/environmental awareness. The present work describes the ionic liquids based sonication method for selectively extracting patchoulol from the leaves of patchouli. 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) and N,N,N,N’,N’,N’-Hexaethyl-butane-1,4-diammonium dibromide (dicationic ionic liquid - DIL) were selected for extraction. Ultrasound assisted ionic liquid extraction was employed considering concentration of ionic liquid (4–8 %, w/w), ultrasound power (50–150 W for [Bmim]BF4 and 20–80 W for DIL), temperature (30–50 oC) and extraction time (30–50 min) as major parameters influencing the yield of patchoulol. Using the Taguchi method, the parameters were optimized and analysis of variance (ANOVA) was performed to find the most influential factor in the selected extraction method. In case of [Bmim]BF4, the optimum conditions were found to be: 4 % (w/w) ionic liquid concentration, 50 W power, 30 oC temperature and extraction time of 30 min. The yield obtained under the optimum conditions was 3.99 mg/g. In case of DIL, the optimum conditions were obtained as 6 % (w/w) ionic liquid concentration, 80 W power, 30 oC temperature and extraction time of 40 min, for which the yield obtained was 4.03 mg/g. Temperature was found to be the most significant factor in both the cases. Extraction time was the insignificant parameter while extracting the product using [Bmim]BF4 and in case of DIL, power was found to be the least significant factor affecting the process. Thus, a green method of recovering patchoulol is proposed.

Keywords: green extraction, ultrasound, patchoulol, ionic liquids

Procedia PDF Downloads 344
2162 Effect of Green Manuring Jantar (Sesbania acculata. L.) on the Growth and Yield of Crops Grown in Wheat-Based Cropping Systems

Authors: Javed Kamal

Abstract:

A proposed field study of wheat-based cropping systems was conducted at Faisalabad (Post-Graduate Research Station). We used 7 treatments and Jantar as a green manuring crop to increase the fertility status of soil; after the vegetative phases of wheat, rice, sorghum, and mungbean, the agronomic parameters of these crops were recorded. Hopefully, all increased with jantar treatment when compared with controls. The benefit: cost ratio and physicochemical characteristics of the soil before and after the crop harvest were also calculated.

Keywords: benifit cost ratio, jantar, sunflower, rice, wheat

Procedia PDF Downloads 381
2161 Design and Performance Evaluation of Plasma Spouted Bed Reactor for Converting Waste Plastic into Green Hydrogen

Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Gartzen Lopez, Martin Olazar

Abstract:

Average calorific value of a mixure of waste plastic is approximately 38 MJ/kg. Present work aims to extract maximum possible energy from a mixure of waste plastic using a DC thermal plasma in a spouted bed reactor. Plasma pyrolysis and steam reforming process has shown a potential to generate hydrogen from plastic with much below of legal limit of producing dioxins and furans as the carcinogenic gases. A spouted bed pyrolysis rector can continuously process plastic beads to produce organic volatiles, which later react with steam in presence of catalyst to results in syngas. lasma being the fourth state of matter, can carry high impact electrons to favour the activation energy of any chemical reactions. Computational Fluid Dynamic (CFD) simulation using COMSOL Multiphysics software has been performed to evaluate performance of a plasma spouted bed reactor in producing contamination free hydrogen as a green energy from waste plastic beads. The simulation results will showcase a design of a plasma spouted bed reactor for converting plastic waste into green hydrogen in a single step process. The high temperature hydrodynamics of spouted bed with plastic beads and the corresponding temperature distribution inside the reaction chamber will be critically examined for it’s near future installation of demonstration plant.

Keywords: green hydrogen, plastic waste, synthetic gas, pyrolysis, steam reforming, spouted bed, reactor design, plasma, dc palsma, cfd simulation

Procedia PDF Downloads 85
2160 Anti-Diabetic Effect of Withania somnifera in Alloxan Induced Diabetic Rabbits

Authors: Farah Ali, Tehreem Fiayyaz, Laeeq Akbar Lodhi, Imran Mirza

Abstract:

The present work was undertaken to investigate effects of various extracts of W. somnifera (WS) for anti-diabetic activity in alloxan induced diabetic rabbits. Animals were divided into nine groups of six rabbits each. The animals of group 1 and 2 were given lactose (250 mg/kg, p.o) and WS root powder (100 mg/kg, p.o) respectively daily from day 1-20. Animals of group 3 were given alloxan (100 mg/kg, i.v) as a single dose on day 1. Powdered root of WS in the doses of 100, 150, 200 mg/kg and its aqueous (AWS) and ethanol extracts (EWS) (equivalent to 200 mg/kg of crude drug) were given to the treated animals (groups 4-8), respectively orally for three weeks (day 1-20 o.d), along with alloxan (100 mg/kg, i.v) as a single dose on day 1. Group 9 was given metformin (200 mg/kg) daily from day 1-20, along with a single dose of alloxan (100 mg/ kg, i.v) on day 1. Fasting serum glucose concentration in groups 3-9 was increased significantly (p<0.05) on day 3 as compared to normal control (NC) group (1). WS (100, 150, 200 mg/kg, p.o) decreased the fasting serum glucose concentration, with a maximum decrease (88.3 mg/dl) in group 2 (treated control) on day 21 of the experiment. These results indicate that metformin (reference control), (AWS) and (EWS) significantly antagonized the diabetic effects of alloxan.

Keywords: diabetes, serum, glucose, blood, sugar, rabbits

Procedia PDF Downloads 638
2159 Variability Parameters for Growth and Yield Characters in Fenugreek, Trigonella spp. Genotypes

Authors: Anita Singh, Richa Naula, Manoj Raghav

Abstract:

India is a leading producer and consumer of fenugreek for its culinary uses and medicinal application. In India, most of the people are of vegetarian class. In such a situation, a leafy vegetable, such as fenugreek is of chief concern due to its high nutritional property, medicinal values and industrial uses. One of the most important factors restricting their large scale production and development of superior varieties is that very scanty knowledge about their genetic diversity, inter and intraspecific variability and genetic relationship among the species. Improvement of the crop depends upon the magnitude of genetic variability for economic characters. Therefore, the present research work was carried out to analyse the variability parameters for growth and yield character in twenty-eight fenugreek genotypes along with two standard checks Pant Ragini and Pusa Early Bunching. The experiment was laid out in Randomized Block Design with three replication during rabi season 2015-2016 at Pantnagar Centre for Plant Genetic Resources, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand. The analysis of variance revealed highly significant differences among all the genotypes for all traits. High genotypic and phenotypic coefficient variation were observed for characters, namely the number of primary branches per plant, number of leaves at 30, 45 and 60 DAS, green leaf yield per plant, green leaf yield q/ha . The genetic advance recorded highest in green leaf yield q/ha (33.93) followed by green leaf yield per plant (21.20g). Highest percent of heritability were shown by 1000 seed weight (99.12%) followed by the number of primary branches per plant (97.18%). Green leaf yield q/ha showed high heritability and high genetic advance. These superior genotypes can be further used in crop improvement programs of fenugreek.

Keywords: genetic advance, genotypic coefficient variation, heritability, phenotypic coefficient variation

Procedia PDF Downloads 299
2158 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment

Authors: Said Alshukri, Mazhar Hussain Malik

Abstract:

Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.

Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest

Procedia PDF Downloads 59
2157 Design and Development of 5-DOF Color Sorting Manipulator for Industrial Applications

Authors: Atef A. Ata, Sohair F. Rezeka, Ahmed El-Shenawy, Mohammed Diab

Abstract:

Image processing in today’s world grabs massive attentions as it leads to possibilities of broaden application in many fields of high technology. The real challenge is how to improve existing sorting system applications which consists of two integrated stations of processing and handling with a new image processing feature. Existing color sorting techniques use a set of inductive, capacitive, and optical sensors to differentiate object color. This research presents a mechatronics color sorting system solution with the application of image processing. A 5-DOF robot arm is designed and developed with pick and place operation to be main part of the color sorting system. Image processing procedure senses the circular objects in an image captured in real time by a webcam attached at the end-effector then extracts color and position information out of it. This information is passed as a sequence of sorting commands to the manipulator that has pick-and-place mechanism. Performance analysis proves that this color based object sorting system works very accurate under ideal condition in term of adequate illumination, circular objects shape and color. The circular objects tested for sorting are red, green and blue. For non-ideal condition, such as unspecified color the accuracy reduces to 80%.

Keywords: robotics manipulator, 5-DOF manipulator, image processing, color sorting, pick-and-place

Procedia PDF Downloads 354
2156 Green Synthesis of Spinach Derived Carbon Dots for Photocatalytic Generation of Hydrogen from Sulfide Wastewater

Authors: Priya Ruban, Thirunavoukkarasu Manikkannan, Sakthivel Ramasamy

Abstract:

Sulfide is one of the major pollutants of tannery effluent which is mainly generated during the process of unhairing. Recovery of Hydrogen green fuel from sulfide wastewater using photocatalysis is a ‘Cleaner Production Method’, since renewable solar energy is utilized. It has triple advantages of the generation of H2, waste minimization and odor or pollution control. Designing of safe and green photocatalysts and developing suitable solar photoreactor is important for promoting this technology to large-scale application. In this study, green photocatalyst i.e., spinach derived carbon dots (SCDs 5 wt % and 10 wt %)/TiO2 nanocomposite was synthesized for generation of H2 from sulfide wastewater using lab-scale solar photocatalytic reactor. The physical characterization of the synthesized solar light responsive nanocomposites were studied by using DRS UV-Vis, XRD, FTIR and FESEM analysis. The absorption edge of TiO2 nanoparticles is extended to visible region by the incorporation of SCDs, which was used for converting noxious pollutant sulfide into eco-friendly solar fuel H2. The SCDs (10 wt%)-TiO2 nanocomposite exhibits enhanced photocatalytic hydrogen production i.e. ~27 mL of H2 (180 min) from simulated sulfide wastewater under LED visible light irradiation which is higher as compared to SCDs. The enhancement in the photocatalytic generation of H2 is attributed to combining of SCDs which increased the charge mobility. This work may provide new insights to usage of naturally available and cheap materials to design novel nanocomposite as a visible light active photocatalyst for the generation of H2 from sulfide containing wastewater.

Keywords: carbon dots, hydrogen fuel, hydrogen sulfide, photocatalysis, sulfide wastewater

Procedia PDF Downloads 373
2155 An Investigation into the Gaps in Green Building Education and Training Offerings in Nigeria

Authors: Adebayo A. Abimbola, Anifowose O. Joseph, Olanrewaju S. Taiwo

Abstract:

Green building (GB) practices have the potential to save energy, save money, and improve the quality of human habitat. They can also contribute to water conservation, more efficient use of raw materials, and ecosystem health around the globe. The Intergovernmental Panel on Climate Change (IPCC) singled out the building sector as having the most cost-effective opportunities for reducing carbon emissions—in fact, many building-related opportunities are cost-neutral, or even cost-positive, to the building owner. These benefits have made green building practices the fastest-growing trend in the building industry, but they still represent only a fraction of new construction, and the enormous stock of existing buildings has barely been touched at all. To effectively deliver the kind of (GB) that can become a force for positive change at global, regional and local scales, all workforce sectors need new skills that are both technical and interpersonal in nature. A prominent bottleneck is seen to be education and training. This paper investigates the major gaps in current GB education and training offerings in Nigeria. A questionnaire survey was developed to capture the perception of construction professionals and academics in relevant professions regarding the significance of the identified gaps as it affects GB education and training. Based on Likert scale ranking, research result shows that perception of training in specific technical fields and financial benefits and evaluation are identified as the top gaps in GB training and education offerings. The paper concludes with suggestions and actions that can enhance capabilities of the GB workforce in Nigeria.

Keywords: education and training, gaps, green building, workforce

Procedia PDF Downloads 298
2154 The Aspect of the Digital Formation in the Solar Community as One Prototype to Find the Algorithmic Sustainable Conditions in the Global Environment

Authors: Kunihisa Kakumoto

Abstract:

Purpose: The global environmental problem is now raised in the global dimension. The sprawl phenomenon over the natural limitation is to be made a forecast beforehand in an algorithmic way so that the condition of our social life can hopefully be protected under the natural limitation. The sustainable condition in the globe is now to be found to keep the balance between the capacity of nature and the possibility of our social lives. The amount of water on the earth is limited. Therefore, on the reason, sustainable conditions are strongly dependent on the capacity of water. The amount of water can be considered in relation to the area of the green planting because a certain volume of the water can be obtained in the forest, where the green planting can be preserved. We can find the sustainable conditions of the water in relation to the green planting area. The reduction of CO₂ by green planting is also possible. Possible Measure and the Methods: Until now, by the opportunity of many international conferences, the concept of the solar community as one prototype has been introduced by technical papers. The algorithmic trial calculation on the basic concept of the solar community can be taken into consideration. The concept of the solar community is based on the collected data of the solar model house. According to the algorithmic results of the prototype, the simulation work in the globe can be performed as the algorithmic conversion results. This algorithmic study can be simulated by the amount of water, also in relation to the green planting area. Additionally, the submission of CO₂ in the solar community and the reduction of CO₂ by green planting can be calculated. On the base of these calculations in the solar community, the sustainable conditions on the globe can be simulated as the conversion results in an algorithmic way. The digital formation in the solar community can also be taken into consideration by this opportunity. Conclusion: For the finding of sustainable conditions around the globe, the solar community as one prototype has been taken into consideration. The role of the water is very important because the capacity of the water supply is very limited. But, at present, the cycle of the social community is not composed by the point of the natural mechanism. The simulative calculation of this study can be shown by the limitation of the total water supply. According to this process, the total capacity of the water supply and the capable residential number of the population and the areas can be taken into consideration by the algorithmic calculation. For keeping enough water, the green planting areas are very important. The planting area is also very important to keep the balance of CO₂. The simulative calculation can be performed by the relation between the submission and the reduction of CO₂ in the solar community. For the finding of this total balance and the sustainable conditions, the green planting area and the total amount of water can be recognized by the algorithmic simulative calculation. The study for the finding of sustainable conditions can be performed by the simulative calculations on the algorithmic model in the solar community as one prototype. The example of one prototype can be in balance. The activity of the social life must be in the capacity of the natural mechanism. The capable capacity of the natural environment in our world is very limited.

Keywords: the solar community, the sustainable condition, the natural limitation, the algorithmic calculation

Procedia PDF Downloads 86
2153 Mediating Role of 'Investment Recovery' and 'Competitiveness' on the Impact of Green Supply Chain Management Practices over Firm Performance: An Empirical Study Based on Textile Industry of Pakistan

Authors: Mehwish Jawaad

Abstract:

Purpose: The concept of GrSCM (Green Supply Chain Management) in the academic and research field is still thought to be in the development stage especially in Asian Emerging Economies. The purpose of this paper is to contribute significantly to the first wave of empirical investigation on GrSCM Practices and Firm Performance measures in Pakistan. The aim of this research is to develop a more holistic approach towards investigating the impact of Green Supply Chain Management Practices (Ecodesign, Internal Environmental Management systems, Green Distribution, Green Purchasing and Cooperation with Customers) on multiple dimensions of Firm Performance Measures (Economic Performance, Environmental Performance and Operational Performance) with a mediating role of Investment Recovery and Competitiveness. This paper also serves as an initiative to identify if the relationship between Investment Recovery and Firm Performance Measures is mediated by Competitiveness. Design/ Methodology/Approach: This study is based on survey Data collected from 272, ISO (14001) Certified Textile Firms Based in Lahore, Faisalabad, and Karachi which are involved in Spinning, Dyeing, Printing or Bleaching. A Theoretical model was developed incorporating the constructs representing Green Activities and Firm Performance Measures of a firm. The data was analyzed using Partial Least Square Structural Equation Modeling. Senior and Mid-level managers provided the data reflecting the degree to which their organizations deal with both internal and external stakeholders to improve the environmental sustainability of their supply chain. Findings: Of the 36 proposed Hypothesis, 20 are considered valid and significant. The statistics result reveal that GrSCM practices positively impact Environmental Performance followed by Economic and Operational Performance. Investment Recovery acts as a strong mediator between Intra organizational Green activities and performance outcomes. The relationship of Reverse Logistics influencing outcomes is significantly mediated by Competitiveness. The pressure originating from customers exert significant positive influence on the firm to adopt Green Practices consequently leading to higher outcomes. Research Contribution/Originality: Underpinning the Resource dependence theory and as a first wave of investigating the impact of Green Supply chain on performance outcomes in Pakistan, this study intends to make a prominent mark in the field of research. Investment and Competitiveness together are tested as a mediator for the first time in this arena. Managerial implications: Practitioner is provided with a framework for assessing the synergistic impact of GrSCM practices on performance. Upgradation of Accreditations and Audit Programs on regular basis are the need of the hour. Making the processes leaner with the sale of excess inventories and scrap helps the firm to work more efficiently and productively.

Keywords: economic performance, environmental performance, green supply chain management practices, operational performance, sustainability, a textile sector of Pakistan

Procedia PDF Downloads 206
2152 Evaluation of Thrombolytic Activity of Zingiber cassumunar Roxb. and Thai Herbal Prasaplai Formula

Authors: Warachate Khobjai, Suriyan Sukati, Khemjira Jarmkom, Pattaranut Eakwaropas, Surachai Techaoei

Abstract:

The propose of this study was to investigate in vitro thrombolytic activity of Zingiber cassumunar Roxb. and Prasaplai, a Thai herbal formulation of Z. cassumunar Roxb. Herbs were extracted with boiling water and concentrated by lyophilization. To observe their thrombolytic potential, an in vitro clot lysis method was applied where streptokinase and sterile distilled water were used as positive and negative controls, respectively. Crude aqueous extracts from Z. cassumunar Roxb. and Prasaplai formula showed significant thrombolytic activity by clot lysis of 17.90% and 25.21%, respectively, compared to the negative control water (5.16%) while the standard streptokinase revealed 64.78% clot lysis. These findings suggest that Z. cassumunar Roxb. exhibits moderate thrombolytic activity and cloud play an important role in the thrombolytic properties of Prasaplai formula. However, further study should be done to observe in vivo clot dissolving potential and to isolate active component(s) of these extracts.

Keywords: thrombolytic activity, clot lysis, Zingiber cassumunar Roxb., Prasaplai formula, aqueous extract

Procedia PDF Downloads 314
2151 New Bioactive Compounds from Two Chrysanthemum Saharian Species (Asteraceae) Growing in Algeria

Authors: Zahia Kabouche, Ouissem Gherboudj, Naima Boutaghane, Ahmed Kabouche, Laurence Voutquenne-Nazabadioko

Abstract:

Chrysanthemum herbs (Asteraceae) are extensively used as food additives and in folk medicine. Anti-cancer, anti-human immunodeficiency virus type 1 (HIV-1), anti-inflammatory, antinociceptive and antiproliferative activities as well as antioxidant effects have been reported for Chrysanthemum species. We report the isolation and identification of flavonoids and new and known terpenoids from the endemic species, C. macrocarpum and C. deserticolum “guertoufa”, used in Algerian Sahara as tea drinks and in “couscous” and soups “Chorba”. Structures of the isolated compounds were established by 1-D and 2-D homo and hetero-nuclear NMR (1H, 13C, COSY, HSQC, HMBC, and NOESY), mass spectrometry, UV and comparison with literature data. C. deserticolum extracts were tested by four methods to identify the antioxidant activity namely, ABTS•+, DPPH• scavenging, CUPRAC and ferrous-ions chelating activity methods. Anti-inflammatory, antinociceptive, antiproliferative and antioxidant activities of C. macrocarpum extracts and isolated compounds are also reported here.

Keywords: Chrysanthemum macrocarpum, C. deserticolum, flavonoids, terpenoids, antioxidant, anti-inflammatory, anti-proliferative

Procedia PDF Downloads 322
2150 Spectrophotometric Evaluation of Custom Microalgae-Based Bioink Formulations for Optimized Green Bioprinting

Authors: Olubusuyi Ayowole, Bashir Khoda

Abstract:

Green bioprinting, from the context of merging 3D bioprinting with microalgae cell organization, holds promise for industrial-scale optimization. This study employs spectrophotometric analysis to explore post-bioprinting cell growth density variation within hybrid hydrogel biomaterial scaffolds. Three hydrogel biomaterials—Alginic acid sodium salt (ALGINATE), Nanofibrillated Cellulose (NFC) – TEMPO, and CarboxyMethyl Cellulose (CMC)—are chosen for their scaffolding capabilities. Bioink development and analysis of their impact on cell proliferation and morphology are conducted. Chlorella microalgae cell growth within hydrogel compositions is probed using absorbance measurements, with additional assessment of shear thinning properties. Notably, NFC exhibits reduced shear thinning compared to CMC. Results reveal that while mono-hydrogel substrates with pronounced adhesion inhibit Chlorella cell proliferation, Alginate fosters increased cell concentration alongside a slight viscosity rise.

Keywords: green bioprinting, 3d bioprinting, microalgae cell, hybrid hydrogel scaffolds, spectrophotometric analysis, bioink development, shear thinning properties

Procedia PDF Downloads 5
2149 The Effects of Phenolic Compounds in Brown Iranian Propolis Extracts on Ruminal Nitrogen Ammonia Concentration in in Vitro

Authors: Alireza Vakili, Shahab Ehtesham, Mohsen Danesh Mesgaran, Mahdi Paktinat

Abstract:

The goal of this study is to determine the chemical compounds of brown Iranian propolis(BIP) extracts and to show flavonoids and phenol effects on nitrogen ammonia (NH3-N) in in vitro. Experimental samples were including two diets with different concentrate: forage ratio (80:20 and 60:40) with eight treatments (1:Control diet 60:40 without BIP,2: 60:40 diet with 25% BIP, 3:60:40 diet with 50% BIP, 4: 60:40 diet with 75% BIP,5: Control diet 80:20 without BIP,6: 80:20 diet with 25% BIP,7: 80:20 diet with 50% BIP and 8: 80:20 diet with 75% BIP) and eight repeats. The trial was analyzed considering a completely randomized design by the GLM procedure of SAS 9.1. Means among treatment were compared by Tukey test. The results of this study showed that in food with 80:20 (concentrate: forage), adding BIP 25% did not statistically change NH3-N (p > 0.05) compared to the control treatment but there was a significant difference (p < 0.05) between the effect of BIP 50% on NH3-N compared to the BIP 25% and the control. In diet with 60:40 (concentrate: forage), there was no significant difference between the effect of BIP 25% on NH3-N and the control, nor was there a significant difference between the effect of BIP 50% and 75%, while a significant difference (p < 0.05) between BIP 50% and 75% and the rest was observed. The propolis extract makes nitrogen ammonia decrease. This may help the nitrogen retain longer in ruminants.

Keywords: brown Iranian propolis, in vitro, nitrogen ammonia, ruminant

Procedia PDF Downloads 463
2148 Antioxidant Activity of Friedelin, Eudesmic Acid and Methyl-3,4,5-Trimethoxybenzoate from Tapinanthus bangwensis (Engl., and K. Krause) [Loranthaceae] Grown in Nigeria

Authors: Odunayo Christy Atewolara-Odule, Olapeju O. Aiyelaagbe

Abstract:

The search for new natural anti-oxidants has grown tremendously over the years because reactive oxygen species (ROS) production and oxidative stress have been linked to a large number of human degenerative diseases, such as cancer, cardiovascular diseases, inflammation, and diabetes. Tapinanthus bangwensis, a parasitic plant commonly known as mistletoe belonging to the Loranthaceae family, is mostly employed traditionally to treat inflammation, cancer, diabetes, and hypertension to mention a few. In this study, air-dried pulverized leaves and stem of Tapinanthus bangwensis were successively extracted with n-hexane, ethyl acetate, and methanol to give the corresponding crude extracts. The extracts were purified by column chromatography and high-performance liquid chromatography to give the isolated compounds. Structural elucidation was done using mass spectrometry, Fourier transform infra-red, 1D and 2D NMR spectroscopy. The antioxidant activity of the compounds was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ascorbic acid as standard. Three compounds; Friedelin, Eudesmic acid (3,4,5-trimethoxybenzoic) and Methyl-3,4,5-trimethoxybenzoate were isolated from the extracts of Tapinanthus bangwensis. Friedelin was isolated from the ethyl acetate extract of the stem while the two other compounds were isolated from the methanol extract of the leaves. The percentages of free radical scavenging activities of the compounds are as follows: Friedelin, 73.69%, methyl-3,4,5-trimethoxybenzoate, 79.33% and eudesmic, 87.68% anti-oxidant activity which were quite comparable to 93.96% given by ascorbic acid. We are reporting, to our best knowledge, for the first time the occurrence of friedelin and eudesmic acid in Tapinanthus bangwensis. The high anti-oxidant activity of these compounds supports the use of this plant in the management of diabetes and hypertension as they will be useful in combating complications arising from the disease.

Keywords: column chromatography, eudesmic acid, friedelin, Tapinanthus bangwensis

Procedia PDF Downloads 229
2147 Green Supply Chain Design: A Mathematical Modeling Approach

Authors: Nusrat T. Chowdhury

Abstract:

Green Supply Chain Management (GSCM) is becoming a key to success for profitable businesses. The various activities contributing to carbon emissions in a supply chain are transportation, ordering and holding of inventory. This research work develops a mixed-integer nonlinear programming (MINLP) model that considers the scenario of a supply chain with multiple periods, multiple products and multiple suppliers. The model assumes that the demand is deterministic, the buyer has a limited storage space in each period, the buyer is responsible for the transportation cost, a supplier-dependent ordering cost applies for each period in which an order is placed on a supplier and inventory shortage is permissible. The model provides an optimal decision regarding what products to order, in what quantities, with which suppliers, and in which periods in order to maximize the profit. For the purpose of evaluating the carbon emissions, three different carbon regulating policies i.e., carbon cap-and-trade, the strict cap on carbon emission and carbon tax on emissions, have been considered. The proposed MINLP has been validated using a randomly generated data set.

Keywords: green supply chain, carbon emission, mixed integer non-linear program, inventory shortage, carbon cap-and-trade

Procedia PDF Downloads 217
2146 The Hypolipidemic and Anti-Nephrotoxic Potentials of Vernonia calvoana Extract in Acetaminophen-Treated Male Wistar Rats

Authors: Godwin E. Egbung, Item J. Atangwho, Diana O. Odey, Eyong U. Eyong

Abstract:

Background of the study: The frequent abuse of acetaminophen by field workers in Calabar metropolis necessitated the present study on the hypolipidemic and anti-nephrotoxic potentials of Vernonia calvoana (VC) extract in acetaminophen (paracetamol) treated male albino Wistar rats Methods:. Thirty-five (35) male albino Wistar rats weighing 100-150 g were divided into five (5) groups of seven rats each. Group 1 served as normal control, group 2 received normal saline after treatment with Acetaminophen (PCM), group 3 was treated with VC extracts (200 mg/kg body weight), group 4 received VC extracts ( 400 mg/kg body weight) and group 5 was administered 100 mg/kg body weight of Vitamin E. At the end of the 21 days treatment period, the animals were sacrificed using chloroform vapours, and blood was collected via cardiac puncture and used for analyses of haematological as well as biochemical indices. Results: Results indicated significant decreases (p < 0.001) in LDL-c, TC and TG levels in groups 3,4 and 5 relative to both the control as well as group 2, the atherogenic index showed a significant decrease at p < 0.001) in all treated groups compared with control and PCM- treated group. However, both extracts treated groups and vitamin E treated group showed significant (p < 0.001) increase in HDL-c relative to the control and PCM treated group. Serum potassium concentration was significantly (p < 0.05 and 0.001) reduced across all the treated groups compared with control and PCM- treated groups. Group 4 showed significant (p < 0.001) increase in RBC count, Hb, and PCV compared with PCM- treated group. Conclusions: We therefore conclude that ethanolic leaf extract of VC possesses probable anti-anemic, hypolipidemic potentials, and also ameliorates serum electrolyte imbalance in paracetamol- induced toxicity.

Keywords: acetaminophen, haematological indices, hypolipidemic potentials, serum lipid profile, vernonia calvoana, wistar rats

Procedia PDF Downloads 241
2145 The Anti-Glycation Effect of Sclerocarya birrea Stem-Bark Extracts and Their Ability to Break Existing Advanced Glycation End-Products Protein Cross-Links

Authors: O. I. Adeniran, M. A. Mogale

Abstract:

Advanced glycation end-products (AGEs) have been implicated in the development and progression of vascular complications of diabetes mellitus and other age-related disease such as Alzheimer’s disease, heart diseases, stroke and limb amputation. The aim of the study was to determine the anti-glycation activity and AGE-cross-linking breaking ability of Sclerocarya birrea stem-bark extracts (SBSBETs). Hexane, ethyl acetate, methanol and water extracts of Sclerocarya birrea stem-bark and standard inhibitor, aminoguanidine (AG) were incubated with bovine serum albumin (BSA)-fructose mixture for 20 and 40 days. The amounts of total immunogenic AGEs (TIAGEs), fluorescent AGEs (FAGEs) and carboxymethyl lysine (CML) formed were determined and the percentage anti-glycation activity of each plant extract calculated. The ability of SBSBETs to break fructose-derived BSA-AGE-collagen cross-links was also investigated. All SBSBETs under investigation demonstrated less anti-glycation activity against TIAGE, FAGEs and CML than AG after 20 days incubation. After 40 days incubation, ethyl acetate, methanol and water SBSBETs demonstrated lower anti-glycation activity against TIAGEs than AG but exerted higher anti-glycation activity than AG against FAGEs. All SBSBETs except water demonstrated lower anti-glycation activity than AG against CML. With regard to the ability of SBSBETs to breakdown fructose-derived AGEs cross-links, the polar SBSBETs demonstrated higher ability to break AGE-cross-links than the non-polar ones. The results of this study may lead to the isolation of bio-active phyto-chemicals from SBSBETs that may be used for the prevention of vascular complication of diabetes.

Keywords: advanced glycation end-products, anti-glycation, cross-link breaking, Sclerocarrya birrea

Procedia PDF Downloads 245
2144 Anthocyanin Complex: Characterization and Cytotoxicity Studies

Authors: Sucharat Limsitthichaikoon, Kedsarin Saodaeng, Aroonsri Priprem, Teerasak Damrongrungruang

Abstract:

Complexation of anthocyanins to mimic natural copigmentation process was investigated. Cyanidin-rich extracts from Zea mays L. CeritinaKulesh. anddelphinidin-rich extracts from ClitoriaternateaL. were used to form 4 anthocyanin complexes, AC1, AC2, AC3, and AC4, in the presence of several polyphenols and a trace metal. Characterizations of the ACs were conducted by UV, FTIR, DSC/TGA and morphological observations. Bathochromic shifts of the UV spectra of 4 formulas of ACs were observed at peak wavelengths of about 510-620 nm by 10 nm suggesting complex formation.FTIR spectra of the ACs indicate shifts of peaks from 1,733 cm-1 to 1,696 cm-1 indicating interactions and a decrease in the peak areas within the wavenumber of 3,400-3,500 cm-1 indicating changes in hydrogen bonding.Thermal analysis of all of the ACs suggests increases in melting temperature after complexation. AC with the highest melting temperature was morphologically observed by SEM and TEM to be crystal-like particles within a range of 50 to 200 nm. Particle size analysis of the AC by laser diffraction gave a range of 50-600 nm, indicating aggregation. This AC was shown to have no cytotoxic effect on cultured HGEPp0.5 and HGF (all p> 0.05) by MTT. Therefore, complexation of anthocyanins was simple and self-assembly process, potentially resulting in nanosized particles of anthocyanin complex.

Keywords: anthocyanins, complexation, purple corn cops, butterfly pea, physicochemical characteristics, cytotoxicity

Procedia PDF Downloads 350