Search results for: continuous mining
2574 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid Formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies
Authors: Satya P. Dubey, Hrushikesh A Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann
Abstract:
Aims: To develop a mathematical model that simulates the ROP of PLA taking into account the effect of alternative energy to be implemented in a continuous reactive extrusion production process of PLA. Introduction: The production of large amount of waste is one of the major challenges at the present time, and polymers represent 70% of global waste. PLA has emerged as a promising polymer as it is compostable, biodegradable thermoplastic polymer made from renewable sources. However, the main limitation for the application of PLA is the traces of toxic metal catalyst in the final product. Thus, a safe and efficient production process needs to be developed to avoid the potential hazards and toxicity. It has been found that alternative energy sources (LASER, ultrasounds, microwaves) could be a prominent option to facilitate the ROP of PLA via continuous reactive extrusion. This process may result in complete extraction of the metal catalysts and facilitate less active organic catalysts. Methodology: Initial investigation were performed using the data available in literature for the reaction mechanism of ROP of PLA based on conventional metal catalyst stannous octoate. A mathematical model has been developed by considering significant parameters such as different initial concentration ratio of catalyst, co-catalyst and impurity. Effects of temperature variation and alternative energies have been implemented in the model. Results: The validation of the mathematical model has been made by using data from literature as well as actual experiments. Validation of the model including alternative energies is in progress based on experimental data for partners of the InnoREX project consortium. Conclusion: The model developed reproduces accurately the polymerisation reaction when applying alternative energy. Alternative energies have a great positive effect to increase the conversion and molecular weight of the PLA. This model could be very useful tool to complement Ludovic® software to predict the large scale production process when using reactive extrusion.Keywords: polymer, poly-lactic acid (PLA), ring opening polymerization (ROP), metal-catalyst, bio-degradable, renewable source, alternative energy (AE)
Procedia PDF Downloads 3622573 A U-Net Based Architecture for Fast and Accurate Diagram Extraction
Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal
Abstract:
In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO
Procedia PDF Downloads 1382572 Impact of Integrated Watershed Management Programme Based on Four Waters Concept: A Case Study of Sali Village, Rajasthan State of India
Authors: Garima Sharma, R. N. Sharma
Abstract:
Integrated watershed management programme based on 'Four Water Concept' was implemented in Sali village, in Jaipur District, Rajasthan State of India . The latitude 26.7234486 North and longitude 75.023876 East are the geocoordinate of the Sali. 'Four Waters Concept' is evolved by integrating the 'Four Waters', viz. rain water, soil moisture, ground water and surface water This methodology involves various water harvesting techniques to prevent the runoff of water by treatment of catchment, proper utilization of available water harvesting structures, renovation of the non-functional water harvesting structures and creation of new water harvesting structures. The case study included questionnaire survey from farmers and continuous study of village for two years. The total project area is 6153 Hac, and the project cost is Rs. 92.25 million. The sanctioned area of Sali Micro watershed is 2228 Hac with an outlay of Rs. 10.52 million. Watershed treatment activities such as water absorption trench, continuous contour trench, field bunding, check dams, were undertaken on agricultural lands for soil and water conservation. These measures have contributed in preventing runoff and increased the perennial availability of water in wells. According to the survey, water level in open wells in the area has risen by approximately 5 metres after the introduction of water harvesting structures. The continuous availability of water in wells has increased the area under irrigation and helped in crop diversification. Watershed management activities have brought the changes in cropping patterns and crop productivity. It helped in transforming 567 Hac culturable waste land into culturable arable land in the village. The farmers of village have created an additional income from the increased crop production. The programme also assured the availability of water during peak summers for the day to day activities of villagers. The outcomes indicate that there is positive impact of watershed management practices on the water resource potential as well the crop production of the area. This suggests that persistent efforts in this direction may lead to sustainability of the watershed.Keywords: four water concept, groundwater potential, irrigation potential, watershed management
Procedia PDF Downloads 3582571 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System
Authors: Nareshkumar Harale, B. B. Meshram
Abstract:
The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design
Procedia PDF Downloads 2272570 Data Analysis Tool for Predicting Water Scarcity in Industry
Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse
Abstract:
Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.Keywords: data mining, industry, machine Learning, shortage, water resources
Procedia PDF Downloads 1212569 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria
Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov
Abstract:
This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model
Procedia PDF Downloads 642568 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 1212567 Reconstructability Analysis for Landslide Prediction
Authors: David Percy
Abstract:
Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.Keywords: reconstructability analysis, machine learning, landslides, raster analysis
Procedia PDF Downloads 662566 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms
Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli
Abstract:
Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning
Procedia PDF Downloads 732565 The Curse of Natural Resources: An Empirical Analysis Applied to the Case of Copper Mining in Zambia
Authors: Chomba Kalunga
Abstract:
Many developing countries have a rich endowment of natural resources. Yet, amidst that wealth, living standards remain poor. At the same time, international markets have been surged with an increase in copper prices in the last twenty years. This is a presentation of the findings on the causal economic impact of Zambia’s copper mines, a country located in sub-Saharan Africa endowed with vast copper deposits on living standards using household data from 1996 to 2010, exploiting an episode where the copper prices on the international market were rising. Using an Instrumental Variable approach and controlling for constituency-level and microeconomic factors, the results show a significant impact of copper production on living standards. After splitting the constituencies close to and far away from the nearest mine, the results document that constituencies close to the mines benefited significantly from the increase in copper production, compared to their counterparts through increased levels of employment. Finally, the results are not consistent with the natural resource curse hypothesis; findings show a positive causal relationship between the presence of natural resources and socioeconomic outcomes in less developed countries, particularly for constituencies close to the mines in Zambia. Some key policy implications follow from the findings. The finding that increased copper production led to an increase in employment suggests that, in Zambias’ context, policies that promote local employment may be more beneficial to residents. Meaning that it is government policies that can help improve the living standards were government needs to work towards making this impact more substantial.Keywords: copper prices, local development, mining, natural resources
Procedia PDF Downloads 2102564 Pricing, Production and Inventory Policies Manufacturing under Stochastic Demand and Continuous Prices
Authors: Masoud Rabbani, Majede Smizadeh, Hamed Farrokhi-Asl
Abstract:
We study jointly determining prices and production in a multiple period horizon under a general non-stationary stochastic demand with continuous prices. In some periods we need to increase capacity of production to satisfy demand. This paper presents a model to aid multi-period production capacity planning by quantifying the trade-off between product quality and production cost. The product quality is estimated as the statistical variation from the target performances obtained from the output tolerances of the production machines that manufacture the components. We consider different tolerance for different machines that use to increase capacity. The production cost is estimated as the total cost of owning and operating a production facility during the planning horizon.so capacity planning has cost that impact on price. Pricing products often turns out to be difficult to measure them because customers have a reservation price to pay that impact on price and demand. We decide to determine prices and production for periods after enhance capacity and consider reservation price to determine price. First we use an algorithm base on fuzzy set of the optimal objective function values to determine capacity planning by determine maximize interval from upper bound in minimum objectives and define weight for objectives. Then we try to determine inventory and pricing policies. We can use a lemma to solve a problem in MATLAB and find exact answer.Keywords: price policy, inventory policy, capacity planning, product quality, epsilon -constraint
Procedia PDF Downloads 5692563 Passive Attenuation of Nitrogen Species at Northern Mine Sites
Authors: Patrick Mueller, Alan Martin, Justin Stockwell, Robert Goldblatt
Abstract:
Elevated concentrations of inorganic nitrogen (N) compounds (nitrate, nitrite, and ammonia) are a ubiquitous feature to mine-influenced drainages due to the leaching of blasting residues and use of cyanide in the milling of gold ores. For many mines, the management of N is a focus for environmental protection, therefore understanding the factors controlling the speciation and behavior of N is central to effective decision making. In this paper, the passive attenuation of ammonia and nitrite is described for three northern water bodies (two lakes and a tailings pond) influenced by mining activities. In two of the water bodies, inorganic N compounds originate from explosives residues in mine water and waste rock. The third water body is a decommissioned tailings impoundment, with N compounds largely originating from the breakdown of cyanide compounds used in the processing of gold ores. Empirical observations from water quality monitoring indicate nitrification (the oxidation of ammonia to nitrate) occurs in all three waterbodies, where enrichment of nitrate occurs commensurately with ammonia depletion. The N species conversions in these systems occurred more rapidly than chemical oxidation kinetics permit, indicating that microbial mediated conversion was occurring, despite the cool water temperatures. While nitrification of ammonia and nitrite to nitrate was the primary process, in all three waterbodies nitrite was consistently present at approximately 0.5 to 2.0 % of total N, even following ammonia depletion. The persistence of trace amounts of nitrite under these conditions suggests the co-occurrence denitrification processes in the water column and/or underlying substrates. The implications for N management in mine waters are discussed.Keywords: explosives, mining, nitrification, water
Procedia PDF Downloads 3192562 Mobile Schooling for the Most Vulnerable Children on the Street: An Innovation
Authors: Md. Shakhawat Ullah Chowdhury
Abstract:
Mobile school is an innovative methodology in non-formal education to increase access to education for children during conflict through theatre for education for appropriate basic education to children during conflict. The continuous exposure to harsh environments and the nature of the lifestyles of children in conflict make them vulnerable. However, the mobile school initiative takes into consideration the mobile lifestyle of children in conflict. Schools are provided considering the pocket area of the street children with portable chalkboards, tin of books and materials as communities move. Teaching is multi-grade to ensure all children in the community benefit. The established mobile schools, while focused on basic literacy and numeracy skills according to traditions of the communities. The school teachers are selected by the community and trained by a theatre activist. These teachers continue to live and move with the community and provide continuous education for children in conflict. The model proposed a holistic team work to deliver education focused services to the street children’s pocket area where the team is mobile. The team consists of three members –an educator (theatre worker), a psychological counsellor and paramedics. The mobile team is responsible to educate street children and also play dramas which specially produce on the basis of national curriculum and awareness issues for street children. Children enjoy play and learn about life skills and basic literacy and numeracy skills which may be a pillar of humanitarian aid during conflict.Keywords: vulnerable, children in conflict, mobile schooling, child-friendly
Procedia PDF Downloads 4332561 Causal Inference Engine between Continuous Emission Monitoring System Combined with Air Pollution Forecast Modeling
Authors: Yu-Wen Chen, Szu-Wei Huang, Chung-Hsiang Mu, Kelvin Cheng
Abstract:
This paper developed a data-driven based model to deal with the causality between the Continuous Emission Monitoring System (CEMS, by Environmental Protection Administration, Taiwan) in industrial factories, and the air quality around environment. Compared to the heavy burden of traditional numerical models of regional weather and air pollution simulation, the lightweight burden of the proposed model can provide forecasting hourly with current observations of weather, air pollution and emissions from factories. The observation data are included wind speed, wind direction, relative humidity, temperature and others. The observations can be collected real time from Open APIs of civil IoT Taiwan, which are sourced from 439 weather stations, 10,193 qualitative air stations, 77 national quantitative stations and 140 CEMS quantitative industrial factories. This study completed a causal inference engine and gave an air pollution forecasting for the next 12 hours related to local industrial factories. The outcomes of the pollution forecasting are produced hourly with a grid resolution of 1km*1km on IIoTC (Industrial Internet of Things Cloud) and saved in netCDF4 format. The elaborated procedures to generate forecasts comprise data recalibrating, outlier elimination, Kriging Interpolation and particle tracking and random walk techniques for the mechanisms of diffusion and advection. The solution of these equations reveals the causality between factories emission and the associated air pollution. Further, with the aid of installed real-time flue emission (Total Suspension Emission, TSP) sensors and the mentioned forecasted air pollution map, this study also disclosed the converting mechanism between the TSP and PM2.5/PM10 for different region and industrial characteristics, according to the long-term data observation and calibration. These different time-series qualitative and quantitative data which successfully achieved a causal inference engine in cloud for factory management control in practicable. Once the forecasted air quality for a region is marked as harmful, the correlated factories are notified and asked to suppress its operation and reduces emission in advance.Keywords: continuous emission monitoring system, total suspension particulates, causal inference, air pollution forecast, IoT
Procedia PDF Downloads 872560 Distributed Real-Time Range Query Approximation in a Streaming Environment
Authors: Simon Keller, Rainer Mueller
Abstract:
Continuous range queries are a common means to handle mobile clients in high-density areas. Most existing approaches focus on settings in which the range queries for location-based services are more or less static, whereas the mobile clients in the ranges move. We focus on a category called dynamic real-time range queries (DRRQ), assuming that both, clients requested by the query and the inquirers, are mobile. In consequence, the query parameters and the query results continuously change. This leads to two requirements: the ability to deal with an arbitrarily high number of mobile nodes (scalability) and the real-time delivery of range query results. In this paper, we present the highly decentralized solution adaptive quad streaming (AQS) for the requirements of DRRQs. AQS approximates the query results in favor of a controlled real-time delivery and guaranteed scalability. While prior works commonly optimize data structures on the involved servers, we use AQS to focus on a highly distributed cell structure without data structures automatically adapting to changing client distributions. Instead of the commonly used request-response approach, we apply a lightweight streaming method in which no bidirectional communication and no storage or maintenance of queries are required at all.Keywords: approximation of client distributions, continuous spatial range queries, mobile objects, streaming-based decentralization in spatial mobile environments
Procedia PDF Downloads 1462559 Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame
Authors: Ardalan Sabamehr, Ashutosh Bagchi
Abstract:
Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods.Keywords: ambient vibration, frequency domain decomposition, stochastic subspace identification, continuous wavelet transform
Procedia PDF Downloads 2962558 Decontamination of Chromium Containing Ground Water by Adsorption Using Chemically Modified Activated Carbon Fabric
Authors: J. R. Mudakavi, K. Puttanna
Abstract:
Chromium in the environment is considered as one of the most toxic elements probably next only to mercury and arsenic. It is acutely toxic, mutagenic and carcinogenic in the environment. Chromium contamination of soil and underground water due to industrial activities is a very serious problem in several parts of India covering Karnataka, Tamil Nadu, Andhra Pradesh etc. Functionally modified Activated Carbon Fabrics (ACF) offer targeted chromium removal from drinking water and industrial effluents. Activated carbon fabric is a light weight adsorbing material with high surface area and low resistance to fluid flow. We have investigated surface modification of ACF using various acids in the laboratory through batch as well as through continuous flow column experiments with a view to develop the optimum conditions for chromium removal. Among the various acids investigated, phosphoric acid modified ACF gave best results with a removal efficiency of 95% under optimum conditions. Optimum pH was around 2 – 4 with 2 hours contact time. Continuous column experiments with an effective bed contact time (EBCT) of 5 minutes indicated that breakthrough occurred after 300 bed volumes. Adsorption data followed a Freundlich isotherm pattern. Nickel adsorbs preferentially and sulphate reduces chromium adsorption by 50%. The ACF could be regenerated up to 52.3% using 3 M NaOH under optimal conditions. The process is simple, economical, energy efficient and applicable to industrial effluents and drinking water.Keywords: activated carbon fabric, hexavalent chromium, adsorption, drinking water
Procedia PDF Downloads 3362557 Test-Retest Agreement, Random Measurement Error and Practice Effect of the Continuous Performance Test-Identical Pairs for Patients with Schizophrenia
Authors: Kuan-Wei Chen, Chien-Wei Chen, Tai-Ling Chang, Nan-Cheng Chen, Ching-Lin Hsieh, Gong-Hong Lin
Abstract:
Background and Purposes: Deficits in sustained attention are common in patients with schizophrenia. Such impairment can limit patients to effectively execute daily activities and affect the efficacy of rehabilitation. The aims of this study were to examine the test-retest agreement, random measurement error, and practice effect of the Continuous Performance Test-Identical Pairs (CPT-IP) (a commonly used sustained attention test) in patients with schizophrenia. The results can provide empirical evidence for clinicians and researchers to apply a sustained attention test with sound psychometric properties in schizophrenia patients. Methods: We recruited patients with chronic schizophrenia to be assessed twice with 1 week interval using CPT-IP. The intra-class correlation coefficient (ICC) was used to examine the test-retest agreement. The percentage of minimal detectable change (MDC%) was used to examine the random measurement error. Moreover, the standardized response mean (SRM) was used to examine the practice effect. Results: A total of 56 patients participated in this study. Our results showed that the ICC was 0.82, MDC% was 47.4%, and SRMs were 0.36 for the CPT-IP. Conclusion: Our results indicate that CPT-IP has acceptable test-retests agreement, substantial random measurement error, and small practice effect in patients with schizophrenia. Therefore, to avoid overestimating patients’ changes in sustained attention, we suggest that clinicians interpret the change scores of CPT-IP conservatively in their routine repeated assessments.Keywords: schizophrenia, sustained attention, CPT-IP, reliability
Procedia PDF Downloads 3042556 An Architectural Model for APT Detection
Authors: Nam-Uk Kim, Sung-Hwan Kim, Tai-Myoung Chung
Abstract:
Typical security management systems are not suitable for detecting APT attack, because they cannot draw the big picture from trivial events of security solutions. Although SIEM solutions have security analysis engine for that, their security analysis mechanisms need to be verified in academic field. Although this paper proposes merely an architectural model for APT detection, we will keep studying on correlation analysis mechanism in the future.Keywords: advanced persistent threat, anomaly detection, data mining
Procedia PDF Downloads 5282555 Power Asymmetry and Major Corporate Social Responsibility Projects in Mhondoro-Ngezi District, Zimbabwe
Authors: A. T. Muruviwa
Abstract:
Empirical studies of the current CSR agenda have been dominated by literature from the North at the expense of the nations from the South where most TNCs are located. Therefore, owing to the limitations of the current discourse that is dominated by Western ideas such as voluntarism, philanthropy, business case and economic gains, scholars have been calling for a new CSR agenda that is South-centred and addresses the needs of developing nations. The development theme has dominated in the recent literature as scholars concerned with the relationship between business and society have tried to understand its relationship with CSR. Despite a plethora of literature on the roles of corporations in local communities and the impact of CSR initiatives, there is lack of adequate empirical evidence to help us understand the nexus between CSR and development. For all the claims made about the positive and negative consequences of CSR, there is surprisingly little information about the outcomes it delivers. This study is a response to these claims made about the developmental aspect of CSR in developing countries. It offers some empirical bases for assessing the major CSR projects that have been fulfilled by a major mining company, Zimplats in Mhondoro-Ngezi Zimbabwe. The neo-liberal idea of capitalism and market dominations has empowered TNCs to stamp their authority in the developing countries. TNCs have made their mark in developing nations as they stamp their global private authority, rivalling or implicitly challenging the state in many functions. This dominance of corporate power raises great concerns over their tendencies of abuses in terms of environmental, social and human rights concerns as well as how to make them increasingly accountable. The hegemonic power of TNCs in the developing countries has had a tremendous impact on the overall CSR practices. While TNCs are key drivers of globalization they may be acting responsibly in their Global Northern home countries where there is a combination of legal mechanisms and the fear of civil society activism associated with corporate scandals. Using a triangulated approach in which both qualitative and quantitative methods were used the study found out that most CSR projects in Zimbabwe are dominated and directed by Zimplats because of the power it possesses. Most of the major CSR projects are beneficial to the mining company as they serve the business plans of the mining company. What was deduced from the study is that the infrastructural development initiatives by Zimplats confirm that CSR is a tool to advance business obligations. This shows that although proponents of CSR might claim that business has a mandate for social obligations to society, we need not to forget the dominant idea that the primary function of CSR is to enhance the firm’s profitability.Keywords: hegemonic power, projects, reciprocity, stakeholders
Procedia PDF Downloads 2542554 Inclusion Body Refolding at High Concentration for Large-Scale Applications
Authors: J. Gabrielczyk, J. Kluitmann, T. Dammeyer, H. J. Jördening
Abstract:
High-level expression of proteins in bacteria often causes production of insoluble protein aggregates, called inclusion bodies (IB). They contain mainly one type of protein and offer an easy and efficient way to get purified protein. On the other hand, proteins in IB are normally devoid of function and therefore need a special treatment to become active. Most refolding techniques aim at diluting the solubilizing chaotropic agents. Unfortunately, optimal refolding conditions have to be found empirically for every protein. For large-scale applications, a simple refolding process with high yields and high final enzyme concentrations is still missing. The constructed plasmid pASK-IBA63b containing the sequence of fructosyltransferase (FTF, EC 2.4.1.162) from Bacillus subtilis NCIMB 11871 was transformed into E. coli BL21 (DE3) Rosetta. The bacterium was cultivated in a fed-batch bioreactor. The produced FTF was obtained mainly as IB. For refolding experiments, five different amounts of IBs were solubilized in urea buffer with protein concentration of 0.2-8.5 g/L. Solubilizates were refolded with batch or continuous dialysis. The refolding yield was determined by measuring the protein concentration of the clear supernatant before and after the dialysis. Particle size was measured by dynamic light scattering. We tested the solubilization properties of fructosyltransferase IBs. The particle size measurements revealed that the solubilization of the aggregates is achieved at urea concentration of 5M or higher and confirmed by absorption spectroscopy. All results confirm previous investigations that refolding yields are dependent upon initial protein concentration. In batch dialysis, the yields dropped from 67% to 12% and 72% to 19% for continuous dialysis, in relation to initial concentrations from 0.2 to 8.5 g/L. Often used additives such as sucrose and glycerol had no effect on refolding yields. Buffer screening indicated a significant increase in activity but also temperature stability of FTF with citrate/phosphate buffer. By adding citrate to the dialysis buffer, we were able to increase the refolding yields to 82-47% in batch and 90-74% in the continuous process. Further experiments showed that in general, higher ionic strength of buffers had major impact on refolding yields; doubling the buffer concentration increased the yields up to threefold. Finally, we achieved corresponding high refolding yields by reducing the chamber volume by 75% and the amount of buffer needed. The refolded enzyme had an optimal activity of 12.5±0.3 x104 units/g. However, detailed experiments with native FTF revealed a reaggregation of the molecules and loss in specific activity depending on the enzyme concentration and particle size. For that reason, we actually focus on developing a process of simultaneous enzyme refolding and immobilization. The results of this study show a new approach in finding optimal refolding conditions for inclusion bodies at high concentrations. Straightforward buffer screening and increase of the ionic strength can optimize the refolding yield of the target protein by 400%. Gentle removal of chaotrope with continuous dialysis increases the yields by an additional 65%, independent of the refolding buffer applied. In general time is the crucial parameter for successful refolding of solubilized proteins.Keywords: dialysis, inclusion body, refolding, solubilization
Procedia PDF Downloads 2942553 Allele Mining for Rice Sheath Blight Resistance by Whole-Genome Association Mapping in a Tail-End Population
Authors: Naoki Yamamoto, Hidenobu Ozaki, Taiichiro Ookawa, Youming Liu, Kazunori Okada, Aiping Zheng
Abstract:
Rice sheath blight is one of the destructive fungal diseases in rice. We have thought that rice sheath blight resistance is a polygenic trait. Host-pathogen interactions and secondary metabolites such as lignin and phytoalexins are likely to be involved in defense against R. solani. However, to our knowledge, it is still unknown how sheath blight resistance can be enhanced in rice breeding. To seek for an alternative genetic factor that contribute to sheath blight resistance, we mined relevant allelic variations from rice core collections created in Japan. Based on disease lesion length on detached leaf sheath, we selected 30 varieties of the top tail-end and the bottom tail-end, respectively, from the core collections to perform genome-wide association mapping. Re-sequencing reads for these varieties were used for calling single nucleotide polymorphisms among the 60 varieties to create a SNP panel, which contained 1,137,131 homozygous variant sites after filitering. Association mapping highlighted a locus on the long arm of chromosome 11, which is co-localized with three sheath blight QTLs, qShB11-2-TX, qShB11, and qSBR-11-2. Based on the localization of the trait-associated alleles, we identified an ankyryn repeat-containing protein gene (ANK-M) as an uncharacterized candidate factor for rice sheath blight resistance. Allelic distributions for ANK-M in the whole rice population supported the reliability of trait-allele associations. Gene expression characteristics were checked to evaluiate the functionality of ANK-M. Since an ANK-M homolog (OsPIANK1) in rice seems a basal defense regulator against rice blast and bacterial leaf blight, ANK-M may also play a role in the rice immune system.Keywords: allele mining, GWAS, QTL, rice sheath blight
Procedia PDF Downloads 792552 Groundwater Treatment of Thailand's Mae Moh Lignite Mine
Authors: A. Laksanayothin, W. Ariyawong
Abstract:
Mae Moh Lignite Mine is the largest open-pit mine in Thailand. The mine serves coal to the power plant about 16 million tons per year. This amount of coal can produce electricity accounting for about 10% of Nation’s electric power generation. The mining area of Mae Moh Mine is about 28 km2. At present, the deepest area of the pit is about 280 m from ground level (+40 m. MSL) and in the future the depth of the pit can reach 520 m from ground level (-200 m.MSL). As the size of the pit is quite large, the stability of the pit is seriously important. Furthermore, the preliminary drilling and extended drilling in year 1989-1996 had found high pressure aquifer under the pit. As a result, the pressure of the underground water has to be released in order to control mine pit stability. The study by the consulting experts later found that 3-5 million m3 per year of the underground water is needed to be de-watered for the safety of mining. However, the quality of this discharged water should meet the standard. Therefore, the ground water treatment facility has been implemented, aiming to reduce the amount of naturally contaminated Arsenic (As) in discharged water lower than the standard limit of 10 ppb. The treatment system consists of coagulation and filtration process. The main components include rapid mixing tanks, slow mixing tanks, sedimentation tank, thickener tank and sludge drying bed. The treatment process uses 40% FeCl3 as a coagulant. The FeCl3 will adsorb with As(V), forming floc particles and separating from the water as precipitate. After that, the sludge is dried in the sand bed and then be disposed in the secured land fill. Since 2011, the treatment plant of 12,000 m3/day has been efficiently operated. The average removal efficiency of the process is about 95%.Keywords: arsenic, coagulant, ferric chloride, groundwater, lignite, coal mine
Procedia PDF Downloads 3102551 Neck Thinning Dynamics of Janus Droplets under Multiphase Interface Coupling in Cross Junction Microchannels
Authors: Jiahe Ru, Yan Pang, Zhaomiao Liu
Abstract:
Necking processes of the Janus droplet generation in the cross-junction microchannels are experimentally and theoretically investigated. The two dispersed phases that are simultaneously shear by continuous phases are liquid paraffin wax and 100cs silicone oil, in which 80% glycerin aqueous solution is used as continuous phases. According to the variation of minimum neck width and thinning rate, the necking process is divided into two stages, including the two-dimensional extrusion and the three-dimensional extrusion. In the two-dimensional extrusion stage, the evolutions of the tip extension length for the two discrete phases begin with the same trend, and then the length of liquid paraffin is larger than silicone oil. The upper and lower neck interface profiles in Janus necking process are asymmetrical when the tip extension velocity of paraffin oil is greater than that of silicone oil. In the three-dimensional extrusion stage, the neck of the liquid paraffin lags behind that of the silicone oil because of the higher surface tension, and finally, the necking fracture position gradually synchronizes. When the Janus droplets pinch off, the interfacial tension becomes positive to drive the neck thinning. The interface coupling of the three phases can cause asymmetric necking of the neck interface, which affects the necking time and, ultimately, the droplet volume. This paper mainly investigates the thinning dynamics of the liquid-liquid interface in confined microchannels. The revealed results could help to enhance the physical understanding of the droplet generation phenomenon.Keywords: neck interface, interface coupling, janus droplets, multiphase flow
Procedia PDF Downloads 1292550 The Fundamental Research and Industrial Application on CO₂+O₂ in-situ Leaching Process in China
Authors: Lixin Zhao, Genmao Zhou
Abstract:
Traditional acid in-situ leaching (ISL) is not suitable for the sandstone uranium deposit with low permeability and high content of carbonate minerals, because of the blocking of calcium sulfate precipitates. Another factor influences the uranium acid in-situ leaching is that the pyrite in ore rocks will react with oxidation reagent and produce lots of sulfate ions which may speed up the precipitation process of calcium sulphate and consume lots of oxidation reagent. Due to the advantages such as less chemical reagent consumption and groundwater pollution, CO₂+O₂ in-situ leaching method has become one of the important research areas in uranium mining. China is the second country where CO₂+O₂ ISL has been adopted in industrial uranium production of the world. It is shown that the CO₂+O₂ ISL in China has been successfully developed. The reaction principle, technical process, well field design and drilling engineering, uranium-bearing solution processing, etc. have been fully studied. At current stage, several uranium mines use CO₂+O₂ ISL method to extract uranium from the ore-bearing aquifers. The industrial application and development potential of CO₂+O₂ ISL method in China are summarized. By using CO₂+O₂ neutral leaching technology, the problem of calcium carbonate and calcium sulfate precipitation have been solved during uranium mining. By reasonably regulating the amount of CO₂ and O₂, related ions and hydro-chemical conditions can be controlled within the limited extent for avoiding the occurrence of calcium sulfate and calcium carbonate precipitation. Based on this premise, the demand of CO₂+O₂ uranium leaching has been met to the maximum extent, which not only realizes the effective leaching of uranium, but also avoids the occurrence and precipitation of calcium carbonate and calcium sulfate, realizing the industrial development of the sandstone type uranium deposit.Keywords: CO₂+O₂ ISL, industrial production, well field layout, uranium processing
Procedia PDF Downloads 1762549 Effect of High Intensity Interval Training and Moderate Interval Continuous Training on Cardiovascular Endurance In young Healthy Female
Authors: Sidra Majeed, Irum Ali, Aroosa Ishfaq, Munazzah Parveen
Abstract:
Objectives: The objective is to compare the effects of high-intensity interval training VS moderate moderate-intensity continuous training on cardiovascular endurance in young healthy females. Method: 30 young, healthy females were collected and randomly assigned into two training groups, HIIT and MICT, each group having a sample size of (n=15). There will be three parameters to be tested, including (VO2max, Resting heart rate, and Rate perceived exertion). Each group will be tested at three different times, e.g. (at Baseline measurement, after two weeks and after four weeks). For the first two weeks, the HIIT group has to perform at 70%HRR and for the third and fourth weeks, at 75%HRR for two minutes, followed by an active resting interval at 30%HRR for two minutes (1:1) with warm-up and cool-down period (2 minutes each period ) on the treadmill. For the first two weeks, the MICT group has to perform at 40%HRR and for the third and fourth weeks at 50% HRR for fifteen minutes continuously on the treadmill, including warm up and cool down period (2 minutes each period). Result: The final assessment of HIIT and MICT groups had shown p values for VO2max (p=.000), RHR (p=.323) and for RPE (p=.085). These values indicating significant improvement in these three parameters in both groups. Conclusion: This study showed that there were significant improvements in both groups but there were more improvements in VO2max in HIIT group so, it is proved that HIIT is more beneficial than MICT in improving cardiovascular endurance.Keywords: HIIT, MICT, RPE, RHR
Procedia PDF Downloads 452548 Pregnant Women in Substance Abuse: Transition of Characteristics and Mining of Association from Teds-a 2011 to 2018
Authors: Md Tareq Ferdous Khan, Shrabanti Mazumder, MB Rao
Abstract:
Background: Substance use during pregnancy is a longstanding public health problem that results in severe consequences for pregnant women and fetuses. Methods: Eight (2011-2018) datasets on pregnant women’s admissions are extracted from TEDS-A. Distributions of sociodemographic, substance abuse behaviors, and clinical characteristics are constructed and compared over the years for trends by the Cochran-Armitage test. Market basket analysis is used in mining the association among polysubstance abuse. Results: Over the years, pregnant woman admissions as the percentage of total and female admissions remain stable, where total annual admissions range from 1.54 to about 2 million with the female share of 33.30% to 35.61%. Pregnant women aged 21-29, 12 or more years of education, white race, unemployed, holding independent living status are among the most vulnerable. Concerns prevail on a significant number of polysubstance users, young age at first use, frequency of daily users, and records of prior admissions (60%). Trends of abused primary substances show a significant rise in heroin (66%) and methamphetamine (46%) over the years, although the latest year shows a considerable downturn. On the other hand, significant decreasing patterns are evident for alcohol (43%), marijuana or hashish (24%), cocaine or crack (23%), other opiates or synthetics (36%), and benzodiazepines (29%). Basket analysis reveals some patterns of co-occurrence of substances consistent over the years. Conclusions: This comprehensive study can work as a reference to identify the most vulnerable groups based on their characteristics and deal with the most hazardous substances from their evidence of co-occurrence.Keywords: basket analysis, pregnant women, substance abuse, trend analysis
Procedia PDF Downloads 1952547 Recovery of Au and Other Metals from Old Electronic Components by Leaching and Liquid Extraction Process
Authors: Tomasz Smolinski, Irena Herdzik-Koniecko, Marta Pyszynska, M. Rogowski
Abstract:
Old electronic components can be easily found nowadays. Significant quantities of valuable metals such as gold, silver or copper are used for the production of advanced electronic devices. Old useless electronic device slowly became a new source of precious metals, very often more efficient than natural. For example, it is possible to recover more gold from 1-ton personal computers than seventeen tons of gold ore. It makes urban mining industry very profitable and necessary for sustainable development. For the recovery of metals from waste of electronic equipment, various treatment options based on conventional physical, hydrometallurgical and pyrometallurgical processes are available. In this group hydrometallurgy processes with their relatively low capital cost, low environmental impact, potential for high metal recoveries and suitability for small scale applications, are very promising options. Institute of Nuclear Chemistry and Technology has great experience in hydrometallurgy processes especially focused on recovery metals from industrial and agricultural wastes. At the moment, urban mining project is carried out. The method of effective recovery of valuable metals from central processing units (CPU) components has been developed. The principal processes such as acidic leaching and solvent extraction were used for precious metals recovery from old processors and graphic cards. Electronic components were treated by acidic solution at various conditions. Optimal acid concentration, time of the process and temperature were selected. Precious metals have been extracted to the aqueous phase. At the next step, metals were selectively extracted by organic solvents such as oximes or tributyl phosphate (TBP) etc. Multistage mixer-settler equipment was used. The process was optimized.Keywords: electronic waste, leaching, hydrometallurgy, metal recovery, solvent extraction
Procedia PDF Downloads 1372546 Analysis in Mexico on Workers Performing Highly Repetitive Movements with Sensory Thermography in the Surface of the Wrist and Elbows
Authors: Sandra K. Enriquez, Claudia Camargo, Jesús E. Olguín, Juan A. López, German Galindo
Abstract:
Currently companies have increased the number of disorders of cumulative trauma (CTDs), these are increasing significantly due to the Highly Repetitive Movements (HRM) performed in workstations, which causes economic losses to businesses, due to temporary and permanent disabilities of workers. This analysis focuses on the prevention of disorders caused by: repeatability, duration and effort; And focuses on reducing cumulative trauma disorders such as occupational diseases using sensory thermography as a noninvasive method, the above is to evaluate the injuries could have workers to perform repetitive motions. Objectives: The aim is to define rest periods or job rotation before they generate a CTD, this sensory thermography by analyzing changes in temperature patterns on wrists and elbows when the worker is performing HRM over a period of time 2 hours and 30 minutes. Information on non-work variables such as wrist and elbow injuries, weight, gender, age, among others, and work variables such as temperature workspace, repetitiveness and duration also met. Methodology: The analysis to 4 industrial designers, 2 men and 2 women to be specific was conducted in a business in normal health for a period of 12 days, using the following time ranges: the first day for every 90 minutes continuous work were asked to rest 5 minutes, the second day for every 90 minutes of continuous work were asked to rest 10 minutes, the same to work 60 and 30 minutes straight. Each worker was tested with 6 different ranges at least twice. This analysis was performed in a controlled room temperature between 20 and 25 ° C, and a time to stabilize the temperature of the wrists and elbows than 20 minutes at the beginning and end of the analysis. Results: The range time of 90 minutes working continuous and a rest of 5 minutes of activity is where the maximum temperature (Tmax) was registered in the wrists and elbows in the office, we found the Tmax was 35.79 ° C with a difference of 2.79 ° C between the initial and final temperature of the left elbow presented at the individual 4 during the 86 minutes, in of range in 90 minutes continuously working and rested for 5 minutes of your activity. Conclusions: It is possible with this alternative technology is sensory thermography predict ranges of rotation or rest for the prevention of CTD to perform HRM work activities, obtaining with this reduce occupational disease, quotas by health agencies and increasing the quality of life of workers, taking this technology a cost-benefit acceptable in the future.Keywords: sensory thermography, temperature, cumulative trauma disorder (CTD), highly repetitive movement (HRM)
Procedia PDF Downloads 4292545 Selective Oxidation of 6Mn-2Si Advanced High Strength Steels during Intercritical Annealing Treatment
Authors: Maedeh Pourmajidian, Joseph R. McDermid
Abstract:
Advanced High Strength Steels are revolutionizing both the steel and automotive industries due to their high specific strength and ability to absorb energy during crash events. This allows manufacturers to design vehicles with significantly increased fuel efficiency without compromising passenger safety. To maintain the structural integrity of the fabricated parts, they must be protected from corrosion damage through continuous hot-dip galvanizing process, which is challenging due to selective oxidation of Mn and Si on the surface of this AHSSs. The effects of process atmosphere oxygen partial pressure and small additions of Sn on the selective oxidation of a medium-Mn C-6Mn-2Si advanced high strength steel was investigated. Intercritical annealing heat treatments were carried out at 690˚C in an N2-5%H2 process atmosphere under dew points ranging from –50˚C to +5˚C. Surface oxide chemistries, morphologies, and thicknesses were determined at a variety of length scales by several techniques, including SEM, TEM+EELS, and XPS. TEM observations of the sample cross-sections revealed the transition to internal oxidation at the +5˚C dew point. EELS results suggested that the internal oxides network was composed of a multi-layer oxide structure with varying chemistry from oxide core towards the outer part. The combined effect of employing a known surface active element as a function of process atmosphere on the surface structure development and the possible impact on reactive wetting of the steel substrates by the continuous galvanizing zinc bath will be discussed.Keywords: 3G AHSS, hot-dip galvanizing, oxygen partial pressure, selective oxidation
Procedia PDF Downloads 398