Search results for: combustion regimes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1071

Search results for: combustion regimes

321 Finite Element Analysis of Connecting Rod

Authors: Mohammed Mohsin Ali H., Mohamed Haneef

Abstract:

The connecting rod transmits the piston load to the crank causing the latter to turn, thus converting the reciprocating motion of the piston into a rotary motion of the crankshaft. Connecting rods are subjected to forces generated by mass and fuel combustion. This study investigates and compares the fatigue behavior of forged steel, powder forged and ASTM a 514 steel cold quenched connecting rods. The objective is to suggest for a new material with reduced weight and cost with the increased fatigue life. This has entailed performing a detailed load analysis. Therefore, this study has dealt with two subjects: first, dynamic load and stress analysis of the connecting rod, and second, optimization for material, weight and cost. In the first part of the study, the loads acting on the connecting rod as a function of time were obtained. Based on the observations of the dynamic FEA, static FEA, and the load analysis results, the load for the optimization study was selected. It is the conclusion of this study that the connecting rod can be designed and optimized under a load range comprising tensile load and compressive load. Tensile load corresponds to 360o crank angle at the maximum engine speed. The compressive load is corresponding to the peak gas pressure. Furthermore, the existing connecting rod can be replaced with a new connecting rod made of ASTM a 514 steel cold quenched that is 12% lighter and 28% cheaper.

Keywords: connecting rod, ASTM a514 cold quenched material, static analysis, fatigue analysis, stress life approach

Procedia PDF Downloads 286
320 Physicochemical Stability of Pulse Spreads during Storage after Sous Vide Treatment and High Pressure Processing

Authors: Asnate Kirse, Daina Karklina, Sandra Muizniece-Brasava, Ruta Galoburda

Abstract:

Pulses are high in plant protein and dietary fiber, and contain slowly digestible starches. Innovative products from pulses could increase their consumption and benefit consumer health. This study was conducted to evaluate physicochemical stability of processed cowpea (Vigna unguiculata (L.) Walp. cv. Fradel) and maple pea (Pisum sativum var. arvense L. cv. Bruno) spreads at 5 °C temperature during 62-day storage. Physicochemical stability of pulse spreads was compared after sous vide treatment (80 °C/15 min) and high pressure processing (700 MPa/10 min/20 °C). Pulse spreads were made by homogenizing cooked pulses in a food processor together with salt, citric acid, oil, and bruschetta seasoning. A total of four different pulse spreads were studied: Cowpea spread without and with seasoning, maple pea spread without and with seasoning. Transparent PA/PE and light proof PET/ALU/PA/PP film pouches were used for packaging of pulse spreads under vacuum. The parameters investigated were pH, water activity and mass losses. Pulse spreads were tested on days 0, 15, 29, 42, 50, 57 and 62. The results showed that sous-vide treatment and high pressure processing had an insignificant influence on pH, water activity and mass losses after processing, irrespective of packaging material did not change (p>0.1). pH and water activity of sous-vide treated and high pressure processed pulse spreads in different packaging materials proved to be stable throughout the storage. Mass losses during storage accounted to 0.1% losses. Chosen sous-vide treatment and high pressure processing regimes and packaging materials are suitable to maintain consistent physicochemical quality of the new products during 62-day storage.

Keywords: cowpea, flexible packaging, maple pea, water activity

Procedia PDF Downloads 258
319 Corrosivity of Smoke Generated by Polyvinyl Chloride and Polypropylene with Different Mixing Ratios towards Carbon Steel

Authors: Xufei Liu, Shouxiang Lu, Kim Meow Liew

Abstract:

Because a relatively small fire could potentially cause damage by smoke corrosion far exceed thermal fire damage, it has been realized that the corrosion of metal exposed to smoke atmospheres is a significant fire hazard, except for toxicity or evacuation considerations. For the burning materials in an actual fire may often be the mixture of combustible matters, a quantitative study on the corrosivity of smoke produced by the combustion of mixture is more conducive to the application of the basic theory to the actual engineering. In this paper, carbon steel samples were exposed to smoke generated by polyvinyl chloride and polypropylene, two common combustibles in industrial plants, with different mixing ratios in high humidity for 120 hours. The separate and combined corrosive effects of smoke were examined subsequently by weight loss measurement, scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction. It was found that, although the corrosivity of smoke from polypropylene was much smaller than that of smoke from polyvinyl chloride, smoke from polypropylene enhanced the major corrosive effect of smoke from polyvinyl chloride to carbon steel. Furthermore, the corrosion kinetics of carbon steel under smoke were found to obey the power function. Possible corrosion mechanisms were also proposed. All the analysis helps to provide basic information for the determination of smoke damage and timely rescue after fire.

Keywords: corrosion kinetics, corrosion mechanism, mixed combustible, SEM/EDS, smoke corrosivity, XRD

Procedia PDF Downloads 190
318 Experimental Quantification and Modeling of Dissolved Gas during Hydrate Crystallization: CO₂ Hydrate Case

Authors: Amokrane Boufares, Elise Provost, Veronique Osswald, Pascal Clain, Anthony Delahaye, Laurence Fournaison, Didier Dalmazzone

Abstract:

Gas hydrates have long been considered as problematic for flow assurance in natural gas and oil transportation. On the other hand, they are now seen as future promising materials for various applications (i.e. desalination of seawater, natural gas and hydrogen storage, gas sequestration, gas combustion separation and cold storage and transport). Nonetheless, a better understanding of the crystallization mechanism of gas hydrate and of their formation kinetics is still needed for a better comprehension and control of the process. To that purpose, measuring the real-time evolution of the dissolved gas concentration in the aqueous phase during hydrate formation is required. In this work, CO₂ hydrates were formed in a stirred reactor equipped with an Attenuated Total Reflection (ATR) probe coupled to a Fourier Transform InfraRed (FTIR) spectroscopy analyzer. A method was first developed to continuously measure in-situ the CO₂ concentration in the liquid phase during solubilization, supersaturation, hydrate crystallization and dissociation steps. Thereafter, the measured concentration data were compared with those of equilibrium concentrations. It was observed that the equilibrium is instantly reached in the liquid phase due to the fast consumption of dissolved gas by the hydrate crystallization. Consequently, it was shown that hydrate crystallization kinetics is limited by the gas transfer at the gas-liquid interface. Finally, we noticed that the liquid-hydrate equilibrium during the hydrate crystallization is governed by the temperature of the experiment under the tested conditions.

Keywords: gas hydrate, dissolved gas, crystallization, infrared spectroscopy

Procedia PDF Downloads 260
317 Investigation of the Kutta Condition Using Unsteady Flow

Authors: K. Bhojnadh, M. Fiddler, D. Cheshire

Abstract:

An investigation into the Kutta effect on the trailing edge of a subsonic aerofoil was conducted which led to an analysis using Ansys Fluent to determine the effect of flow separation over a NACA 0012 aerofoil. This aerofoil was subjected to oscillations to create an unsteady flow over the aerofoil, therefore, creating turbulence, with unsteady aerodynamics playing a key role to determine the flow regimes when the aerofoil is subjected to different angles of attack along with varying Reynolds numbers. Many theories were evolved to determine the flow parameters of a 2-D aerofoil in these unsteady conditions because they behave unpredictably at the trailing edge when subjected to a different angle of attack. The shear area observed in the boundary layer at the trailing edge tends towards an unsteady turbulent flow even at small angles of attack, creating drag as the flow separates, reducing the aerodynamic performance of aerofoil. In this paper, research was conducted to determine the effect of Kutta circulation over the aerofoil and the effect of that circulation in reducing the effect of pressure and boundary layer distribution over the aerofoil. The effect of circulation is observed by using Ansys Fluent by using varying flow parameters and differential schemes to observe the flow behaviour on the aerofoil. Initially, steady flow analysis was conducted on the aerofoil to determine the effect of circulation, and it was noticed that the effect of circulation could only be properly observed when the aerofoil is subjected to oscillations. Therefore, that was modelled by using Ansys user-defined functions, which define the motion of the aerofoil by creating a dynamic mesh on the aerofoil. Initial results were observed, and further development of the dynamic mesh functions in Ansys is taking place. This research will determine the overall basic principles of unsteady flow aerodynamics applied to the investigation of Kutta related circulation, and gives an indication regarding the generation of vortices which is discussed further in this paper.

Keywords: circulation, flow seperation, turbulence modelling, vortices

Procedia PDF Downloads 182
316 Investigating the Energy Harvesting Potential of a Pitch-Plunge Airfoil Subjected to Fluctuating Wind

Authors: Magu Raam Prasaad R., Venkatramani Jagadish

Abstract:

Recent studies in the literature have shown that randomly fluctuating wind flows can give rise to a distinct regime of pre-flutter oscillations called intermittency. Intermittency is characterized by the presence of sporadic bursts of high amplitude oscillations interspersed amidst low-amplitude aperiodic fluctuations. The focus of this study is on investigating the energy harvesting potential of these intermittent oscillations. Available literature has by and large devoted its attention on extracting energy from flutter oscillations. The possibility of harvesting energy from pre-flutter regimes have remained largely unexplored. However, extracting energy from violent flutter oscillations can be severely detrimental to the structural integrity of airfoil structures. Consequently, investigating the relatively stable pre-flutter responses for energy extraction applications is of practical importance. The present study is devoted towards addressing these concerns. A pitch-plunge airfoil with cubic hardening nonlinearity in the plunge and pitch degree of freedom is considered. The input flow fluctuations are modelled using a sinusoidal term with randomly perturbed frequencies. An electromagnetic coupling is provided to the pitch-plunge equations, such that, energy from the wind induced vibrations of the structural response are extracted. With the mean flow speed as the bifurcation parameter, a fourth order Runge-Kutta based time marching algorithm is used to solve the governing aeroelastic equations with electro-magnetic coupling. The harnessed energy from the intermittency regime is presented and the results are discussed in comparison to that obtained from the flutter regime. The insights from this study could be useful in health monitoring of aeroelastic structures.

Keywords: aeroelasticity, energy harvesting, intermittency, randomly fluctuating flows

Procedia PDF Downloads 168
315 Mathematical Modelling of Slag Formation in an Entrained-Flow Gasifier

Authors: Girts Zageris, Vadims Geza, Andris Jakovics

Abstract:

Gasification processes are of great interest due to their generation of renewable energy in the form of syngas from biodegradable waste. It is, therefore, important to study the factors that play a role in the efficiency of gasification and the longevity of the machines in which gasification takes place. This study focuses on the latter, aiming to optimize an entrained-flow gasifier by reducing slag formation on its walls to reduce maintenance costs. A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification into account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, the effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and possible solutions for decreasing a number of undesirable deposits are proposed. Additionally, an estimate of the impact of different factors such as temperature, gas properties and gas content, and different forces acting on the particles undergoing gasification is given.

Keywords: biomass particles, gasification, slag formation, turbulence k-ε modelling

Procedia PDF Downloads 265
314 Characterization of Emissions from the open burning of Municipal Solid Waste (MSW) under Tropical Environment

Authors: Anju Elizbath Peter, S. M. Shiva Nagendra, Indumathi M.Nambi

Abstract:

The deliberate fires initiated by dump managers and human scavengers to reduce the volume of waste and recovery of valuable metals/materials are common at municipal solid waste (MSW) disposal sites in developed country. A large amount of toxic gases released due to this act is responsible for the deterioration of regional and local air quality, which causes visibility impairment and acute respiratory diseases. The present study was aimed at the characterization of MSW and emission characteristics of burning of MSW in the laboratory. MSW samples were collected directly from the one of the open dumpsite located in Chennai city. Solid waste sampling and laboratory analysis were carried out according to American Society of Testing and Materials (ASTM) standards. Results indicated the values of moisture content, volatile solids (VS) and calorific values of solid waste samples were 16.67%,8%,9.17MJ/kg, respectively. The elemental composition showed that the municipal solid waste contains 25.84% of carbon, 3.69% of hydrogen, 1.57% of nitrogen and 0.26% of sulphur. The calorific value of MSW was found to be 9.17 MJ/Kg which is sufficient to facilitate self-combustion of waste. The characterization of emissions from the burning of 1 kg of MSW in the test chamber showed a total of 90 mg/kg of PM10 and 243 mg/kg of PM2.5. The current research study results will be useful for municipal authorities to formulate guideline and policy structure regarding the MSW management to reduce the impact of air emissions at an open dump site.

Keywords: characterization, MSW, open burning, PM10, PM2.5

Procedia PDF Downloads 322
313 Liquid-Liquid Plug Flow Characteristics in Microchannel with T-Junction

Authors: Anna Yagodnitsyna, Alexander Kovalev, Artur Bilsky

Abstract:

The efficiency of certain technological processes in two-phase microfluidics such as emulsion production, nanomaterial synthesis, nitration, extraction processes etc. depends on two-phase flow regimes in microchannels. For practical application in chemistry and biochemistry it is very important to predict the expected flow pattern for a large variety of fluids and channel geometries. In the case of immiscible liquids, the plug flow is a typical and optimal regime for chemical reactions and needs to be predicted by empirical data or correlations. In this work flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction are investigated. Three liquid-liquid flow systems are considered, viz. kerosene – water, paraffin oil – water and castor oil – paraffin oil. Different flow patterns such as parallel flow, slug flow, plug flow, dispersed (droplet) flow, and rivulet flow are observed for different velocity ratios. New flow pattern of the parallel flow with steady wavy interface (serpentine flow) has been found. It is shown that flow pattern maps based on Weber numbers for different liquid-liquid systems do not match well. Weber number multiplied by Ohnesorge number is proposed as a parameter to generalize flow maps. Flow maps based on this parameter are superposed well for all liquid-liquid systems of this work and other experiments. Plug length and velocity are measured for the plug flow regime. When dispersed liquid wets channel walls plug length cannot be predicted by known empirical correlations. By means of particle tracking velocimetry technique instantaneous velocity fields in a plug flow regime were measured. Flow circulation inside plug was calculated using velocity data that can be useful for mass flux prediction in chemical reactions.

Keywords: flow patterns, hydrodynamics, liquid-liquid flow, microchannel

Procedia PDF Downloads 373
312 Instrumentation for Engine Start Cycle Characterization at Cold Weather High Altitude Condition

Authors: Amit Kumar Gupta, Rohit Vashistha, G. P. Ravishankar, Mahesh P. Padwale

Abstract:

A cold soaked gas turbine engine have known starting problems in high altitude and low temperature conditions. The high altitude results in lower ambient temperature, pressure, and density. Soaking at low temperature leads to higher oil viscosity, increasing the engine starter system torque requirement. Also, low temperature soaks results in a cold compressor rotor and casing. Since the thermal mass of rotor is higher than casing, casing expands faster, thereby, increasing the blade-casing tip clearance. The low pressure flow over the compressor blade coupled with the secondary flow through the compressor tip clearance during start result in stall inception. The present study discusses engine instrumentation required for capturing the stall inception event. The engine fan exit and combustion chamber were instrumented with dynamic pressure probes to capture the pressure characteristic and clamp-on current meter on primary igniter cable to capture ignition event during start cycle. The experiment was carried out at 10500 Ft. pressure altitude and -15°C ambient temperature. The high pressure compressor stall events were recorded during the starts.

Keywords: compressor inlet, dynamic pressure probe, engine start cycle, flight test instrumentation

Procedia PDF Downloads 301
311 Enabling Integrated Production of Electric Vehicles in Automotive Final Assembly: Realization of an Expert Study

Authors: Achim Kampker, Heiner Hans Heimes, Mathias Ordung, Jan-Philip Ganser

Abstract:

In the past years, the automotive industry has changed significantly. Innovative mobility concepts have become more important, and electric vehicles see a chance of replacing vehicles with combustion engines in the long term. However, the coming years will be characterized by coexistence. In this context, there are two possible production scenarios: One the one hand, electric vehicles could be manufactured in bespoke assembly lines. Concerning the uncertainty regarding sales figures development, this alternative boasts a high investment risk. Therefore, an integrated assembly building upon existing structures also seems a feasible solution. This empirical study aims at validating hypotheses concerning theoretical and practical challenges of the integrated production in the final assembly. In order to take a test of approaches of the research by analyzing censored feedback of professionals, these hypotheses are validated in the framework of an expert study. For this purpose, hypotheses have been generated on the basis of a requirements analysis and a concept specification. Thereupon, a list of question has been implemented and deduced from the hypotheses to execute an online- and written-survey and interviews with professionals. The interpretation and evaluation of the findings includes an inter-component comparison for the electric drivetrain. Furthermore, key drivers for a sufficient integrated product and process design are presented.

Keywords: automotive industry, final assembly, integrated manufacturing, product and process development

Procedia PDF Downloads 318
310 Effect of High Volume processed Fly Ash on Engineering Properties of Concrete

Authors: Dhara Shah, Chandrakant Shah

Abstract:

As everyone knows, fly ash is a residual material we get upon energy production using coal. It has found numerous advantages for use in the concrete industry like improved workability, increased ultimate strength, reduced bleeding, reduced permeability, better finish and reduced heat of hydration. Types of fly ash depend on the type of coal and the coal combustion process. It is a pozzolanic material and has mainly two classes, F and C, based on the chemical composition. The fly ash used for this experimental work contains significant amount of lime and would be categorized as type F fly ash. Generally all types of fly ash have particle size less than 0.075mm. The fineness and lime content of fly ash are very important as they will affect the air content and water demand of the concrete, thereby affecting the durability and strength of the concrete. The present work has been done to optimize the use of fly ash to produce concrete with improved results and added benefits. A series of tests are carried out, analyzed and compared with concrete manufactured using only Portland cement as a binder. The present study is carried out for concrete mix with replacement of cement with different proportions of fly ash. Two concrete mixes M25 and M30 were studied with six replacements of cement with fly ash i.e. 40%, 45%, 50%, 55%, 60% and 65% for 7-day, 14-day, 28-day, 56-day and 90-day. Study focused on compressive strength, split tensile strength, modulus of elasticity and modulus of rupture of concrete. Study clearly revealed that cement replacement by any proportion of fly ash failed to achieve early strength. Replacement of 40% and 45% succeeded in achieving required flexural strength for M25 and M30 grade of concrete.

Keywords: processed fly ash, engineering properties of concrete, pozzolanic, lime content

Procedia PDF Downloads 310
309 Moving Oman’s Economy to Knowledge-Based Economy: A Study on the Role of SMEs from the Perspective of Experts

Authors: Hanin Suleiman Alqam

Abstract:

The knowledge-based economy, as its name implies relies on knowledge, information and high levels of skills made available for all economic agents. Delving a bit more deeply, the concept of a knowledge-based economy is showcasing four main pillars, which are: Education and Training, Information and Communication Technology, Economic incentives and Institutional regimes, and Research and Development (R&D) and Innovation system. A good number of researches are showing its positive contribution to economic diversification underpinning sustainable development and growth. The present paper aimed at assessing the role of SMEs in moving Oman’s economy from a traditional economy to a knowledge-based economy. To lay down a groundwork that should lead to future studies, the methodology selected is based on exploratory research. Hence, the interview was conducted as a data collection tool. Based on a purposive sampling technique, seven handpicked experts have partaken in the study as they are working in different key organizations considered to be directly or indirectly the backbone of the Omani national economy. A thematic approach is employed for the purpose of data analysis. Results of the study showed that SMEs are not really contributing in the knowledge-based economy due to a lack of awareness about its importance to the country and to the enterprise within SMEs in Oman. However, it was shown that SMEs owners are interested in innovation and are trying to support innovative individuals by attracting them to their enterprises. On the other hand, the results revealed that SMEs' performance in e-solution is still not up to the level as 32% of SMEs only are using e-solutions in their internal processes and procedures like accounting systems. It is recommended to SMEs owners to use new and modern technologies in marketing and customer relation, encourage creativity, research and development, and allow the youth to have opportunities and facilitate the procedure in terms of innovation so that their role in contributing to the knowledge-based economy could be improved.

Keywords: knowledge-based economy, SMEs, ICT pillars, research and innovation

Procedia PDF Downloads 127
308 Development of Restricted Formula SAE Intake Manifold Using 1D and Flow Simulations Based on Track Analysis

Authors: Sahil Kapahi

Abstract:

A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the power-train is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUMLAP software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modeled using 1D simulation on Ricardo WAVE. A design was developed to meet the targeted performance standards in terms of engine torque output and volumetric efficiency. Finally, the intake manifold was manufactured and assembled onto the vehicle, and the engine output of the vehicle with the designed intake was studied using a dynamometer. The results of the dynamometer testing were then validated against predicted values derived from the Ricardo WAVE modeling and benefits to performance of the vehicle were established.

Keywords: 1 D Simulation, air flow simulation, ANSYS CFX, four-stroke engine, OPTIMUM LAP, Ricardo WAVE

Procedia PDF Downloads 227
307 The Influence of Hydrogen Addition to Natural Gas Networks on Gas Appliances

Authors: Yitong Xie, Chaokui Qin, Zhiguang Chen, Shuangqian Guo

Abstract:

Injecting hydrogen, a competitive carbon-free energy carrier, into existing natural gas networks has become a promising step toward alleviating global warming. Considering the differences in properties of hydrogen and natural gas, there is very little evidence showing how many degrees of hydrogen admixture can be accepted and how to adjust appliances to adapt to gas constituents' variation. The lack of this type of analysis provides more uncertainty in injecting hydrogen into networks because of the short the basis of burner design and adjustment. First, the properties of methane and hydrogen were compared for a comprehensive analysis of the impact of hydrogen addition to methane. As the main determinant of flame stability, the burning velocity was adopted for hydrogen addition analysis. Burning velocities for hydrogen-enriched natural gas with different hydrogen percentages and equivalence ratios were calculated by the software CHEMKIN. Interchangeability methods, including single index methods, multi indices methods, and diagram methods, were adopted to determine the limit of hydrogen percentage. Cooktops and water heaters were experimentally tested in the laboratory. Flame structures of different hydrogen percentages and equivalence ratios were observed and photographed. Besides, the change in heat efficiency, burner temperature, emission by hydrogen percentage, and equivalence ratio was studied. The experiment methodologies and results in this paper provide an important basis for the introduction of hydrogen into gas pipelines and the adjustment of gas appliances.

Keywords: hydrogen, methane, combustion, appliances, interchangeability

Procedia PDF Downloads 67
306 Experimental Investigation of the Effect of Compression Ratio in a Direct Injection Diesel Engine Running on Different Blends of Rice Bran Oil and Ethanol

Authors: Perminderjit Singh, Randeep Singh

Abstract:

The performance, emission and combustion characteristics of a single cylinder four stroke variable compression ratio multifuel engine when fueled with different blends of rice bran oil methyl ester and ethanol are investigated and compared with the results of standard diesel. Biodiesel produced from rice bran oil by transesterification process has been used in this study. The experiment has been conducted at a fixed engine speed of 1500 rpm, 50% load and at compression ratios of 16.5:1, 17:1, 17.5:1 and 18:1. The impact of compression ratio on fuel consumption, brake thermal efficiency and exhaust gas emissions has been investigated and presented. Optimum compression ratio which gives the best performance has been identified. The results indicate longer ignition delay, the maximum rate of pressure rise, lower heat release rate and higher mass fraction burnt at higher compression ratio for waste cooking oil methyl ester when compared to that of diesel. The brake thermal efficiency at 50% load for rice bran oil methyl ester blends and diesel has been calculated and the blend B40 is found to give maximum thermal efficiency. The blends when used as fuel results in the reduction of carbon monoxide, hydrocarbon and increase in nitrogen oxides emissions.

Keywords: biodiesel, rice bran oil, transesterification, ethanol, compression ratio

Procedia PDF Downloads 407
305 Interaction between the Rio Conventions on Climate and Biodiversity: Analysis of the Integration of Ecosystem-Based Approaches and Nature-Based Solutions into the UNFCCC

Authors: Dieudonne Mevono Mvogo

Abstract:

The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES)-Intergovernmental Panel on Climate Change (IPCC) co-sponsored workshop report suggests that climate change and biodiversity loss are two of the most pressing issues of the Anthropocene. Research establishes the interconnection between climate change and biodiversity. On the one hand, the impact of climate change on biodiversity loss – 14 % over the past century – is projected to surpass other threats – land and sea use 34 % and direct exploitation of species 23 % – during the 21st century. Response measures to climate change also affect biodiversity negatively or positively. On the other hand, actions to halt or reverse biodiversity loss can enhance land and ocean capacity for carbon sequestration. These actions can also promote adaptation by ensuring adaptive capacity. This systemic interaction between climate change and biodiversity affects the human quality of life. The United Nations Secretariat's report entitled 'Gaps in international environmental law and environment-related instruments: towards a global pact for the environment,' released in 2018, states that cooperation and mutual support among agreements dealing with climate change, the protection of the marine environment, freshwater resources and hazardous waste are indispensable for the effective implementation of the Convention on the Biological Diversity (CBD). Since biodiversity is being lost at an alarming rate, this study aims to evaluate the cooperative framework for the coherence and coordination between climate change and biodiversity regimes to provide co-benefits for climate and biodiversity crises. It questions the potential improvement regarding integrating ecosystem-based approaches and nature-based solutions – promoted by the CBD – into the United Nations Framework Convention on Climate Change (UNFCCC).

Keywords: rio conventions, climate change, biodiversity, cooperative framework, ecosystem-based approaches, nature-based solutions

Procedia PDF Downloads 98
304 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes

Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin

Abstract:

Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.

Keywords: agro-industrial waste, biomass, briquettes, combustion

Procedia PDF Downloads 189
303 Managing Physiological and Nutritional Needs of Rugby Players in Kenya

Authors: Masita Mokeira, Kimani Rita, Obonyo Brian, Kwenda Kennedy, Mugambi Purity, Kirui Joan, Chomba Eric, Orwa Daniel, Waiganjo Peter

Abstract:

Rugby is a highly intense and physical game requiring speed and strength. The need for physical fitness therefore cannot be over-emphasized. Sports are no longer about lifting weights so as to build muscle. Most professional teams are investing much more in the sport in terms of time, equipment and other resources. To play competitively, Kenyan players may therefore need to complement their ‘home-grown’ and sometimes ad-hoc training and nutrition regimes with carefully measured strength and conditioning, diet, nutrition, and supplementation. Nokia Research Center and University of Nairobi conducted an exploratory study on needs and behaviours surrounding sports in Africa. Rugby being one sport that is gaining ground in Kenya was selected as the main focus. The end goal of the research was to identify areas where mobile technology could be used to address gaps, challenges and/or unmet needs. Themes such as information gap, social culture, growth, and development, revenue flow, and technology adoption among others emerged about the sport. From the growth and development theme, it was clear that as rugby continues to grow in the country, teams, coaches, and players are employing interesting techniques both in training and playing. Though some of these techniques are indeed scientific, those employing them are sometimes not fully aware of their scientific basis. A further case study on sports science in rugby in Kenya focusing on physical fitness and nutrition revealed interesting findings. This paper discusses findings on emerging adoption of techniques in managing physiological and nutritional needs of rugby players across different levels of rugby in Kenya namely high school, club and national levels.

Keywords: rugby, nutrition, physiological needs, sports science

Procedia PDF Downloads 357
302 Characterization of Polycyclic Aromatic Hydrocarbons in Ambient Air PM2.5 in an Urban Site of Győr, Hungary

Authors: A. Szabó Nagy, J. Szabó, Zs. Csanádi, J. Erdős

Abstract:

In Hungary, the measurement of ambient PM10-bound polycyclic aromatic hydrocarbon (PAH) concentrations is great importance for a number of reasons related to human health, the environment and compliance with European Union legislation. However, the monitoring of PAHs associated with PM2.5 aerosol fraction is still incomplete. Therefore, the main aim of this study was to investigate the concentration levels of PAHs in PM2.5 urban aerosol fraction. PM2.5 and associated PAHs were monitored in November 2014 in an urban site of Győr (Northwest Hungary). The aerosol samples were collected every day for 24-hours over two weeks with a high volume air sampler provided with a PM2.5 cut-off inlet. The levels of 19 PAH compounds associated with PM2.5 aerosol fraction were quantified by a gas chromatographic method. Polluted air quality for PM2.5 (>25 g/m3) was indicated in 50% of the collected samples. The total PAHs concentrations ranged from 2.1 to 37.3 ng/m3 with the mean value of 12.4 ng/m3. Indeno(123-cd)pyrene (IND) and sum of three benzofluoranthene isomers were the most dominant PAH species followed by benzo(ghi)perylene and benzo(a)pyrene (BaP). Using BaP-equivalent approach on the concentration data of carcinogenic PAH species, BaP, and IND contributed the highest carcinogenic exposure equivalent (1.50 and 0.24 ng/m3 on average). A selected number of concentration ratios of specific PAH compounds were calculated to evaluate the possible sources of PAH contamination. The ratios reflected that the major source of PAH compounds in the PM2.5 aerosol fraction of Győr during the study period was fossil fuel combustion from automobiles.

Keywords: air, PM2.5, benzo(a)pyrene, polycyclic aromatic hydrocarbon

Procedia PDF Downloads 264
301 Effect of Steel Fibers on M30 Fly Ash Concrete

Authors: Saksham

Abstract:

Concrete's versatility and affordability make it a highly competitive building material capable of meeting diverse requirements. However, the increasing demands placed on structures and the need for enhanced durability and performance have driven the development of distinct cementitious materials and concrete composites. One significant aspect of this advancement is the utilization of waste materials from industries, such as fly ash, to improve concrete's properties. Fly ash, a byproduct of coal combustion can enhance concrete's strength and durability while reducing environmental impact. Additionally, steel fibers can enhance concrete's toughness and crack resistance, contributing to improved structural performance. The experimental study aims to optimize the proportion of ingredients in M30-grade concrete, incorporating fly ash and steel fibers. By varying fly ash content (10% to 30%) and steel fiber dosage (0% to 1.5%), the research seeks to determine the optimal combination for achieving the desired compressive strength. Two sets of experiments are conducted: one focusing on varying fly ash content while keeping steel fiber dosage constant, and the other focusing on varying steel fiber dosage while keeping other parameters fixed. Through systematic testing, molding, curing, and evaluation according to specified standards, the research aims to analyze the impact of fly ash and steel fibers on concrete's compressive strength. The findings have the potential to inform engineers about optimized concrete mix designs that balance performance, cost-effectiveness, and sustainability, advancing toward more resilient and environmentally friendly building practices.

Keywords: concrete, sustainability, durability, compressive strength

Procedia PDF Downloads 27
300 Hot Corrosion and Oxidation Degradation Mechanism of Turbine Materials in a Water Vapor Environment at a Higher Temperature

Authors: Mairaj Ahmad, L. Paglia, F. Marra, V. Genova, G. Pulci

Abstract:

This study employed Rene N4 and FSX 414 superalloys, which are used in numerous turbine engine components due of their high strength, outstanding fatigue, creep, thermal, and corrosion-resistant properties. An in-depth examination of corrosion mechanisms with vapor present at high temperature is necessary given the industrial trend toward introducing increasing amounts of hydrogen into combustion chambers in order to boost power generation and minimize pollution in contrast to conventional fuels. These superalloys were oxidized in recent tests for 500, 1000, 2000, 3000 and 4000 hours at 982±5°C temperatures with a steady airflow at a flow rate of 10L/min and 1.5 bar pressure. These superalloys were also examined for wet corrosion for 500, 1000, 2000, 3000, and 4000 hours in a combination of air and water vapor flowing at a 10L/min rate. Weight gain, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to assess the oxidation and heat corrosion resistance capabilities of these alloys before and after 500, 1000, and 2000 hours. The oxidation/corrosion processes that accompany the formation of these oxide scales are shown in the graph of mass gain vs time. In both dry and wet oxidation, oxides like Al2O3, TiO2, NiCo2O4, Ni3Al, Ni3Ti, Cr2O3, MnCr2O4, CoCr2O4, and certain volatile compounds notably CrO2(OH)2, Cr(OH)3, Fe(OH)2, and Si(OH)4 are formed.

Keywords: hot corrosion, oxidation, turbine materials, high temperature corrosion, super alloys

Procedia PDF Downloads 65
299 A Comparison of Air Quality in Arid and Temperate Climatic Conditions – a Case Study of Leeds and Makkah

Authors: Turki M. Habeebullah, Said Munir, Karl Ropkins, Essam A. Morsy, Atef M. F. Mohammed, Abdulaziz R. Seroji

Abstract:

In this paper air quality conditions in Makkah and Leeds are compared. These two cities have totally different climatic conditions. Makkah climate is characterised as hot and dry (arid) whereas that of Leeds is characterised as cold and wet (temperate). This study uses air quality data from year 2012 collected in Makkah, Saudi Arabia and Leeds, UK. The concentrations of all pollutants, except NO are higher in Makkah. Most notable, the concentrations of PM10 are much higher in Makkah than in Leeds. This is probably due to the arid nature of climatic conditions in Makkah and not solely due to anthropogenic emission sources, otherwise like PM10 some of the other pollutants, such as CO, NO, and SO2 would have shown much greater difference between Leeds and Makkah. Correlation analysis is performed between different pollutants at the same site and the same pollutants at different sites. In Leeds the correlation between PM10 and other pollutants is significantly stronger than in Makkah. Weaker correlation in Makkah is probably due to the fact that in Makkah most of the gaseous pollutants are emitted by combustion processes, whereas most of the PM10 is generated by other sources, such as windblown dust, re-suspension, and construction activities. This is in contrast to Leeds where all pollutants including PM10 are predominantly emitted by combustions, such as road traffic. Furthermore, in Leeds frequent rains wash out most of the atmospheric particulate matter and supress re-suspension of dust. Temporal trends of various pollutants are compared and discussed. This study emphasises the role of climatic conditions in managing air quality, and hence the need for region-specific controlling strategies according to the local climatic and meteorological conditions.

Keywords: air pollution, climatic conditions, particulate matter, Makkah, Leeds

Procedia PDF Downloads 444
298 Freshwater Fish Diversity and IUCN Status of Glacial-fed (Bheri) and Spring-fed (Babai) Rivers in the Wake of Inter-basin Water Transfer

Authors: Kumar Khatri, Bibhuti Ranjan Jha, Smriti Gurung, Udhab Raj Khadka

Abstract:

Freshwater fishes are crucial components of aquatic ecosystems but are being affected by a range of anthropogenic activities. A large number of freshwater bodies in Nepal are under different anthropogenic threats, thereby affecting freshwater biodiversity, including fish fauna. Inter-basin water transfer (IBWT) involving damming and diversion has been considered as one of the major threats to the rivers, yet many such projects are in the pipeline. Impact assessment of such projects include generation of baseline information on different biotic and abiotic variables. The aim of this study was to generate baseline information on fish diversity from the glacial-fed Bheri and the spring-fed Babai rivers and their selected tributaries from Western Nepal in the wake of the first inter-basin water transfer from the former to the latter. A total of 10 sites, 5 each from Bheri and Babai systems, were chosen strategically. Seasonal electrofishing was conducted in 2018 following the standard method. A total of 32 species with Catch per Unite Effort (CPUE) of 46.94±24.06 from Bheri and 42 species with CPUE of 63.02±51.80 from Babai were recorded. Cyprinidae, followed by Nemacheilidae, were the most dominant fish Family in both river systems. Barilius vagra and Schistura beavani were the most dominant species in the Bheri and the Babai systems, respectively. Species richness and abundance showed a significant difference between the rivers. The difference in fish assemblages reflects differences in the ecological regimes of these rivers. Of the total species, at least 8 are in the threatened categories of the IUCN Red List, which need active conservation measures. The findings provide a reference to assess the impacts of water transfers on fish in these river systems and could be helpful to other similar river systems in the future.

Keywords: babai river, bheri river, fish diversity, damming

Procedia PDF Downloads 66
297 Performance Enhancement of Hybrid Racing Car by Design Optimization

Authors: Tarang Varmora, Krupa Shah, Karan Patel

Abstract:

Environmental pollution and shortage of conventional fuel are the main concerns in the transportation sector. Most of the vehicles use an internal combustion engine (ICE), powered by gasoline fuels. This results into emission of toxic gases. Hybrid electric vehicle (HEV) powered by electric machine and ICE is capable of reducing emission of toxic gases and fuel consumption. However to build HEV, it is required to accommodate motor and batteries in the vehicle along with engine and fuel tank. Thus, overall weight of the vehicle increases. To improve the fuel economy and acceleration, the weight of the HEV can be minimized. In this paper, the design methodology to reduce the weight of the hybrid racing car is proposed. To this end, the chassis design is optimized. Further, attempt is made to obtain the maximum strength with minimum material weight. The best configuration out of the three main configurations such as series, parallel and the dual-mode (series-parallel) is chosen. Moreover, the most suitable type of motor, battery, braking system, steering system and suspension system are identified. The racing car is designed and analyzed in the simulating software. The safety of the vehicle is assured by performing static and dynamic analysis on the chassis frame. From the results, it is observed that, the weight of the racing car is reduced by 11 % without compromising on safety and cost. It is believed that the proposed design and specifications can be implemented practically for manufacturing hybrid racing car.

Keywords: design optimization, hybrid racing car, simulation, vehicle, weight reduction

Procedia PDF Downloads 276
296 Oxyhydrogen Gas (HHO) as Replacement to Gasoline Fuel

Authors: Rishabh Pandey, Umang Kumar Yadav

Abstract:

In today’s era of technological advancement, we come across incalculable innovations, almost every day. No doubt that the society has developed a lot in learning and technology, but we should also take into account the problems and inflictions that are occurring. Focusing on the petroleum sector a trending global concern is toward lowering fuel consumption and emissions. It is well known that gasoline is non-renewable source of energy and its burning produces harmful emissions which are adversely affecting the environment, such issues are motivating us to seek alternative solutions that would not require much modification in engine design and help us come out with an outcome. Keeping in mind the importance of environment and human race, we present a factious idea of use of oxyhydrogen gas or HHO gas in place of gasoline in the vehicles and petroleum industry. This technology is prospering, highly efficient, could be used economically and safe, and it will be responsible for changing the future of oil and gas sector in accordance with protection to the environment. In the coming future, we will check the compatibility of HHO generator with fuel engine for production of oxyhydrogen gas with use of water and effect of introducing HHO gas to the combustion on both thermal efficiency and specific fuel consumption. We will also work on the comparison of HHO gas and commercially available gasoline fuel in support of their chemical structures; ignition rate; octane rating; knocking properties; storage; transportation and cost effectiveness and it is trusted that use of HHO gas will be ecofriendly as no harmful emissions are produced, rather the only emission is water. Additionally, this paper will include the use of HHO cell in fuel engines and challenges faced in installing it in the current period and provide effective solutions for the same.

Keywords: fuel, gas, generator, water

Procedia PDF Downloads 308
295 Preparation and Characterization of Mixed Cu-Ag-Pd Oxide Supported Catalysts for Complete Catalytic Oxidation of Methane

Authors: Ts. Lazarova, V. Tumbalev, S. Atanacova-Vladimirova, G. Ivanov, A. Naydenov, D. Kovacheva

Abstract:

Methane is a major Greenhouse Gas (GHG) that accounts for 14% of the world’s total amount of GHG emissions, originating mainly from agriculture, Coal mines, land fields, wastewater and oil and gas facilities. Nowadays the problem caused by the methane emissions has been a subject of an increased concern. One of the methods for neutralization of the methane emissions is it's complete catalytic oxidation. The efforts of the researchers are focused on the development of new types of catalysts and optimizing the existing catalytic systems in order to prevent the sintering of the palladium, providing at the same time a sufficient activity at temperatures below 500oC. The aim of the present work is to prepare mixed Cu-Ag-Pd oxide catalysts supported on alumina and to test them for methane complete catalytic oxidation. Cu-Ag-Pd/Al2O3 were prepared on a γ-Al2O3 (BET surface area = 220 m2/g) by the incipient wetness method using the corresponding metal nitrates (Cu:Ag = 90:10, Cu:Pd =97:3, Cu:Ag:Pd= 87:10:3) as precursors. A second set of samples were prepared with addition of urea to the metal nitrate solutions with the above mentioned ratios assuming increased dispersivity of the catalysts. The catalyst samples were dried at 100°C for 3 hours and calcined at 550°C for 30 minutes. Catalysts samples were characterized using X-ray diffraction (XRD), low temperature adsorption of nitrogen (BET) and scanning electron microscopy (SEM). The catalytic activity tests were carried out in a continuous flow type of reactor at atmospheric pressure. The effect of catalyst aging at 500 oC for 120 h on the methane combustion activity was also investigated. The results clearly indicate the synergetic effect of Ag and Pd on the catalytic activity.

Keywords: catalysts, XRD, BET, SEM, catalytic oxidation

Procedia PDF Downloads 362
294 Increasing the Efficiency of the Biomass Gasification Technology with Using the Organic Rankin Cycle

Authors: Jaroslav Frantík, Jan Najser

Abstract:

This article deals with increasing the energy efficiency of a plant in terms of optimizing the process. The European Union is striving to achieve the climate-energy package in the area increasing of energy efficiency. The goal of energy efficiency is to reduce primary energy consumption by 20% within the EU until 2020. The objective of saving energy consumption in the Czech Republic was set at 47.84 PJ (13.29 TWh). For reducing electricity consumption, it is possible to choose: a) mandatory increasing of energy efficiency, b) alternative scheme, c) combination of both actions. The Czech Republic has chosen for reducing electricity consumption using-alternative scheme. The presentation is focused on the proposal of a technological unit dealing with the gasification process of processing of biomass with an increase of power in the output. The synthesis gas after gasification of biomass is used as fuel in a cogeneration process of reciprocating internal combustion engine with the classic production of heat and electricity. Subsequently, there is an explanation of the ORC system dealing with the conversion of waste heat to electricity with the using closed cycle of the steam process with organic medium. The arising electricity is distributed to the power grid as a further energy source, or it is used for needs of the partial coverage of the technological unit. Furthermore, there is a presented schematic description of the technology with the identification of energy flows starting from the biomass treatment by drying, through its conversion to gaseous fuel, producing of electricity and utilize of thermal energy with minimizing losses. It has been found that using of ORC system increased the efficiency of the produced electricity by 7.5%.

Keywords: biomass, efficiency, gasification, ORC system

Procedia PDF Downloads 198
293 A Moroccan Natural Solution for Treating Industrial Effluents: Evaluating the Effectiveness of Using Date Kernel Residues for Purification

Authors: Ahmed Salim, A. El Bouari, M. Tahiri, O. Tanane

Abstract:

This research aims to develop and comprehensively characterize a cost-effective activated carbon derived from date residues, with a focus on optimizing its physicochemical properties to achieve superior performance in a variety of applications. The samples were synthesized via a chemical activation process utilizing phosphoric acid (H₃PO₄) as the activating agent. Activated carbon, produced through this method, functions as a vital adsorbent for the removal of contaminants, with a specific focus on methylene blue, from industrial wastewater. This study meticulously examined the influence of various parameters, including carbonization temperature and duration, on both the combustion properties and adsorption efficiency of the resultant material. Through extensive analysis, the optimal conditions for synthesizing the activated carbon were identified as a carbonization temperature of 600°C and a duration of 2 hours. The activated carbon synthesized under optimized conditions demonstrated an exceptional carbonization yield and methylene blue adsorption efficiency of 99.71%. The produced carbon was subsequently characterized using X-ray diffraction (XRD) analysis. Its effectiveness in the adsorption of methylene blue from contaminated water was then evaluated. A comprehensive assessment of the adsorption capacity was conducted by varying parameters such as carbon dosage, contact time, initial methylene blue concentration, and pH levels.

Keywords: environmental pollution, adsorbent, activated carbon, phosphoric acid, date Kernels, pollutants, adsorption

Procedia PDF Downloads 6
292 Heat Treatment of Additively Manufactured Hybrid Rocket Fuel Grains

Authors: Jim J. Catina, Jackee M. Gwynn, Jin S. Kang

Abstract:

Additive manufacturing (AM) for hybrid rocket engines is becoming increasingly attractive due to its ability to create complex grain configurations with improved regression rates when compared to cast grains. However, the presence of microvoids in parts produced through the additive manufacturing method of Fused Deposition Modeling (FDM) results in a lower fuel density and is believed to cause a decrease in regression rate compared to ideal performance. In this experiment, FDM was used to create hybrid rocket fuel grains with a star configuration composed of acrylonitrile butadiene styrene (ABS). Testing was completed to determine the effect of heat treatment as a post-processing method to improve the combustion performance of hybrid rocket fuel grains manufactured by FDM. For control, three ABS star configuration grains were printed using FDM and hot fired using gaseous oxygen (GOX) as the oxidizer. Parameters such as thrust and mass flow rate were measured. Three identical grains were then heat treated to varying degrees and hot fired under the same conditions as the control grains. This paper will quantitatively describe the amount of improvement in engine performance as a result of heat treatment of the AM hybrid fuel grain. Engine performance is measured in this paper by specific impulse, which is determined from the thrust measurements collected in testing.

Keywords: acrylonitrile butadiene styrene, additive manufacturing, fused deposition modeling, heat treatment

Procedia PDF Downloads 96