Search results for: cluster computing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1831

Search results for: cluster computing

1081 Cognitive Footprints: Analytical and Predictive Paradigm for Digital Learning

Authors: Marina Vicario, Amadeo Argüelles, Pilar Gómez, Carlos Hernández

Abstract:

In this paper, the Computer Research Network of the National Polytechnic Institute of Mexico proposes a paradigmatic model for the inference of cognitive patterns in digital learning systems. This model leads to metadata architecture useful for analysis and prediction in online learning systems; especially on MOOc's architectures. The model is in the design phase and expects to be tested through an institutional of courses project which is going to develop for the MOOc.

Keywords: cognitive footprints, learning analytics, predictive learning, digital learning, educational computing, educational informatics

Procedia PDF Downloads 477
1080 The Mediating Role of Bank Image in Customer Satisfaction Building

Authors: H. Emari, Z. Emari

Abstract:

The main objective of this research was to determine the dimensions of service quality in the banking industry of Iran. For this purpose, the study empirically examined the European perspective suggesting that service quality consists of three dimensions, technical, functional and image. This research is an applied research and its strategy is casual strategy. A standard questionnaire was used for collecting the data. 287 customers of Melli Bank of Northwest were selected through cluster sampling and were studied. The results from a banking service sample revealed that the overall service quality is influenced more by a consumer’s perception of technical quality than functional quality. Accordingly, the Gronroos model is a more appropriate representation of service quality than the American perspective with its limited concentration on the dimension of functional quality in the banking industry of Iran. So, knowing the key dimensions of the quality of services in this industry and planning for their improvement can increase the satisfaction of customers and productivity of this industry.

Keywords: technical quality, functional quality, banking, image, mediating role

Procedia PDF Downloads 369
1079 An Intelligent Cloud Radio Access Network (RAN) Architecture for Future 5G Heterogeneous Wireless Network

Authors: Jin Xu

Abstract:

5G network developers need to satisfy the necessary requirements of additional capacity from massive users and spectrally efficient wireless technologies. Therefore, the significant amount of underutilized spectrum in network is motivating operators to combine long-term evolution (LTE) with intelligent spectrum management technology. This new LTE intelligent spectrum management in unlicensed band (LTE-U) has the physical layer topology to access spectrum, specifically the 5-GHz band. We proposed a new intelligent cloud RAN for 5G.

Keywords: cloud radio access network, wireless network, cloud computing, multi-agent

Procedia PDF Downloads 424
1078 Distributed Key Management With Less Transmitted Messaged In Rekeying Process To Secure Iot Wireless Sensor Networks In Smart-Agro

Authors: Safwan Mawlood Hussien

Abstract:

Internet of Things (IoT) is a promising technology has received considerable attention in different fields such as health, industry, defence, and agro, etc. Due to the limitation capacity of computing, storage, and communication, IoT objects are more vulnerable to attacks. Many solutions have been proposed to solve security issues, such as key management using symmetric-key ciphers. This study provides a scalable group distribution key management based on ECcryptography; with less transmitted messages The method has been validated through simulations in OMNeT++.

Keywords: elliptic curves, Diffie–Hellman, discrete logarithm problem, secure key exchange, WSN security, IoT security, smart-agro

Procedia PDF Downloads 119
1077 How OXA GENE Expression is Implicated in the Treatment Resistance and Poor Prognosis in Glioblastoma

Authors: Naomi Seidu, Edward Poluyi, Chibuikem Ikwuegbuenyi, Eghosa Morgan

Abstract:

The current poor prognosis of glioblastoma has called for the need for an improvement in treatment methods in order to improve its survival rate. Despite the different interventions currently available for this tumor, the average survival is still only a few months. (12-15). The aim is to create a more favorable prognosis and have a reduction in the resistance to treatment currently being experienced, even with surgical interventions and chemotherapy. From the available literature, there is a relationship between the presence of HOX genes (Homeobox genes) and glioblastoma, which could be attributable to the increasing treatment resistance. Hence silencing these genes can be a key to improving survival rates of glioblastoma. A series of studies have highlighted the role that HOX genes play in glioblastoma prognosis. Promotion of human glioblastoma initiation, aggressiveness, and resistance to Temozolomide has been associated with HOXA9. The role of HOX gene expression in cancer stem cells should be studied as it could provide a means of designing CSC-targeted therapies, as CSCs play a part in the initiation and progression of solid tumors.

Keywords: GBM- glioblastoma, HOXA gene- homeobox genes cluster, signaling pathways, temozolomide

Procedia PDF Downloads 105
1076 The On-Board Critical Message Transmission Design for Navigation Satellite Delay/Disruption Tolerant Network

Authors: Ji-yang Yu, Dan Huang, Guo-ping Feng, Xin Li, Lu-yuan Wang

Abstract:

The navigation satellite network, especially the Beidou MEO Constellation, can relay data effectively with wide coverage and is applied in navigation, detection, and position widely. But the constellation has not been completed, and the amount of satellites on-board is not enough to cover the earth, which makes the data-relay disrupted or delayed in the transition process. The data-relay function needs to tolerant the delay or disruption in some extension, which make the Beidou MEO Constellation a delay/disruption-tolerant network (DTN). The traditional DTN designs mainly employ the relay table as the basic of data path schedule computing. But in practical application, especially in critical condition, such as the war-time or the infliction heavy losses on the constellation, parts of the nodes may become invalid, then the traditional DTN design could be useless. Furthermore, when transmitting the critical message in the navigation system, the maximum priority strategy is used, but the nodes still inquiry the relay table to design the path, which makes the delay more than minutes. Under this circumstances, it needs a function which could compute the optimum data path on-board in real-time according to the constellation states. The on-board critical message transmission design for navigation satellite delay/disruption-tolerant network (DTN) is proposed, according to the characteristics of navigation satellite network. With the real-time computation of parameters in the network link, the least-delay transition path is deduced to retransmit the critical message in urgent conditions. First, the DTN model for constellation is established based on the time-varying matrix (TVM) instead of the time-varying graph (TVG); then, the least transition delay data path is deduced with the parameters of the current node; at last, the critical message transits to the next best node. For the on-board real-time computing, the time delay and misjudges of constellation states in ground stations are eliminated, and the residual information channel for each node can be used flexibly. Compare with the minute’s delay of traditional DTN; the proposed transmits the critical message in seconds, which improves the re-transition efficiency. The hardware is implemented in FPGA based on the proposed model, and the tests prove the validity.

Keywords: critical message, DTN, navigation satellite, on-board, real-time

Procedia PDF Downloads 343
1075 Career Anchors and Job Satisfaction of Managers: The Mediating Role of Person-job Fit

Authors: Azadeh Askari, Ali Nasery Mohamad Abadi

Abstract:

The present study was conducted to investigate the relationship between career anchors and job satisfaction with emphasis on the mediating role of person-job fit. 502 managers and supervisors of ten operational areas of a large energy Company were selected as a cluster sample appropriate to the volume. The instruments used in this study were Career Anchor Questionnaire, Job Satisfaction Questionnaire and Person-job fit Questionnaire. Pearson correlation coefficient was used to analyze the data and AMOS software was used to determine the effect of career anchor variables and person-job fit on job satisfaction. Anchors of service and dedication, pure challenge and security and stability increase the person-job fit among managers and also the person-job fit plays a mediating role in relation to the effect it has on job satisfaction through these anchors. In contrast, the anchors of independence and autonomy reduce the person-job fit. Considering the importance of positive organizational attitudes and in order to have an optimal fit between job and worker, it is better that in human resources processes such as hiring and employing, the career anchors of the person should be considered so that the person can have more job satisfaction; and thus bring higher productivity for themselves and the organization.

Keywords: career anchor, job satisfaction, person-job fit, energy company, managers

Procedia PDF Downloads 122
1074 Fractal Analysis of Polyacrylamide-Graphene Oxide Composite Gels

Authors: Gülşen Akın Evingür, Önder Pekcan

Abstract:

The fractal analysis is a bridge between the microstructure and macroscopic properties of gels. Fractal structure is usually provided to define the complexity of crosslinked molecules. The complexity in gel systems is described by the fractal dimension (Df). In this study, polyacrylamide- graphene oxide (GO) composite gels were prepared by free radical crosslinking copolymerization. The fractal analysis of polyacrylamide- graphene oxide (GO) composite gels were analyzed in various GO contents during gelation and were investigated by using Fluorescence Technique. The analysis was applied to estimate Df s of the composite gels. Fractal dimension of the polymer composite gels were estimated based on the power law exponent values using scaling models. In addition, here we aimed to present the geometrical distribution of GO during gelation. And we observed that as gelation proceeded GO plates first organized themselves into 3D percolation cluster with Df=2.52, then goes to diffusion limited clusters with Df =1.4 and then lines up to Von Koch curve with random interval with Df=1.14. Here, our goal is to try to interpret the low conductivity and/or broad forbidden gap of GO doped PAAm gels, by the distribution of GO in the final form of the produced gel.

Keywords: composite gels, fluorescence, fractal, scaling

Procedia PDF Downloads 307
1073 Clinical Experience and Perception of Risk affect the Acceptance and Trust of using AI in Medicine

Authors: Schulz Peter, Kee Kalya, Lwin May, Goh Wilson, Chia Kendrikck, Chueng Max, Lam Thomas, Sung Joseph

Abstract:

As Artificial Intelligence (AI) is progressively making inroads into clinical practice, questions have arisen as to whether acceptance of AI is skewed toward certain medical practitioner segments, even within particular specializations. This study examines distinct AI acceptance among gastroenterologists with contrasting levels of seniority/experience when interacting with AI typologies. Data from 319 gastroenterologists show the presence of four distinct clusters of clinicians based on experience levels and perceived risk typologies. Analysis of cluster-based responses further revealed that acceptance of AI was not uniform. Our findings showed that clinician experience and risk perspective have an interactive role in influencing AI acceptance. Senior clinicians with low-risk perceptions were highly accepting of AI, but those with high-risk perceptions of AI were substantially less accepting. In contrast, junior clinicians were more inclined to embrace AI when they perceived high risk, yet they hesitated to adopt AI when the perceived risk was minimal.

Keywords: risk perception, acceptance, trust, medicine

Procedia PDF Downloads 15
1072 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines

Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder

Abstract:

One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.

Keywords: affective computing, emotion recognition, humanoid robot, human-robot-interaction (HRI), social robots

Procedia PDF Downloads 235
1071 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization

Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın

Abstract:

There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.

Keywords: aircraft, fatigue, joint, life, optimization, prediction.

Procedia PDF Downloads 175
1070 Quantitative Analysis of Multiprocessor Architectures for Radar Signal Processing

Authors: Deepak Kumar, Debasish Deb, Reena Mamgain

Abstract:

Radar signal processing requires high number crunching capability. Most often this is achieved using multiprocessor platform. Though multiprocessor platform provides the capability of meeting the real time computational challenges, the architecture of the same along with mapping of the algorithm on the architecture plays a vital role in efficiently using the platform. Towards this, along with standard performance metrics, few additional metrics are defined which helps in evaluating the multiprocessor platform along with the algorithm mapping. A generic multiprocessor architecture can not suit all the processing requirements. Depending on the system requirement and type of algorithms used, the most suitable architecture for the given problem is decided. In the paper, we study different architectures and quantify the different performance metrics which enables comparison of different architectures for their merit. We also carried out case study of different architectures and their efficiency depending on parallelism exploited on algorithm or data or both.

Keywords: radar signal processing, multiprocessor architecture, efficiency, load imbalance, buffer requirement, pipeline, parallel, hybrid, cluster of processors (COPs)

Procedia PDF Downloads 412
1069 A Rational Intelligent Agent to Promote Metacognition a Situation of Text Comprehension

Authors: Anass Hsissi, Hakim Allali, Abdelmajid Hajami

Abstract:

This article presents the results of a doctoral research which aims to integrate metacognitive dimension in the design of human learning computing environments (ILE). We conducted a detailed study on the relationship between metacognitive processes and learning, specifically their positive impact on the performance of learners in the area of reading comprehension. Our contribution is to implement methods, using an intelligent agent based on BDI paradigm to ensure intelligent and reliable support for low readers, in order to encourage regulation and a conscious and rational use of their metacognitive abilities.

Keywords: metacognition, text comprehension EIAH, autoregulation, BDI agent

Procedia PDF Downloads 323
1068 Synthesis, Characterization, and Properties Study of New Magnetic Materials

Authors: Messai Amel, Badis Zakaria, Benali-Cherif Nourredine, Dominique Luneaub

Abstract:

We are interested in molecular polymetallic species having high spin and nuclearities in relation to the field of so call single-molecule magnets (SMMs). The goal is to find a way to synthesis metal clusters which may have application in magnetism and nano sciences. With this purpose, we decided to investigate the coordination chemistry of the Schiff base. Along this way we were able to create cubane-like complexes and elaborate new Single Molecule-Magnets. The idea was to use Schiff base ligands and different metals to generate high nuclear complexes. Complexation of Shiff base with copper (II) has been investigated. Tetra nuclear complex with a cubane like core have been synthesized with (Sciff base), with the same base and cobalt (II) we obtain an other single magnetic complex completely different. In this presentation, we report the synthesis, crystal structure and magnetic properties of the tetranuclear compound (Cu4 L4), and the tetranuclear compound. (Co4L4)

Keywords: cluster-assembled materials, magnetic compounds, Sciff base, cupper, cobalt

Procedia PDF Downloads 449
1067 Intrusion Detection Using Dual Artificial Techniques

Authors: Rana I. Abdulghani, Amera I. Melhum

Abstract:

With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.

Keywords: IDS, SI, BP, NSL_KDD, PSO

Procedia PDF Downloads 382
1066 Modeling the Demand for the Healthcare Services Using Data Analysis Techniques

Authors: Elizaveta S. Prokofyeva, Svetlana V. Maltseva, Roman D. Zaitsev

Abstract:

Rapidly evolving modern data analysis technologies in healthcare play a large role in understanding the operation of the system and its characteristics. Nowadays, one of the key tasks in urban healthcare is to optimize the resource allocation. Thus, the application of data analysis in medical institutions to solve optimization problems determines the significance of this study. The purpose of this research was to establish the dependence between the indicators of the effectiveness of the medical institution and its resources. Hospital discharges by diagnosis; hospital days of in-patients and in-patient average length of stay were selected as the performance indicators and the demand of the medical facility. The hospital beds by type of care, medical technology (magnetic resonance tomography, gamma cameras, angiographic complexes and lithotripters) and physicians characterized the resource provision of medical institutions for the developed models. The data source for the research was an open database of the statistical service Eurostat. The choice of the source is due to the fact that the databases contain complete and open information necessary for research tasks in the field of public health. In addition, the statistical database has a user-friendly interface that allows you to quickly build analytical reports. The study provides information on 28 European for the period from 2007 to 2016. For all countries included in the study, with the most accurate and complete data for the period under review, predictive models were developed based on historical panel data. An attempt to improve the quality and the interpretation of the models was made by cluster analysis of the investigated set of countries. The main idea was to assess the similarity of the joint behavior of the variables throughout the time period under consideration to identify groups of similar countries and to construct the separate regression models for them. Therefore, the original time series were used as the objects of clustering. The hierarchical agglomerate algorithm k-medoids was used. The sampled objects were used as the centers of the clusters obtained, since determining the centroid when working with time series involves additional difficulties. The number of clusters used the silhouette coefficient. After the cluster analysis it was possible to significantly improve the predictive power of the models: for example, in the one of the clusters, MAPE error was only 0,82%, which makes it possible to conclude that this forecast is highly reliable in the short term. The obtained predicted values of the developed models have a relatively low level of error and can be used to make decisions on the resource provision of the hospital by medical personnel. The research displays the strong dependencies between the demand for the medical services and the modern medical equipment variable, which highlights the importance of the technological component for the successful development of the medical facility. Currently, data analysis has a huge potential, which allows to significantly improving health services. Medical institutions that are the first to introduce these technologies will certainly have a competitive advantage.

Keywords: data analysis, demand modeling, healthcare, medical facilities

Procedia PDF Downloads 144
1065 Using the Timepix Detector at CERN Accelerator Facilities

Authors: Andrii Natochii

Abstract:

The UA9 collaboration in the last two years has installed two different types of detectors to investigate the channeling effect in the bent silicon crystals with high-energy particles beam on the CERN accelerator facilities: Cherenkov detector CpFM and silicon pixel detector Timepix. In the current work, we describe the main performances of the Timepix detector operation at the SPS and H8 extracted beamline at CERN. We are presenting some detector calibration results and tuning. Our research topics also cover a cluster analysis algorithm for the particle hits reconstruction. We describe the optimal acquisition setup for the Timepix device and the edges of its functionality for the high energy and flux beam monitoring. The measurements of the crystal parameters are very important for the future bent crystal applications and needs a track reconstruction apparatus. Thus, it was decided to construct a short range (1.2 m long) particle telescope based on the Timepix sensors and test it at H8 SPS extraction beamline. The obtained results will be shown as well.

Keywords: beam monitoring, channeling, particle tracking, Timepix detector

Procedia PDF Downloads 180
1064 Removal of Phenol from Aqueous Solutions by Ferrite Catalysts

Authors: Bayan Alqasem, Israa Othman, Mohammad Abu Haija, Fawzi Banat

Abstract:

The large-scale production of wastewater containing highly toxic pollutants made it necessary to find efficient water treatment technologies. Phenolic compounds, which are known to be persistent and hazardous, are highly presented in wastewater. In this study, different ferrite catalysts CrFe₂O₄, CuFe₂O₄, MgFe₂O₄, MnFe₂O₄, NiFe₂O₄, and ZnFe₂O₄ were employed to study the catalytic degradation of phenol aqueous solutions. The catalysts were prepared via sol-gel and co-precipitation methods. All of the prepared catalysts were characterized using infrared spectroscopy (IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The ferrites catalytic activities were tested towards phenol degradation using high-performance liquid chromatography (HPLC). The photocatalytic properties of the ferrites were also investigated. The experimental results suggested that CuFe₂O₄ is an effective catalyst for the removal of phenol from wastewater. Additionally, different CuFe₂O₄composites were also prepared either by varying the metal ratios or incorporating chemically reduced graphene oxide in the ferrite cluster.

Keywords: phenol degradation, ferrite catalysts, ferrite composites, photocatalysis

Procedia PDF Downloads 207
1063 Robust Attitude Control for Agile Satellites with Vibration Compensation

Authors: Jair Servín-Aguilar, Yu Tang

Abstract:

We address the problem of robust attitude tracking for agile satellites under unknown bounded torque disturbances using a double-gimbal variable-speed control-moment gyro (DGVSCMG) driven by a cluster of three permanent magnet synchronous motors (PMSMs). Uniform practical asymptotic stability is achieved at the torque control level first. The desired speed of gimbals and the acceleration of the spin wheel to produce the required torque are then calculated by a velocity-based steering law and tracked at the PMSM speed-control level by designing a speed-tracking controller with compensation for the vibration caused by eccentricity and imbalance due to mechanical imperfection in the DGVSCMG. Uniform practical asymptotic stability of the overall system is ensured by loan relying on the analysis of the resulting cascaded system. Numerical simulations are included to show the performance improvement of the proposed controller.

Keywords: agile satellites, vibration compensation, internal model, stability

Procedia PDF Downloads 114
1062 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets

Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi

Abstract:

Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.

Keywords: data sets, recommendation system, utility item sets, frequent item sets mining

Procedia PDF Downloads 293
1061 A Computational Study of N–H…O Hydrogen Bonding to Investigate Cooperative Effects

Authors: Setareh Shekarsaraei, Marjan Moridi, Nasser L. Hadipour

Abstract:

In this study, nuclear magnetic resonance spectroscopy and nuclear quadrupole resonance spectroscopy parameters of 14N (Nitrogen in imidazole ring) in N–H…O hydrogen bonding for Histidine hydrochloride monohydrate were calculated via density functional theory. We considered a five-molecule model system of Histidine hydrochloride monohydrate. Also, we examined the trends of environmental effect on hydrogen bonds as well as cooperativity. The functional used in this research is M06-2X which is a good functional and the obtained results have shown good agreement with experimental data. This functional was applied to calculate the NMR and NQR parameters. Some correlations among NBO parameters, NMR, and NQR parameters have been studied which have shown the existence of strong correlations among them. Furthermore, the geometry optimization has been performed using M062X/6-31++G(d,p) method. In addition, in order to study cooperativity and changes in structural parameters, along with increase in cluster size, natural bond orbitals have been employed.

Keywords: hydrogen bonding, density functional theory (DFT), natural bond orbitals (NBO), cooperativity effect

Procedia PDF Downloads 456
1060 Physical-Chemical Parameters of Latvian Apple Juices and Their Suitability for Cider Production

Authors: Rita Riekstina-Dolge, Zanda Kruma, Daina Karklina, Fredijs Dimins

Abstract:

Apple juice is the main raw material for cider production. In this study apple juices obtained from 14 dessert and crab variety apples grown in Latvia were investigated. For all samples soluble solids, titratable acidity, pH and sugar content were determined. Crab apples produce more dry matter, total sugar and acid content compared to the dessert apples but it depends on the apple variety. Total sugar content of crab apple juices was 1.3 to 1.8 times larger than in dessert apple juices. Titratable acidity of dessert apple juices is in the range of 4.1g L-1 to 10.83g L-1 and in crab apple juices titratable acidity is from 7.87g L-1 to 19.6g L-1. Fructose was detected as the main sugar whereas glucose level varied depending on the variety. The highest titratable acidity and content of sugars was detected in ‘Cornelia’ apples juice.

Keywords: apple juice, hierarchical cluster analysis, sugars, titratable acidity

Procedia PDF Downloads 243
1059 A Scalable Media Job Framework for an Open Source Search Engine

Authors: Pooja Mishra, Chris Pollett

Abstract:

This paper explores efficient ways to implement various media-updating features like news aggregation, video conversion, and bulk email handling. All of these jobs share the property that they are periodic in nature, and they all benefit from being handled in a distributed fashion. The data for these jobs also often comes from a social or collaborative source. We isolate the class of periodic, one round map reduce jobs as a useful setting to describe and handle media updating tasks. As such tasks are simpler than general map reduce jobs, programming them in a general map reduce platform could easily become tedious. This paper presents a MediaUpdater module of the Yioop Open Source Search Engine Web Portal designed to handle such jobs via an extension of a PHP class. We describe how to implement various media-updating tasks in our system as well as experiments carried out using these implementations on an Amazon Web Services cluster.

Keywords: distributed jobs framework, news aggregation, video conversion, email

Procedia PDF Downloads 299
1058 Knowledge Representation Based on Interval Type-2 CFCM Clustering

Authors: Lee Myung-Won, Kwak Keun-Chang

Abstract:

This paper is concerned with knowledge representation and extraction of fuzzy if-then rules using Interval Type-2 Context-based Fuzzy C-Means clustering (IT2-CFCM) with the aid of fuzzy granulation. This proposed clustering algorithm is based on information granulation in the form of IT2 based Fuzzy C-Means (IT2-FCM) clustering and estimates the cluster centers by preserving the homogeneity between the clustered patterns from the IT2 contexts produced in the output space. Furthermore, we can obtain the automatic knowledge representation in the design of Radial Basis Function Networks (RBFN), Linguistic Model (LM), and Adaptive Neuro-Fuzzy Networks (ANFN) from the numerical input-output data pairs. We shall focus on a design of ANFN in this paper. The experimental results on an estimation problem of energy performance reveal that the proposed method showed a good knowledge representation and performance in comparison with the previous works.

Keywords: IT2-FCM, IT2-CFCM, context-based fuzzy clustering, adaptive neuro-fuzzy network, knowledge representation

Procedia PDF Downloads 322
1057 Assessment of Dietary Intake of Pregnant Women

Authors: Tuleshova Gulnara, Abduldayeva Aigul

Abstract:

The goal is based on the studying the prevalence of micronutrient deficiencies among children and women of reproductive age to develop evidence-based recommendations aimed at improving the effectiveness of programs to prevent micronutrient deficiency. Subject: In our study we used a representative, random sample, carried out with the cluster method in the precinct of the principle areas of medical care for children 5 years of old. If the site has at least 60 children under 5 years of old, each second child was sampled, and if more than 60 children - each third child (first child selected by random sampling). The total number of investigated persons was within 80-86 women of reproductive age and children - within 80-92 people. Results: The studies found that the average prevalence of anemia among children aged 6-59 months was 35.2%, with the most susceptible to iron deficiency anemia in infants aged 6-23 months (53.3%). The prevalence of anemia among non-pregnant women was 39.0% among pregnant women - 43.8%. In children, the prevalence of folate deficiency was the highest (27.6%). Among non-pregnant women, frequent prevalence of folic acid deficiency was 37.0%. The prevalence of vitamin A deficiency was higher among children living in Astana (37.4%) compared with the medium-republican level (23.2%).

Keywords: nutrition, pregnant women, micronutrients, macronutrients

Procedia PDF Downloads 616
1056 Factors Affecting Sense of Community in Residential Communities Case Study: Residential Communities in Tehran, Iran

Authors: Parvin Foroughifar

Abstract:

The concept of sense of community refers to residents’ sense of attachment and commitment to the other residents in a residential community. It is implicitly indicative of the mental image of a physical environment in which the residents enjoy strong social ties. Sense of community, a crucial factor in improving quality of life and social welfare, leads to life satisfaction in a residential community. Despite the important functions of such a notion, few empirical studies, to the best of the authors' knowledge, have been so far carried out in Iran to investigate the effective factors in sharpening the sense of community in residential communities. This survey research examined sense of community in 360 above 20-year old residents of three residential communities in Tehran, Iran using cluster sampling and questionnaire. The study yielded the result that variables of local social ties, social control and trust, sense of security, length of residence, use of public spaces, and mixed land use have a significant relationship with sense of community.

Keywords: sense of community, local social ties, sense of security, public space, residential community, Tehran

Procedia PDF Downloads 189
1055 A Fourier Method for Risk Quantification and Allocation of Credit Portfolios

Authors: Xiaoyu Shen, Fang Fang, Chujun Qiu

Abstract:

Herewith we present a Fourier method for credit risk quantification and allocation in the factor-copula model framework. The key insight is that, compared to directly computing the cumulative distribution function of the portfolio loss via Monte Carlo simulation, it is, in fact, more efficient to calculate the transformation of the distribution function in the Fourier domain instead and inverting back to the real domain can be done in just one step and semi-analytically, thanks to the popular COS method (with some adjustments). We also show that the Euler risk allocation problem can be solved in the same way since it can be transformed into the problem of evaluating a conditional cumulative distribution function. Once the conditional or unconditional cumulative distribution function is known, one can easily calculate various risk metrics. The proposed method not only fills the niche in literature, to the best of our knowledge, of accurate numerical methods for risk allocation but may also serve as a much faster alternative to the Monte Carlo simulation method for risk quantification in general. It can cope with various factor-copula model choices, which we demonstrate via examples of a two-factor Gaussian copula and a two-factor Gaussian-t hybrid copula. The fast error convergence is proved mathematically and then verified by numerical experiments, in which Value-at-Risk, Expected Shortfall, and conditional Expected Shortfall are taken as examples of commonly used risk metrics. The calculation speed and accuracy are tested to be significantly superior to the MC simulation for real-sized portfolios. The computational complexity is, by design, primarily driven by the number of factors instead of the number of obligors, as in the case of Monte Carlo simulation. The limitation of this method lies in the "curse of dimension" that is intrinsic to multi-dimensional numerical integration, which, however, can be relaxed with the help of dimension reduction techniques and/or parallel computing, as we will demonstrate in a separate paper. The potential application of this method has a wide range: from credit derivatives pricing to economic capital calculation of the banking book, default risk charge and incremental risk charge computation of the trading book, and even to other risk types than credit risk.

Keywords: credit portfolio, risk allocation, factor copula model, the COS method, Fourier method

Procedia PDF Downloads 168
1054 A Multi Cordic Architecture on FPGA Platform

Authors: Ahmed Madian, Muaz Aljarhi

Abstract:

Coordinate Rotation Digital Computer (CORDIC) is a unique digital computing unit intended for the computation of mathematical operations and functions. This paper presents a multi-CORDIC processor that integrates different CORDIC architectures on a single FPGA chip and allows the user to select the CORDIC architecture to proceed with based on what he wants to calculate and his/her needs. Synthesis show that radix 2 CORDIC has the lowest clock delay, radix 8 CORDIC has the highest LUT usage and lowest register usage while Hybrid Radix 4 CORDIC had the highest clock delay.

Keywords: multi, CORDIC, FPGA, processor

Procedia PDF Downloads 470
1053 Realization of Autonomous Guidance Service by Integrating Information from NFC and MEMS

Authors: Dawei Cai

Abstract:

In this paper, we present an autonomous guidance service by combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children.

Keywords: NFC, ubiquitous computing, guide sysem, MEMS

Procedia PDF Downloads 409
1052 Markov Switching of Conditional Variance

Authors: Josip Arneric, Blanka Skrabic Peric

Abstract:

Forecasting of volatility, i.e. returns fluctuations, has been a topic of interest to portfolio managers, option traders and market makers in order to get higher profits or less risky positions. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most common used models are GARCH type models. As standard GARCH models show high volatility persistence, i.e. integrated behaviour of the conditional variance, it is difficult the predict volatility using standard GARCH models. Due to practical limitations of these models different approaches have been proposed in the literature, based on Markov switching models. In such situations models in which the parameters are allowed to change over time are more appropriate because they allow some part of the model to depend on the state of the economy. The empirical analysis demonstrates that Markov switching GARCH model resolves the problem of excessive persistence and outperforms uni-regime GARCH models in forecasting volatility for selected emerging markets.

Keywords: emerging markets, Markov switching, GARCH model, transition probabilities

Procedia PDF Downloads 455