Search results for: street characteristics design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18448

Search results for: street characteristics design

10828 Evaluation of Reliability Flood Control System Based on Uncertainty of Flood Discharge, Case Study Wulan River, Central Java, Indonesia

Authors: Anik Sarminingsih, Krishna V. Pradana

Abstract:

The failure of flood control system can be caused by various factors, such as not considering the uncertainty of designed flood causing the capacity of the flood control system is exceeded. The presence of the uncertainty factor is recognized as a serious issue in hydrological studies. Uncertainty in hydrological analysis is influenced by many factors, starting from reading water elevation data, rainfall data, selection of method of analysis, etc. In hydrological modeling selection of models and parameters corresponding to the watershed conditions should be evaluated by the hydraulic model in the river as a drainage channel. River cross-section capacity is the first defense in knowing the reliability of the flood control system. Reliability of river capacity describes the potential magnitude of flood risk. Case study in this research is Wulan River in Central Java. This river occurring flood almost every year despite some efforts to control floods such as levee, floodway and diversion. The flood-affected areas include several sub-districts, mainly in Kabupaten Kudus and Kabupaten Demak. First step is analyze the frequency of discharge observation from Klambu weir which have time series data from 1951-2013. Frequency analysis is performed using several distribution frequency models such as Gumbel distribution, Normal, Normal Log, Pearson Type III and Log Pearson. The result of the model based on standard deviation overlaps, so the maximum flood discharge from the lower return periods may be worth more than the average discharge for larger return periods. The next step is to perform a hydraulic analysis to evaluate the reliability of river capacity based on the flood discharge resulted from several methods. The selection of the design flood discharge of flood control system is the result of the method closest to bankfull capacity of the river.

Keywords: design flood, hydrological model, reliability, uncertainty, Wulan river

Procedia PDF Downloads 282
10827 Overview of Standard Unit System of Shenzhen Land Spatial Planning and Case Analysis

Authors: Ziwei Huang

Abstract:

The standard unit of Shenzhen land spatial planning has the characteristics of vertical conduction, horizontal evaluation, internal balance and supervision of implementation. It mainly assumes the role of geospatial unit, assists in promoting the complex development of the business in Shenzhen and undertakes the management and transmission of upper and lower levels of planning as well as the Urban management functions such as gap analysis of public facilities, planning evaluation and dynamic monitoring of planning information. Combining with the application examples of the analysis of gaps in public facilities in Longgang District, it can be found that the standard unit of land spatial planning in Shenzhen as a small-scale geographic basic unit, has a stronger urban spatial coupling effect. However, the universality of the application of the system is still lacking and it is necessary to propose more scientific and powerful standard unit delineation standards and planning function evaluation indicators to guide the implementation of the system's popularization and application.

Keywords: Shenzhen city, land spatial planning, standard unit system, urban delicacy management

Procedia PDF Downloads 109
10826 Qualitative Needs Assessment for Development of a Smart Thumb Prosthetic

Authors: Syena Moltaji, Stephanie Posa, Sander Hitzig, Amanda Mayo, Heather Baltzer

Abstract:

Purpose: To critically assess deficits following thumb amputation and delineate elements of an ideal thumb prosthesis from the end-user perspective. Methods: This was a qualitative study based on grounded theory. End-user stakeholder groups of thumb amputees and prosthetists were interviewed. Transcripts were reviewed whole first for familiarity. Data coding was then performed by two individual authors. Coded units were grouped by similarity and reviewed to reach a consensus. Codes were then analyzed for emergent themes by each author. A consensus meeting was held with all authors to finalize themes. Results: Three patients with traumatic thumb amputation and eight prosthetists were interviewed. Seven themes emerged. First was the significant impact of losing a thumb, in which codes of functional impact, mental impact, and occupational impact were included. The second theme was the unique nature of each thumb amputee, including goals, readiness for prosthesis, nature of the injury, and insurance. The third emergent theme was cost, surrounding government funding, insurability, and prosthetic pricing. The fourth theme was patient frustration, which included mismatches of prosthetic expectations and realities, activity limitations, and causes of devices abandonment. Themes five and six surrounded the strengths and weaknesses of current prosthetics, respectively. Theme seven was the ideal design for a thumb prosthetic, including abilities, suspension, and materials. Conclusions: Representative data from stakeholders mapped the current status of thumb prosthetics. Preferences for an ideal thumb prosthetic emerged, with suggestions for a simple, durable design. The ability to oppose, grasp and sense pressure was reported as functional priorities. Feasible cost and easy fitting emerged as systemic objectives. This data will be utilized in the development of a sensate thumb prosthetic.

Keywords: smart thumb, thumb prosthetic, sensate prosthetic, amputation

Procedia PDF Downloads 108
10825 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context

Authors: Nicole Merkle, Stefan Zander

Abstract:

Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.

Keywords: ambient intelligence, machine learning, semantic web, software agents

Procedia PDF Downloads 266
10824 Educating Children with the Child-Friendly Smartphone Operation System

Authors: Wildan Maulana Wildan, Siti Annisa Rahmayani Icha

Abstract:

Nowadays advances in information technology are needed by all the inhabitants of the earth for the sake of ease all their work, but it is worth to introduced the technological advances in the world of children. Before the technology is growing rapidly, children busy with various of traditional games and have high socialization. Moreover, after it presence, almost all of children spend more their time for playing gadget, It can affect the education of children and will change the character and personality children. However, children also can not be separated with the technology. Because the technology insight knowledge of children will be more extensive. Because the world can not be separated with advances in technology as well as with children, there should be developed a smartphone operating system that is child-friendly. The operating system is able to filter contents that do not deserve children, even in this system there is a reminder of a time study, prayer time and play time for children and there are interactive contents that will help the development of education and children's character. Children need technology, and there are some ways to introduce it to children. We must look at the characteristics of children in different environments. Thus advances in technology can be beneficial to the world children and their parents, and educators do not have to worry about advances in technology. We should be able to take advantage of advances in technology best possible.

Keywords: information technology, smartphone operating system, education, character

Procedia PDF Downloads 494
10823 Numerical Study on the Effect of Obstacle Structure on Two-Phase Detonation Initiation

Authors: Ding Yu, Ge Yang, Wang Hong-Tao

Abstract:

Aiming at the detonation performance and detonation wave propagation distance of liquid fuel detonation engine, the kerosene/oxygen-enriched air mixture is chosen as the research object; its detonation initiation and detonation wave propagation process by mild energy input are numerically studied by using Euler-Lagrange method in the present study. The effects of a semicircular obstacle, rectangular obstacle, and triangular obstacle on the detonation characteristic parameters in the detonation tube are compared and analyzed, and the effect of the angle between obstacle and flame propagation direction on flame propagation characteristics and detonation process when the blocking ratio is constant are studied. The results show that the flame propagation velocity decreases with the increase of the angle in the range of 0-90°, and when the angle is 0° which corresponds to the semicircle obstacle gets the highest detonation wave propagation velocity. With the increase of the angle in the range of 0-90°, DDT (Deflagration to detonation transition) distance decreases first and then increases.

Keywords: deflagration to detonation transition, numerical simulation, obstacle structure, turbulent flame

Procedia PDF Downloads 66
10822 An Unusual Manifestation of Spirituality: Kamppi Chapel of Helsinki

Authors: Emine Umran Topcu

Abstract:

In both urban design and architecture, the primary goal is considered to be looking for ways in which people feel and think about space and place. Humans, in general, see a place as security and space as freedom and feel attached to place and long for space. Contemporary urban design manifests itself by addressing basic physical and psychological human needs. Not much attention is paid to transcendence. There seems to be a gap in the hierarchy of human needs. Usually, social aspects of public space are addressed through urban design. More personal and intimately scaled needs of an individual are neglected. How does built form contribute to an individual’s growth, contemplation, and exploration? In other words, a greater meaning in the immediate environment. Architects love to talk about meaning, poetics, attachment and other ethereal aspects of space that are not visible attributes of places. This paper aims at describing spirituality through built form with a personal experience of Kamppi Chapel of Helsinki. Experience covers various modes through which a person unfolds or constructs reality. Perception, sensation, emotion, and thought can be counted as for these modes. To experience is to get to know. What can be known is a construct of experience. Feelings and thoughts about space and place are very complex in human beings. They grow out of life experiences. The author had the chance of visiting Kamppi Chapel in April 2017, out of which the experience grew. The Kamppi Chapel is located on the South side of the busy Narinnka Square in central Helsinki. It offers a place to quiet down and compose oneself in a most lively urban space. With its curved wooden facade, the small building looks more like a museum than a chapel. It can be called a museum for contemplation. With its gently shaped interior, it embraces visitors and shields them from the hustle bustle of the city outside. Places of worship in all faiths signify sacred power. The author, having origins in a part of the world where domes and minarets dominate the cityscape, was impressed by the size and the architectural visibility of the Chapel. Anyone born and trained in such a tradition shares the inherent values and psychological mechanisms of spirituality, sacredness and the modest realities of their environment. Spirituality in all cultural traditions has not been analyzed and reinterpreted in new conceptual frameworks. Fundamentalists may reject this positivist attitude, but Kamppi Chapel as it stands does not look like it has a say like “I’m a model to be followed”. It just faces the task of representing a religious facility in an urban setting largely shaped by modern urban planning, which seems to the author as looking for a new definition of individual status. The quest between the established and the new is the demand for modern efficiency versus dogmatic rigidity. The architecture here has played a very promising and rewarding role for spirituality. The designers have been the translators for human desire for better life and aesthetic environment for an optimal satisfaction of local citizens and the visitors alike.

Keywords: architecture, Kamppi Chapel, spirituality, urban

Procedia PDF Downloads 171
10821 Teaching and Learning Dialectical Relationship between Thermodynamic Equilibrium and Reaction Rate Constant

Authors: Mohammad Anwar, Shah Waliullah

Abstract:

The development of science and technology in the present era has an urgent demand for the training of thinking of undergraduates. This requirement actively promotes research and teaching of basic theories, beneficial to the career development of students. This study clarified the dialectical relation between the thermodynamic equilibrium constant and reaction rate constant through the contrast thinking method. Findings reveal that both the isobaric Van't Hoff equation and the Arrhenius equation had four similar forms, and the change in the trend of both constants showed a similar law. By the derivation of the formation rate constant of the product (KY) and the consumption rate constant of the reactant (KA), the ratio of both constants at the end state indicated the nature of the equilibrium state in agreement with that of the thermodynamic equilibrium constant (K^θ (T)). This study has thus presented that the thermodynamic equilibrium constant contained the characteristics of microscopic dynamics based on the analysis of the reaction mechanism, and both constants are organically connected and unified. The reaction enthalpy and activation energy are closely related to each other with the same connotation.

Keywords: thermodynamic equilibrium constant, reaction rate constant, PBL teaching, dialectical relation, innovative thinking

Procedia PDF Downloads 96
10820 The Contribution of Experience Scapes to Building Resilience in Communities: A Comparative Case Study Approach in Germany and the Netherlands

Authors: Jorn Fricke, Frans Melissen

Abstract:

Citizens in urban areas are prone to increased levels of stress due to urbanization, inadequate and overburdened infrastructure and services, and environmental degradation. Moreover, communities are fragile and subject to shocks and stresses through various social and political processes. A loss of (a sense of) community is often seen as related to increasing political and civic disintegration. Feelings of community can manifest themselves in various ways but underlying all these manifestations is the need for trust between people. One of the main drivers of trust between individuals is (shared) experiences. It is these shared experiences that may play an important role in building resilience, i.e., the ability of a community and its members to adapt to and deal with stresses, as well as ensure the ongoing development of a community. So far, experience design, as a discipline and academic field, has mainly focused on designing products or services. However, people-to-people experiences are the ones that play a pivotal role in building inclusiveness, safety, and resilience in communities. These experiences represent challenging objects of design as they develop in an interactive space of spontaneity, serendipity, and uniqueness that is based on intuition, freedom of expression, and interaction. Therefore, there is a need for research to identify which elements are required in designing the social and physical environment (or ‘experience scape’) to increase the chance for people-to-people experiences to be successful and what elements are required for these experiences to help in building resilience in urban communities that can resist shocks and stresses. By means of a comparative case study approach in urban areas in Germany and the Netherlands, using a range of qualitative research methods such as in-depth interviews, focus groups, participant observation, storytelling techniques, and life stories, this research identifies relevant actors and their roles in creating building blocks of optimal experience scrapes for building resilience in communities.

Keywords: community development, experiences, experience scapes, resilience

Procedia PDF Downloads 167
10819 Improvement of the Q-System Using the Rock Engineering System: A Case Study of Water Conveyor Tunnel of Azad Dam

Authors: Sahand Golmohammadi, Sana Hosseini Shirazi

Abstract:

Because the status and mechanical parameters of discontinuities in the rock mass are included in the calculations, various methods of rock engineering classification are often used as a starting point for the design of different types of structures. The Q-system is one of the most frequently used methods for stability analysis and determination of support systems of underground structures in rock, including tunnel. In this method, six main parameters of the rock mass, namely, the rock quality designation (RQD), joint set number (Jn), joint roughness number (Jr), joint alteration number (Ja), joint water parameter (Jw) and stress reduction factor (SRF) are required. In this regard, in order to achieve a reasonable and optimal design, identifying the effective parameters for the stability of the mentioned structures is one of the most important goals and the most necessary actions in rock engineering. Therefore, it is necessary to study the relationships between the parameters of a system and how they interact with each other and, ultimately, the whole system. In this research, it has attempted to determine the most effective parameters (key parameters) from the six parameters of rock mass in the Q-system using the rock engineering system (RES) method to improve the relationships between the parameters in the calculation of the Q value. The RES system is, in fact, a method by which one can determine the degree of cause and effect of a system's parameters by making an interaction matrix. In this research, the geomechanical data collected from the water conveyor tunnel of Azad Dam were used to make the interaction matrix of the Q-system. For this purpose, instead of using the conventional methods that are always accompanied by defects such as uncertainty, the Q-system interaction matrix is coded using a technique that is actually a statistical analysis of the data and determining the correlation coefficient between them. So, the effect of each parameter on the system is evaluated with greater certainty. The results of this study show that the formed interaction matrix provides a reasonable estimate of the effective parameters in the Q-system. Among the six parameters of the Q-system, the SRF and Jr parameters have the maximum and minimum impact on the system, respectively, and also the RQD and Jw parameters have the maximum and minimum impact on the system, respectively. Therefore, by developing this method, we can obtain a more accurate relation to the rock mass classification by weighting the required parameters in the Q-system.

Keywords: Q-system, rock engineering system, statistical analysis, rock mass, tunnel

Procedia PDF Downloads 55
10818 Flocking Swarm of Robots Using Artificial Innate Immune System

Authors: Muneeb Ahmad, Ali Raza

Abstract:

A computational method inspired by the immune system (IS) is presented, leveraging its shared characteristics of robustness, fault tolerance, scalability, and adaptability with swarm intelligence. This method aims to showcase flocking behaviors in a swarm of robots (SR). The innate part of the IS offers a variety of reactive and probabilistic cell functions alongside its self-regulation mechanism which have been translated to enable swarming behaviors. Although, the research is specially focused on flocking behaviors in a variety of simulated environments using e-puck robots in a physics-based simulator (CoppeliaSim); the artificial innate immune system (AIIS) can exhibit other swarm behaviors as well. The effectiveness of the immuno-inspired approach has been established with extensive experimentations, for scalability and adaptability, using standard swarm benchmarks as well as the immunological regulatory functions (i.e., Dendritic Cells’ Maturity and Inflammation). The AIIS-based approach has proved to be a scalable and adaptive solution for emulating the flocking behavior of SR.

Keywords: artificial innate immune system, flocking swarm, immune system, swarm intelligence

Procedia PDF Downloads 85
10817 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter

Authors: Dehini Rachid, Ferdi Brahim

Abstract:

The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.

Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion

Procedia PDF Downloads 370
10816 Reduce of the Consumption of Industrial Kilns a Pottery Kiln as Example, Recovery of Lost Energy Using a System of Heat Exchangers and Modeling of Heat Transfer Through the Walls of the Kiln

Authors: Maha Bakkari, Fatiha Lemmeni, Rachid Tadili

Abstract:

In this work, we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the This work deals with the problem of energy consumption of pottery kilns whose energy consumption is relatively too high. In this work, we determined the sources of energy loss by studying the heat transfer of a pottery furnace, we proposed a recovery system to reduce energy consumption, and then we developed a numerical model modeling the transfers through the walls of the furnace and to optimize the insulation (reduce heat losses) by testing multiple insulators. The recovery and reuse of energy recovered by the recovery system will present a significant gain in energy consumption of the oven and cooking time. This research is one of the solutions that helps reduce the greenhouse effect of the planet earth, a problem that worries the world.

Keywords: recovery lost energy, energy efficiency, modeling, heat transfer

Procedia PDF Downloads 68
10815 Optical and Electrochromic Properties of All-Solid-State Electrochromic Device Consisting of Amorphous WO₃ and Ni(OH)₂

Authors: Ta-Huang Sun, Ming-Hao Hsieh, Min-Chuan Wang, Der-Jun Jan

Abstract:

Electrochromism refers to the persistent and reversible change of optical properties by an applied voltage pulse. There are many transition metal oxides exhibiting electrochromism, e.g. oxides of W, Ni, Ir, V, Ti, Co and Mo. Organic materials especially some conducting polymers such as poly(aniline), poly(3, 4-propylene- dioxythiophene) also received much attention for electrochromic (EC) applications. Electrochromic materials attract considerable interest because of their potential applications, such as information displays, smart windows, variable reflectance mirrors, and variable-emittance thermal radiators. In this study, the EC characteristics are investigated on an all-solid-state EC device composed of a-WO₃ and Ni(OH)₂ with a Ta₂O₅ protective layer which is prepared by magnetron sputtering. It is found that the transmittance modulation increases with decreasing the film thickness of Ta₂O₅. On the other hand, the transmittance modulation is 57% as the Ni(OH)₂/ITO is prepared by the linear-sweep potential cycling of the sputter-deposited Ta₂O₅/NiO/ITO in a 0.5 M LiClO₄+H₂O electrolyte. However, when Ni(OH)₂/ITO is prepared by a 0.01 M HCl electrolyte, the transmittance modulation of EC device can be improved to 61%.

Keywords: electrochromic device, tungsten oxide, nickel, Ta₂O₅

Procedia PDF Downloads 277
10814 Field Management Solutions Supporting Foreman Executive Tasks

Authors: Maroua Sbiti, Karim Beddiar, Djaoued Beladjine, Romuald Perrault

Abstract:

Productivity is decreasing in construction compared to the manufacturing industry. It seems that the sector is suffering from organizational problems and have low maturity regarding technological advances. High international competition due to the growing context of globalization, complex projects, and shorter deadlines increases these challenges. Field employees are more exposed to coordination problems than design officers. Execution collaboration is then a major issue that can threaten the cost, time, and quality completion of a project. Initially, this paper will try to identify field professional requirements as to address building management process weaknesses such as the unreliability of scheduling, the fickleness of monitoring and inspection processes, the inaccuracy of project’s indicators, inconsistency of building documents and the random logistic management. Subsequently, we will focus our attention on providing solutions to improve scheduling, inspection, and hours tracking processes using emerging lean tools and field mobility applications that bring new perspectives in terms of cooperation. They have shown a great ability to connect various field teams and make informations visual and accessible to planify accurately and eliminate at the source the potential defects. In addition to software as a service use, the adoption of the human resource module of the Enterprise Resource Planning system can allow a meticulous time accounting and thus make the faster decision making. The next step is to integrate external data sources received from or destined to design engineers, logisticians, and suppliers in a holistic system. Creating a monolithic system that consolidates planning, quality, procurement, and resources management modules should be our ultimate target to build the construction industry supply chain.

Keywords: lean, last planner system, field mobility applications, construction productivity

Procedia PDF Downloads 101
10813 Economic and Social Well-Being for Migrant Workers: Asian Experiences

Authors: Mohsin Reza, Thirunaukarasu Subramaniam, M. Rezaul Islam

Abstract:

In Asia, economic and social well-being issues are rarely addressed. The major characteristics of the migrant workers in Asian countries are seriously exploited, marginalized, and infrequently looked from human rights perspective. This paper explored the opportunities and shortages of economic and social well-being for the migrant workers in Asia. A Qualitative Interpretative Meta-Synthesis (QIMS) was conducted to analyze the contextual socio-economic factors that characterized migrant workers’ economic and social well-being. It is perceived that in most of the recruiting countries, there are lacks of government commitments to the international protocols, conventions and laws that they ratified towards safeguarding migrant workers’ economic and social well-being. Results showed that the migrant workers had lack of job security, poor salary, long working hours, low access to the public services, poor health, poor living and working conditions, lack of legal rights, physical and mental threats. The finding would be important guideline to the governments, policy makers, legal rights practitioners, and human rights organizations.

Keywords: Asia, economic well-being, social well-being, migrant workers, human rights

Procedia PDF Downloads 303
10812 Ethically Integrating Robots to Assist Elders and Patients with Dementia

Authors: Suresh Lokiah

Abstract:

The emerging trend of integrating robots into elderly care, particularly for assisting patients with dementia, holds the potential to greatly transform the sector. Assisted living facilities, which house a significant number of elderly individuals and dementia patients, constantly strive to engage their residents in stimulating activities. However, due to staffing shortages, they often rely on volunteers to introduce new activities. Despite the availability of social interaction, these residents, frequently overlooked in society, are in desperate need of additional support. Robots designed for elder care are categorized based on their design and functionality. These categories include companion robots, telepresence robots, health monitoring robots, and rehab robots. However, the integration of such robots raises significant ethical concerns, notably regarding privacy, autonomy, and the risk of dehumanization. Privacy issues arise as these robots may need to continually monitor patient activities. There is also a risk of patients becoming overly dependent on these robots, potentially undermining their autonomy. Furthermore, the replacement of human touch with robotic interaction may lead to the dehumanization of care. This paper delves into the ethical considerations of incorporating robotic assistance in eldercare. It proposes a series of guidelines and strategies to ensure the ethical deployment of these robots. These guidelines suggest involving patients in the design and development process of the robots and emphasize the critical need for human oversight to respect the dignity and rights of the elderly and dementia patients. The paper also recommends implementing robust privacy measures, including secure data transmission and data anonymization. In conclusion, this paper offers a thorough examination of the ethical implications of using robotic assistance in elder care. It provides a strategic roadmap to ensure this technology is utilized ethically, thereby maximizing its potential benefits and minimizing any potential harm.

Keywords: human-robot interaction, robots for eldercare, ethics, health, dementia

Procedia PDF Downloads 69
10811 The Fabrication of Scintillator Column by Hydraulic Pressure Injection Method

Authors: Chien Chon Chen, Chun Mei Chu, Chuan Ju Wang, Chih Yuan Chen, Ker Jer Huang

Abstract:

Cesiumiodide with Na doping (CsI(Na)) solution or melt is easily forming three- dimension dendrites on the free surface. The defects or bobbles form inside the CsI(Na) during the solution or melt solidification. The defects or bobbles can further effect the x-ray path in the CsI(Na) crystal and decrease the scintillation characteristics of CsI(Na). In order to enhance the CsI(Na) scintillated property we made single crystal of CsI(Na) column in the anodic aluminum oxide (AAO) template by hydraulic pressure injection method. It is interesting that when CsI(Na) melt is confined in the small AAO channels, the column grow as stable single column without any dendrites. The high aspect ratio (100~10000) of AAO and nano to sub-micron channel structure which is a suitable template for single of crystal CsI(Na) formation. In this work, a new low-cost approach to fabricate scintillator crystals using anodic aluminum oxide (AAO) rather than Si is reported, which can produce scintillator crystals with a wide range of controllable size to optimize their performance in X-ray detection.

Keywords: cesiumiodide, AAO, scintillator, crystal, X-ray

Procedia PDF Downloads 446
10810 Water Quality at a Ventilated Improved Pit Latrine Sludge Entrenchment Site

Authors: Babatunde Femi Bakare

Abstract:

Groundwater quality was evaluated at a site for three years after the site was used for entrenchment of Ventilated Improved Pit (VIP) latrine sludge. Analysis performed on the soil characteristics at the entrenchment site indicated that, the soils at the entrenchment site are predominantly sandy. Depth of the water table at the entrenchment site was found to be approximately five meters. Five monitoring boreholes were dug along the perimeter of the sludge trenches and water samples taken from these monitoring boreholes were analyzed for pH, conductivity, sodium ions, chloride ions, phosphate, nitrate, ammonia, and bacteriological analysis. The results obtained from the analysis conducted were compared with the South African Bureau of Standards for drinking water and it was found that the parameters analyzed falls below the specified range. The data obtained from this study indicate that, given the relatively high sludge loading rates, poor soil quality, and the duration of the groundwater quality monitoring, it is unlikely that contamination of groundwater at the entrenchment site will be a major concern. However, caution is advised in extrapolating these results to other locations.

Keywords: boreholes, contamination, entrenchment, groundwater quality, VIP latrines

Procedia PDF Downloads 397
10809 Reuse of Spent Lithium Battery for the Production of Environmental Catalysts

Authors: Jyh-Cherng Chen, Chih-Shiang You, Jie-Shian Cheng

Abstract:

This study aims to recycle and reuse of spent lithium-cobalt battery and lithium-iron battery in the production of environmental catalysts. The characteristics and catalytic activities of synthesized catalysts for different air pollutants are analyzed and tested. The results show that the major metals in spent lithium-cobalt batteries are lithium 5%, cobalt 50%, nickel 3%, manganese 3% and the major metals in spent lithium-iron batteries are lithium 4%, iron 27%, and copper 4%. The catalytic activities of metal powders in the anode of spent lithium batteries are bad. With using the precipitation-oxidation method to prepare the lithium-cobalt catalysts from spent lithium-cobalt batteries, their catalytic activities for propane decomposition, CO oxidation, and NO reduction are well improved and excellent. The conversion efficiencies of the regenerated lithium-cobalt catalysts for those three gas pollutants are all above 99% even at low temperatures 200-300 °C. However, the catalytic activities of regenerated lithium-iron catalysts from spent lithium-iron batteries are unsatisfied.

Keywords: catalyst, lithium-cobalt battery, lithium-iron battery, recycle and reuse

Procedia PDF Downloads 244
10808 Developing a Systems Dynamics Model for Security Management

Authors: Kuan-Chou Chen

Abstract:

This paper will demonstrate a simulation model of an information security system by using the systems dynamic approach. The relationships in the system model are designed to be simple and functional and do not necessarily represent any particular information security environments. The purpose of the paper aims to develop a generic system dynamic information security system model with implications on information security research. The interrelated and interdependent relationships of five primary sectors in the system dynamic model will be presented in this paper. The integrated information security systems model will include (1) information security characteristics, (2) users, (3) technology, (4) business functions, and (5) policy and management. Environments, attacks, government and social culture will be defined as the external sector. The interactions within each of these sectors will be depicted by system loop map as well. The proposed system dynamic model will not only provide a conceptual framework for information security analysts and designers but also allow information security managers to remove the incongruity between the management of risk incidents and the management of knowledge and further support information security managers and decision makers the foundation for managerial actions and policy decisions.

Keywords: system thinking, information security systems, security management, simulation

Procedia PDF Downloads 409
10807 Influence of Extractives Leaching from Larch Wood on Durability of Semi-Transparent Oil-Based Coating during Accelerated Weathering

Authors: O. Dvorak, M. Panek, E. Oberhofnerova, I. Sterbova

Abstract:

Extractives contained in larch wood (Larix decidua, Mill.) reduce the service-life of exterior coating systems, especially transparent and semi-transparent. The aim of this work was to find out whether the initial several-week leaching of extractives from untreated wood in the exterior will positively affect the selected characteristics and the overall life of the semi-transparent oil-based coating. Samples exposed to exterior leaching for 10 or 20 weeks, and the reference samples without leaching were then treated with a coating system. Testing was performed by the method of artificial accelerated weathering in the UV chamber combined with thermal cycling during 6 weeks. The changes of colour, gloss, surface wetting, microscopic analyses of surfaces, and visual damage of paint were evaluated. Only 20-week initial leaching had a positive effect. Both to increase the color stability during aging, but also to slightly increase the overall life of the tested semi-transparent coating system on larch wood.

Keywords: larch wood, coating, durability. extractives

Procedia PDF Downloads 120
10806 Battery/Supercapacitor Emulator for Chargers Functionality Testing

Authors: S. Farag, A. Kuperman

Abstract:

In this paper, design of solid-state battery/super capacitor emulator based on dc-dc boost converter is described. The emulator mimics charging behavior of any storage device based on a predefined behavior set by the user. The device is operated by a two-level control structure: high-level emulating controller and low-level input voltage controller. Simulation and experimental results are shown to demonstrate the emulator operation.

Keywords: battery, charger, energy, storage, super capacitor

Procedia PDF Downloads 387
10805 EFL Saudi Students' Use of Vocabulary via Twitter

Authors: A. Alshabeb

Abstract:

Vocabulary is one of the elements that links the four skills of reading, writing, speaking, and listening and is very critical in learning a foreign language. This study aims to determine how Saudi Arabian EFL students learn English vocabulary via Twitter. The study adopts a mixed sequential research design in collecting and analysing data. The results of the study provide several recommendations for vocabulary learning. Moreover, the study can help teachers to consider the possibilities of using Twitter further, and perhaps to develop new approaches to vocabulary teaching and to support students in their use of social media.

Keywords: social media, twitter, vocabulary, web 2

Procedia PDF Downloads 405
10804 X-Ray Crystallographic, Hirshfeld Surface Analysis and Docking Study of Phthalyl Sulfacetamide

Authors: Sanjay M. Tailor, Urmila H. Patel

Abstract:

Phthalyl Sulfacetamide belongs to well-known member of antimicrobial sulfonamide family. It is a potent antitumor drug. Structural characteristics of 4-amino-N-(2quinoxalinyl) benzene-sulfonamides (Phthalyl Sulfacetamide), C14H12N4O2S has been studied by method of X-ray crystallography. The compound crystallizes in monoclinic space group P21/n with unit cell parameters a= 7.9841 Ǻ, b= 12.8208 Ǻ, c= 16.6607 Ǻ, α= 90˚, β= 93.23˚, γ= 90˚and Z=4. The X-ray based three-dimensional structure analysis has been carried out by direct methods and refined to an R-value of 0.0419. The crystal structure is stabilized by intermolecular N-H…N, N-H…O and π-π interactions. The Hirshfeld surfaces and consequently the fingerprint analysis have been performed to study the nature of interactions and their quantitative contributions towards the crystal packing. An analysis of Hirshfeld surfaces and fingerprint plots facilitates a comparison of intermolecular interactions, which are the key elements in building different supramolecular architectures. Docking is used for virtual screening for the prediction of the strongest binders based on various scoring functions. Docking studies are carried out on Phthalyl Sulfacetamide for better activity, which is important for the development of a new class of inhibitors.

Keywords: phthalyl sulfacetamide, crystal structure, hirshfeld surface analysis, docking

Procedia PDF Downloads 328
10803 Physical Training in the Context of Preparation for the Performance of Junior Two: Sports Dance Practitioners

Authors: Rosa Alin Cristian

Abstract:

As in any other sports branch, there is also a relationship of dependence between the motor qualities and the technical skills in the sports dance, in the sense that superior performances from a technical, artistic point of view can be obtained only on the basis of a certain level of motor qualities and of the morphological and functional indices of the organism. Starting from the premise that physical training is a basic component of the dancers' training process, determining the efficacy and efficiency of the athletes in training and competitions, its main objectives are to obtain an optimal functional capacity of the body, which is reached through a superior level of development and manifestation of the basic and specific motor qualities, through appropriate values of the morph-functional indices, all against the background of a perfect state of health. We propose in this paper to create an inventory of the motor qualities specific to the sports dance, of their forms of manifestation, to establish some methodical priorities for their development, in order to support the specialists in their attempt to approach the physical training in the most rigorous and efficient way, according to the characteristics of each age category.

Keywords: physical training, motor skills, sports dance, performance

Procedia PDF Downloads 60
10802 Design and Synthesis of Fully Benzoxazine-Based Porous Organic Polymer Through Sonogashira Coupling Reaction for CO₂ Capture and Energy Storage Application

Authors: Mohsin Ejaz, Shiao-Wei Kuo

Abstract:

The growing production and exploitation of fossil fuels have placed human society in serious environmental issues. As a result, it's critical to design efficient and eco-friendly energy production and storage techniques. Porous organic polymers (POPs) are multi-dimensional porous network materials developed through the formation of covalent bonds between different organic building blocks that possess distinct geometries and topologies. POPs have tunable porosities and high surface area making them a good candidate for an effective electrode material in energy storage applications. Herein, we prepared a fully benzoxazine-based porous organic polymers (TPA–DHTP–BZ POP) through sonogashira coupling of dihydroxyterephthalaldehyde (DHPT) and triphenylamine (TPA) containing benzoxazine (BZ) monomers. Firstly, both BZ monomers (TPA-BZ-Br and DHTP-BZ-Ea) were synthesized by three steps, including Schiff base, reduction, and mannich condensation reaction. Finally, the TPA–DHTP–BZ POP was prepared through the sonogashira coupling reaction of brominated monomer (TPA-BZ-Br) and ethynyl monomer (DHTP-BZ-Ea). Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (NMR) spectroscopy confirmed the successful synthesis of monomers as well as POP. The porosity of TPA–DHTP–BZ POP was investigated by the N₂ absorption technique and showed a Brunauer–Emmett–Teller (BET) surface area of 196 m² g−¹, pore size 2.13 nm and pore volume of 0.54 cm³ g−¹, respectively. The TPA–DHTP–BZ POP experienced thermal ring-opening polymerization, resulting in poly (TPA–DHTP–BZ) POP having strong inter and intramolecular hydrogen bonds formed by phenolic groups and Mannich bridges, thereby enhancing CO₂ capture and supercapacitive performance. The poly(TPA–DHTP–BZ) POP demonstrated a remarkable CO₂ capture of 3.28 mmol g−¹ and a specific capacitance of 67 F g−¹ at 0.5 A g−¹. Thus, poly(TPA–DHTP–BZ) POP could potentially be used for energy storage and CO₂ capture applications.

Keywords: porous organic polymer, benzoxazine, sonogashira coupling, CO₂, supercapacitor

Procedia PDF Downloads 54
10801 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 74
10800 Rheological Properties of Thermoresponsive Poly(N-Vinylcaprolactam)-g-Collagen Hydrogel

Authors: Serap Durkut, A. Eser Elcin, Y. Murat Elcin

Abstract:

Stimuli-sensitive polymeric hydrogels have received extensive attention in the biomedical field due to their sensitivity to physical and chemical stimuli (temperature, pH, ionic strength, light, etc.). This study describes the rheological properties of a novel thermoresponsive poly(N-vinylcaprolactam)-g-collagen hydrogel. In the study, we first synthesized a facile and novel synthetic carboxyl group-terminated thermo-responsive poly(N-vinylcaprolactam)-COOH (PNVCL-COOH) via free radical polymerization. Further, this compound was effectively grafted with native collagen, by utilizing the covalent bond between the carboxylic acid groups at the end of the chains and amine groups of the collagen using cross-linking agent (EDC/NHS), forming PNVCL-g-Col. Newly-formed hybrid hydrogel displayed novel properties, such as increased mechanical strength and thermoresponsive characteristics. PNVCL-g-Col showed low critical solution temperature (LCST) at 38ºC, which is very close to the body temperature. Rheological studies determine structural–mechanical properties of the materials and serve as a valuable tool for characterizing. The rheological properties of hydrogels are described in terms of two dynamic mechanical properties: the elastic modulus G′ (also known as dynamic rigidity) representing the reversible stored energy of the system, and the viscous modulus G″, representing the irreversible energy loss. In order to characterize the PNVCL-g-Col, the rheological properties were measured in terms of the function of temperature and time during phase transition. Below the LCST, favorable interactions allowed the dissolution of the polymer in water via hydrogen bonding. At temperatures above the LCST, PNVCL molecules within PNVCL-g-Col aggregated due to dehydration, causing the hydrogel structure to become dense. When the temperature reached ~36ºC, both the G′ and G″ values crossed over. This indicates that PNVCL-g-Col underwent a sol-gel transition, forming an elastic network. Following temperature plateau at 38ºC, near human body temperature the sample displayed stable elastic network characteristics. The G′ and G″ values of the PNVCL-g-Col solutions sharply increased at 6-9 minute interval, due to rapid transformation into gel-like state and formation of elastic networks. Copolymerization with collagen leads to an increase in G′, as collagen structure contains a flexible polymer chain, which bestows its elastic properties. Elasticity of the proposed structure correlates with the number of intermolecular cross-links in the hydrogel network, increasing viscosity. However, at 8 minutes, G′ and G″ values sharply decreased for pure collagen solutions due to the decomposition of the elastic and viscose network. Complex viscosity is related to the mechanical performance and resistance opposing deformation of the hydrogel. Complex viscosity of PNVCL-g-Col hydrogel was drastically changed with temperature and the mechanical performance of PNVCL-g-Col hydrogel network increased, exhibiting lesser deformation. Rheological assessment of the novel thermo-responsive PNVCL-g-Col hydrogel, exhibited that the network has stronger mechanical properties due to both permanent stable covalent bonds and physical interactions, such as hydrogen- and hydrophobic bonds depending on temperature.

Keywords: poly(N-vinylcaprolactam)-g-collagen, thermoresponsive polymer, rheology, elastic modulus, stimuli-sensitive

Procedia PDF Downloads 229
10799 Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing

Authors: Vladimir Smirnov, Roman Tominov, Vadim Avilov, Oleg Ageev

Abstract:

The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University.

Keywords: nanotechnology, nanocomposites, neuromorphic systems, RRAM, pulsed laser deposition, resistive switching effect

Procedia PDF Downloads 116