Search results for: SAAS (software as a service)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7953

Search results for: SAAS (software as a service)

333 Method for Requirements Analysis and Decision Making for Restructuring Projects in Factories

Authors: Rene Hellmuth

Abstract:

The requirements for the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Restrictions regarding new areas, shorter life cycles of product and production technology as well as a VUCA (volatility, uncertainty, complexity and ambiguity) world cause more frequently occurring rebuilding measures within a factory. Restructuring of factories is the most common planning case today. Restructuring is more common than new construction, revitalization and dismantling of factories. The increasing importance of restructuring processes shows that the ability to change was and is a promising concept for the reaction of companies to permanently changing conditions. The factory building is the basis for most changes within a factory. If an adaptation of a construction project (factory) is necessary, the inventory documents must be checked and often time-consuming planning of the adaptation must take place to define the relevant components to be adapted, in order to be able to finally evaluate them. The different requirements of the planning participants from the disciplines of factory planning (production planner, logistics planner, automation planner) and industrial construction planning (architect, civil engineer) come together during reconstruction and must be structured. This raises the research question: Which requirements do the disciplines involved in the reconstruction planning place on a digital factory model? A subordinate research question is: How can model-based decision support be provided for a more efficient design of the conversion within a factory? Because of the high adaptation rate of factories and its building described above, a methodology for rescheduling factories based on the requirements engineering method from software development is conceived and designed for practical application in factory restructuring projects. The explorative research procedure according to Kubicek is applied. Explorative research is suitable if the practical usability of the research results has priority. Furthermore, it will be shown how to best use a digital factory model in practice. The focus will be on mobile applications to meet the needs of factory planners on site. An augmented reality (AR) application will be designed and created to provide decision support for planning variants. The aim is to contribute to a shortening of the planning process and model-based decision support for more efficient change management. This requires the application of a methodology that reduces the deficits of the existing approaches. The time and cost expenditure are represented in the AR tablet solution based on a building information model (BIM). Overall, the requirements of those involved in the planning process for a digital factory model in the case of restructuring within a factory are thus first determined in a structured manner. The results are then applied and transferred to a construction site solution based on augmented reality.

Keywords: augmented reality, digital factory model, factory planning, restructuring

Procedia PDF Downloads 109
332 Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions

Authors: Lukasz Grabowski, Marcin Szlachetka, Tytus Tulwin

Abstract:

The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: aircraft, piston engine, heat, emission

Procedia PDF Downloads 98
331 Irradion: Portable Small Animal Imaging and Irradiation Unit

Authors: Josef Uher, Jana Boháčová, Richard Kadeřábek

Abstract:

In this paper, we present a multi-robot imaging and irradiation research platform referred to as Irradion, with full capabilities of portable arbitrary path computed tomography (CT). Irradion is an imaging and irradiation unit entirely based on robotic arms for research on cancer treatment with ion beams on small animals (mice or rats). The platform comprises two subsystems that combine several imaging modalities, such as 2D X-ray imaging, CT, and particle tracking, with precise positioning of a small animal for imaging and irradiation. Computed Tomography: The CT subsystem of the Irradion platform is equipped with two 6-joint robotic arms that position a photon counting detector and an X-ray tube independently and freely around the scanned specimen and allow image acquisition utilizing computed tomography. Irradiation measures nearly all conventional 2D and 3D trajectories of X-ray imaging with precisely calibrated and repeatable geometrical accuracy leading to a spatial resolution of up to 50 µm. In addition, the photon counting detectors allow X-ray photon energy discrimination, which can suppress scattered radiation, thus improving image contrast. It can also measure absorption spectra and recognize different materials (tissue) types. X-ray video recording and real-time imaging options can be applied for studies of dynamic processes, including in vivo specimens. Moreover, Irradion opens the door to exploring new 2D and 3D X-ray imaging approaches. We demonstrate in this publication various novel scan trajectories and their benefits. Proton Imaging and Particle Tracking: The Irradion platform allows combining several imaging modules with any required number of robots. The proton tracking module comprises another two robots, each holding particle tracking detectors with position, energy, and time-sensitive sensors Timepix3. Timepix3 detectors can track particles entering and exiting the specimen and allow accurate guiding of photon/ion beams for irradiation. In addition, quantifying the energy losses before and after the specimen brings essential information for precise irradiation planning and verification. Work on the small animal research platform Irradion involved advanced software and hardware development that will offer researchers a novel way to investigate new approaches in (i) radiotherapy, (ii) spectral CT, (iii) arbitrary path CT, (iv) particle tracking. The robotic platform for imaging and radiation research developed for the project is an entirely new product on the market. Preclinical research systems with precision robotic irradiation with photon/ion beams combined with multimodality high-resolution imaging do not exist currently. The researched technology can potentially cause a significant leap forward compared to the current, first-generation primary devices.

Keywords: arbitrary path CT, robotic CT, modular, multi-robot, small animal imaging

Procedia PDF Downloads 70
330 Designing Sustainable and Energy-Efficient Urban Network: A Passive Architectural Approach with Solar Integration and Urban Building Energy Modeling (UBEM) Tools

Authors: A. Maghoul, A. Rostampouryasouri, MR. Maghami

Abstract:

The development of an urban design and power network planning has been gaining momentum in recent years. The integration of renewable energy with urban design has been widely regarded as an increasingly important solution leading to climate change and energy security. Through the use of passive strategies and solar integration with Urban Building Energy Modeling (UBEM) tools, architects and designers can create high-quality designs that meet the needs of clients and stakeholders. To determine the most effective ways of combining renewable energy with urban development, we analyze the relationship between urban form and renewable energy production. The procedure involved in this practice include passive solar gain (in building design and urban design), solar integration, location strategy, and 3D models with a case study conducted in Tehran, Iran. The study emphasizes the importance of spatial and temporal considerations in the development of sector coupling strategies for solar power establishment in arid and semi-arid regions. The substation considered in the research consists of two parallel transformers, 13 lines, and 38 connection points. Each urban load connection point is equipped with 500 kW of solar PV capacity and 1 kWh of battery Energy Storage (BES) to store excess power generated from solar, injecting it into the urban network during peak periods. The simulations and analyses have occurred in EnergyPlus software. Passive solar gain involves maximizing the amount of sunlight that enters a building to reduce the need for artificial lighting and heating. Solar integration involves integrating solar photovoltaic (PV) power into smart grids to reduce emissions and increase energy efficiency. Location strategy is crucial to maximize the utilization of solar PV in an urban distribution feeder. Additionally, 3D models are made in Revit, and they are keys component of decision-making in areas including climate change mitigation, urban planning, and infrastructure. we applied these strategies in this research, and the results show that it is possible to create sustainable and energy-efficient urban environments. Furthermore, demand response programs can be used in conjunction with solar integration to optimize energy usage and reduce the strain on the power grid. This study highlights the influence of ancient Persian architecture on Iran's urban planning system, as well as the potential for reducing pollutants in building construction. Additionally, the paper explores the advances in eco-city planning and development and the emerging practices and strategies for integrating sustainability goals.

Keywords: energy-efficient urban planning, sustainable architecture, solar energy, sustainable urban design

Procedia PDF Downloads 49
329 Lifespan Assessment of the Fish Crossing System of Itaipu Power Plant (Brazil/Paraguay) Based on the Reaching of Its Sedimentological Equilibrium Computed by 3D Modeling and Churchill Trapping Efficiency

Authors: Anderson Braga Mendes, Wallington Felipe de Almeida, Cicero Medeiros da Silva

Abstract:

This study aimed to assess the lifespan of the fish transposition system of the Itaipu Power Plant (Brazil/Paraguay) by using 3D hydrodynamic modeling and Churchill trapping effiency in order to identify the sedimentological equilibrium configuration in the main pond of the Piracema Channel, which is part of a 10 km hydraulic circuit that enables fish migration from downstream to upstream (and vice-versa) the Itaipu Dam, overcoming a 120 m water drop. For that, bottom data from 2002 (its opening year) and 2015 were collected and analyzed, besides bed material at 12 stations to the purpose of identifying their granulometric profiles. The Shields and Yalin and Karahan diagrams for initiation of motion of bed material were used to determine the critical bed shear stress for the sedimentological equilibrium state based on the sort of sediment (grain size) to be found at the bottom once the balance is reached. Such granulometry was inferred by analyzing the grosser material (fine and medium sands) which inflows the pond and deposits in its backwater zone, being adopted a range of diameters within the upper and lower limits of that sand stratification. The software Delft 3D was used in an attempt to compute the bed shear stress at every station under analysis. By modifying the input bathymetry of the main pond of the Piracema Channel so as to the computed bed shear stress at each station fell within the intervals of acceptable critical stresses simultaneously, it was possible to foresee the bed configuration of the main pond when the sedimentological equilibrium is reached. Under such condition, 97% of the whole pond capacity will be silted, and a shallow water course with depths ranging from 0.2 m to 1.5 m will be formed; in 2002, depths ranged from 2 m to 10 m. Out of that water path, the new bottom will be practically flat and covered by a layer of water 0.05 m thick. Thus, in the future the main pond of the Piracema Channel will lack its purpose of providing a resting place for migrating fish species, added to the fact that it may become an insurmountable barrier for medium and large sized specimens. Everything considered, it was estimated that its lifespan, from the year of its opening to the moment of the sedimentological equilibrium configuration, will be approximately 95 years–almost half of the computed lifespan of Itaipu Power Plant itself. However, it is worth mentioning that drawbacks concerning the silting in the main pond will start being noticed much earlier than such time interval owing to the reasons previously mentioned.

Keywords: 3D hydrodynamic modeling, Churchill trapping efficiency, fish crossing system, Itaipu power plant, lifespan, sedimentological equilibrium

Procedia PDF Downloads 213
328 Gender Differences in Morbid Obese Children: Clinical Significance of Two Diagnostic Obesity Notation Model Assessment Indices

Authors: Mustafa M. Donma, Orkide Donma, Murat Aydin, Muhammet Demirkol, Burcin Nalbantoglu, Aysin Nalbantoglu, Birol Topcu

Abstract:

Childhood obesity is an ever increasing global health problem, affecting both developed and developing countries. Accurate evaluation of obesity in children requires difficult and detailed investigation. In our study, obesity in children was evaluated using new body fat ratios and indices. Assessment of anthropometric measurements, as well as some ratios, is important because of the evaluation of gender differences particularly during the late periods of obesity. A total of 239 children; 168 morbid obese (MO) (81 girls and 87 boys) and 71 normal weight (NW) (40 girls and 31 boys) children, participated in the study. Informed consent forms signed by the parents were obtained. Ethics Committee approved the study protocol. Mean ages (years)±SD calculated for MO group were 10.8±2.9 years in girls and 10.1±2.4 years in boys. The corresponding values for NW group were 9.0±2.0 years in girls and 9.2±2.1 years in boys. Mean body mass index (BMI)±SD values for MO group were 29.1±5.4 kg/m2 and 27.2±3.9 kg/m2 in girls and boys, respectively. These values for NW group were calculated as 15.5±1.0 kg/m2 in girls and 15.9±1.1 kg/m2 in boys. Groups were constituted based upon BMI percentiles for age-and-sex values recommended by WHO. Children with percentiles >99 were grouped as MO and children with percentiles between 85 and 15 were considered NW. The anthropometric measurements were recorded and evaluated along with the new ratios such as trunk-to-appendicular fat ratio, as well as indices such as Index-I and Index-II. The body fat percent values were obtained by bio-electrical impedance analysis. Data were entered into a database for analysis using SPSS/PASW 18 Statistics for Windows statistical software. Increased waist-to-hip circumference (C) ratios, decreased head-to-neck C, height ‘to’ ‘two’-‘to’-waist C and height ‘to’ ‘two’-‘to’-hip C ratios were observed in parallel with the development of obesity (p≤0.001). Reference value for height ‘to’ ‘two’-‘to’-hip ratio was detected as approximately 1.0. Index-II, based upon total body fat mass, showed much more significant differences between the groups than Index-I based upon weight. There was not any difference between trunk-to-appendicular fat ratios of NW girls and NW boys (p≥0.05). However, significantly increased values for MO girls in comparison with MO boys were observed (p≤0.05). This parameter showed no difference between NW and MO states in boys (p≥0.05). However, statistically significant increase was noted in MO girls compared to their NW states (p≤0.001). Trunk-to-appendicular fat ratio was the only fat-based parameter, which showed gender difference between NW and MO groups. This study has revealed that body ratios and formula based upon body fat tissue are more valuable parameters than those based on weight and height values for the evaluation of morbid obesity in children.

Keywords: anthropometry, childhood obesity, gender, morbid obesity

Procedia PDF Downloads 302
327 Conceptual Design of Gravity Anchor Focusing on Anchor Towing and Lowering

Authors: Vinay Kumar Vanjakula, Frank Adam, Nils Goseberg

Abstract:

Wind power is one of the leading renewable energy generation methods. Due to abundant higher wind speeds far away from shore, the construction of offshore wind turbines began in the last decades. However, installation of offshore foundation-based (monopiles) wind turbines in deep waters are often associated with technical and financial challenges. To overcome such challenges, the concept of floating wind turbines is expanded as the basis from the oil and gas industry. The unfolding of Universal heavyweight gravity anchor (UGA) for floating based foundation for floating Tension Leg Platform (TLP) sub-structures is developed in this research work. It is funded by the German Federal Ministry of Education and Research) for a three-year (2019-2022) research program called “Offshore Wind Solutions Plus (OWSplus) - Floating Offshore Wind Solutions Mecklenburg-Vorpommern.” It’s a group consists of German institutions (Universities, laboratories, and consulting companies). The part of the project is focused on the numerical modeling of gravity anchor that involves to analyze and solve fluid flow problems. Compared to gravity-based torpedo anchors, these UGA will be towed and lowered via controlled machines (tug boats) at lower speeds. This kind of installation of UGA are new to the offshore wind industry, particularly for TLP, and very few research works have been carried out in recent years. Conventional methods for transporting the anchor requires a large transportation crane vessel which involves a greater cost. This conceptual UGA anchors consists of ballasting chambers which utilizes the concept of buoyancy forces; the inside chambers are filled with the required amount of water in a way that they can float on the water for towing. After reaching the installation site, those chambers are ballasted with water for lowering. After it’s lifetime, these UGA can be unballasted (for erection or replacement) results in self-rising to the sea surface; buoyancy chambers give an advantage for using an UGA without the need of heavy machinery. However, while lowering/rising the UGA towards/away from the seabed, it experiences difficult, harsh marine environments due to the interaction of waves and currents. This leads to drifting of the anchor from the desired installation position and damage to the lowering machines. To overcome such harsh environments problems, a numerical model is built to investigate the influences of different outer contours and other fluid governing shapes that can be installed on the UGA to overcome the turbulence and drifting. The presentation will highlight the importance of the Computational Fluid Dynamics (CFD) numerical model in OpenFOAM, which is open-source programming software.

Keywords: anchor lowering, towing, waves, currrents, computational fluid dynamics

Procedia PDF Downloads 147
326 Buddhism and Education for Children: Cultivating Wisdom and Compassion

Authors: Harry Einhorn

Abstract:

This paper aims to explore the integration of Buddhism into educational settings with the goal of fostering the holistic development of children. By incorporating Buddhist principles and practices, educators can create a nurturing environment that cultivates wisdom, compassion, and ethical values in children. The teachings of Buddhism provide valuable insights into mindfulness, compassion, and critical thinking, which can be adapted and applied to educational curricula to enhance children's intellectual, emotional, and moral growth. One of the fundamental aspects of Buddhist philosophy that is particularly relevant to education is the concept of mindfulness. By introducing mindfulness practices, such as meditation and breathing exercises, children can learn to cultivate present-moment awareness, develop emotional resilience, and enhance their ability to concentrate and focus. These skills are essential for effective learning and can contribute to reducing stress and promoting overall well-being in children. Mindfulness practices can also teach children how to manage their emotions and thoughts, promoting self-regulation and creating a positive classroom environment. In addition to mindfulness, Buddhism emphasizes the cultivation of compassion and empathy toward all living beings. Integrating teachings on kindness, empathy, and ethical behavior into the educational framework can help children develop a deep sense of interconnectedness and social responsibility. By engaging children in activities that promote empathy and encourage acts of kindness, such as community service projects and cooperative learning, educators can foster the development of compassionate individuals who are actively engaged in creating a more harmonious and compassionate society. Moreover, Buddhist teachings encourage critical thinking and inquiry, which are crucial skills for intellectual development. By introducing children to fundamental Buddhist concepts such as impermanence, interdependence, and the nature of suffering, educators can engage them in philosophical reflections and broaden their perspectives on life. These teachings promote open-mindedness, curiosity, and a deeper understanding of the interconnectedness of all things. Through the exploration of these concepts, children can develop critical thinking skills and gain insights into the complexities of the world, enabling them to navigate challenges with wisdom and discernment. While integrating Buddhism into education requires sensitivity, cultural awareness, and respect for diverse beliefs and backgrounds, it holds great potential for nurturing the holistic development of children. By incorporating mindfulness practices, fostering compassion and empathy, and promoting critical thinking, Buddhism can contribute to the creation of a more compassionate, inclusive, and harmonious educational environment. This integration can shape well-rounded individuals who are equipped with the necessary skills and qualities to navigate the complexities of the modern world with wisdom, compassion, and resilience. In conclusion, the integration of Buddhism into education offers a valuable framework for cultivating wisdom, compassion, and ethical values in children. By incorporating mindfulness, compassion, and critical thinking into educational practices, educators can create a supportive environment that promotes children's holistic development. By nurturing these qualities, Buddhism can help shape individuals who are not only academically proficient but also morally and ethically responsible, contributing to a more compassionate and harmonious society.

Keywords: Buddhism, education, children, mindfulness

Procedia PDF Downloads 42
325 Analysing the Stability of Electrical Grid for Increased Renewable Energy Penetration by Focussing on LI-Ion Battery Storage Technology

Authors: Hemendra Singh Rathod

Abstract:

Frequency is, among other factors, one of the governing parameters for maintaining electrical grid stability. The quality of an electrical transmission and supply system is mainly described by the stability of the grid frequency. Over the past few decades, energy generation by intermittent sustainable sources like wind and solar has seen a significant increase globally. Consequently, controlling the associated deviations in grid frequency within safe limits has been gaining momentum so that the balance between demand and supply can be maintained. Lithium-ion battery energy storage system (Li-Ion BESS) has been a promising technology to tackle the challenges associated with grid instability. BESS is, therefore, an effective response to the ongoing debate whether it is feasible to have an electrical grid constantly functioning on a hundred percent renewable power in the near future. In recent years, large-scale manufacturing and capital investment into battery production processes have made the Li-ion battery systems cost-effective and increasingly efficient. The Li-ion systems require very low maintenance and are also independent of geographical constraints while being easily scalable. The paper highlights the use of stationary and moving BESS for balancing electrical energy, thereby maintaining grid frequency at a rapid rate. Moving BESS technology, as implemented in the selected railway network in Germany, is here considered as an exemplary concept for demonstrating the same functionality in the electrical grid system. Further, using certain applications of Li-ion batteries, such as self-consumption of wind and solar parks or their ancillary services, wind and solar energy storage during low demand, black start, island operation, residential home storage, etc. offers a solution to effectively integrate the renewables and support Europe’s future smart grid. EMT software tool DIgSILENT PowerFactory has been utilised to model an electrical transmission system with 100% renewable energy penetration. The stability of such a transmission system has been evaluated together with BESS within a defined frequency band. The transmission system operators (TSO) have the superordinate responsibility for system stability and must also coordinate with the other European transmission system operators. Frequency control is implemented by TSO by maintaining a balance between electricity generation and consumption. Li-ion battery systems are here seen as flexible, controllable loads and flexible, controllable generation for balancing energy pools. Thus using Li-ion battery storage solution, frequency-dependent load shedding, i.e., automatic gradual disconnection of loads from the grid, and frequency-dependent electricity generation, i.e., automatic gradual connection of BESS to the grid, is used as a perfect security measure to maintain grid stability in any case scenario. The paper emphasizes the use of stationary and moving Li-ion battery storage for meeting the demands of maintaining grid frequency and stability for near future operations.

Keywords: frequency control, grid stability, li-ion battery storage, smart grid

Procedia PDF Downloads 125
324 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region

Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho

Abstract:

The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.

Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon

Procedia PDF Downloads 42
323 Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems

Authors: Georgi Y. Georgiev, Matthew Brouillet

Abstract:

This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields.

Keywords: complexity, self-organization, agent based modelling, efficiency

Procedia PDF Downloads 45
322 Evidence for Replication of an Unusual G8P[14] Human Rotavirus Strain in the Feces of an Alpine Goat: Zoonotic Transmission from Caprine Species

Authors: Amine Alaoui Sanae, Tagjdid Reda, Loutfi Chafiqa, Melloul Merouane, Laloui Aziz, Touil Nadia, El Fahim, E. Mostafa

Abstract:

Background: Rotavirus group A (RVA) strains with G8P[14] specificities are usually detected in calves and goats. However, these strains have been reported globally in humans and have often been characterized as originating from zoonotic transmissions, particularly in area where ruminants and humans live side-by-side. Whether human P[14] genotypes are two-way and can be transmitted to animal species remains to be established. Here we describe VP4 deduced amino-acid relationships of three Moroccan P[14] genotypes originating from different species and the receptiveness of an alpine goat to a human G8P[14] through an experimental infection. Material/methods: the human MA31 RVA strain was originally identified in a four years old girl presenting an acute gastroenteritis hospitalized at the pediatric care unit in Rabat Hospital in 2011. The virus was isolated and propagated in MA104 cells in the presence of trypsin. Ch_10S and 8045_S animal RVA strains were identified in fecal samples of a 2-week-old native goat and 3-week-old calf with diarrhea in 2011 in Bouaarfa and My Bousselham respectively. Genomic RNAs of all strains were subjected to a two-step RT-PCR and sequenced using the consensus primers VP4. The phylogenetic tree for MA31, Ch_10S and 8045_S VP4 and a set of published P[14] genotypes was constructed using MEGA6 software. The receptivity of MA31 strain by an eight month-old alpine goat was assayed. The animal was orally and intraperitonally inoculated with a dose of 8.5 TCID50 of virus stock at passage level 3. The shedding of the virus was tested by a real time RT-PCR assay. Results: The phylogenetic tree showed that the three Moroccan strains MA31, Ch_10S and 8045_S VP4 were highly related to each other (100% similar at the nucleotide level). They were clustered together with the B10925, Sp813, PA77 and P169 strains isolated in Belgium, Spain and Italy respectively. The Belgian strain B10925 was the most closely related to the Moroccan strains. In contrast, the 8045_S and Ch_10S strains were clustered distantly from the Tunisian calf strain B137 and the goat strain cap455 isolated in South Africa respectively. The human MA31 RVA strain was able to induce bloody diarrhea at 2 days post infection (dpi) in the alpine goat kid. RVA virus shedding started by 2 dpi (Ct value of 28) and continued until 5 dpi (Ct value of 25) with a concomitant elevation in the body temperature. Conclusions: Our study while limited to one animal, is the first study proving experimentally that a human P[14] genotype causes diarrhea and virus shedding in the goat. This result reinforce the potential role of inter- species transmission in generating novel and rare rotavirus strains such G8P[14] which infect humans.

Keywords: interspecies transmission, rotavirus, goat, human

Procedia PDF Downloads 261
321 A Failure to Strike a Balance: The Use of Parental Mediation Strategies by Foster Carers and Social Workers

Authors: Jennifer E Simpson

Abstract:

Background and purpose: The ubiquitous use of the Internet and social media by children and young people has had a dual effect. The first is to open a world of possibilities and promise that is characterized by the ability to consume and create content, connect with friends, explore and experiment. The second relates to risks such as unsolicited requests, sexual exploitation, cyberbullying and commercial exploitation. This duality poses significant difficulties for a generation of foster carers and social workers who have no childhood experience to draw on in terms of growing up using the Internet, social media and digital devices. This presentation is concerned with the findings of a small qualitative study about the use of digital devices and the Internet by care-experienced young people to stay in touch with their families and the way this was managed by foster carers and social workers using specific parental mediation strategies. The findings highlight that restrictive strategies were used by foster carers and endorsed by social workers. An argument is made for an approach that develops a series of balanced solutions that move foster carers from such restrictive approaches to those that are grounded in co-use and are interpretive in nature. Methods: Using a purposive sampling strategy, 12 triads consisting of care-experienced young people (aged 13-18 years), their foster carers and allocated social workers were recruited. All respondents undertook a semi-structured interview, with the young people detailing what social media apps and other devices they used to contact their families via an Ecomap. The foster carers and social workers shared details of the methods and approaches they used to manage digital devices and the Internet in general. Data analysis was performed using a Framework analytic method to explore the various attitudes, as well as complementary and contradictory perspectives of the young people, their foster carers and allocated social workers. Findings: The majority of foster carers made use of parental mediation strategies that erred on the side of typologies that included setting rules and regulations (restrictive), ad-hoc checking of a young person’s behavior and device (monitoring), and software used to limit or block access to inappropriate websites (technical). It was noted that minimal use was made by foster carers of parental mediation strategies that included talking about content (active/interpretive) or sharing Internet activities (co-use). Amongst the majority of the social workers, they also had a strong preference for restrictive approaches. Conclusions and implications: Trepidations on the part of both foster carers and social workers about the use of digital devices and the Internet meant that the parental strategies used were weighted more towards restriction, with little use made of approaches such as co-use and interpretative. This lack of balance calls for solutions that are grounded in co-use and an interpretive approach, both of which can be achieved through training and support, as well as wider policy change.

Keywords: parental mediation strategies, risk, children in state care, online safety

Procedia PDF Downloads 50
320 Functional Analysis of Variants Implicated in Hearing Loss in a Cohort from Argentina: From Molecular Diagnosis to Pre-Clinical Research

Authors: Paula I. Buonfiglio, Carlos David Bruque, Lucia Salatino, Vanesa Lotersztein, Sebastián Menazzi, Paola Plazas, Ana Belén Elgoyhen, Viviana Dalamón

Abstract:

Hearing loss (HL) is the most prevalent sensorineural disorder affecting about 10% of the global population, with more than half due to genetic causes. About 1 in 500-1000 newborns present congenital HL. Most of the patients are non-syndromic with an autosomal recessive mode of inheritance. To date, more than 100 genes are related to HL. Therefore, the Whole-exome sequencing (WES) technique has become a cost-effective alternative approach for molecular diagnosis. Nevertheless, new challenges arise from the detection of novel variants, in particular missense changes, which can lead to a spectrum of genotype-to-phenotype correlations, which is not always straightforward. In this work, we aimed to identify the genetic causes of HL in isolated and familial cases by designing a multistep approach to analyze target genes related to hearing impairment. Moreover, we performed in silico and in vivo analyses in order to further study the effect of some of the novel variants identified in the hair cell function using the zebrafish model. A total of 650 patients were studied by Sanger Sequencing and Gap-PCR in GJB2 and GJB6 genes, respectively, diagnosing 15.5% of sporadic cases and 36% of familial ones. Overall, 50 different sequence variants were detected. Fifty of the undiagnosed patients with moderate HL were tested for deletions in STRC gene by Multiplex ligation-dependent probe amplification technique (MLPA), leading to 6% of diagnosis. After this initial screening, 50 families were selected to be analyzed by WES, achieving diagnosis in 44% of them. Half of the identified variants were novel. A missense variant in MYO6 gene detected in a family with postlingual HL was selected to be further analyzed. A protein modeling with AlphaFold2 software was performed, proving its pathogenic effect. In order to functionally validate this novel variant, a knockdown phenotype rescue assay in zebrafish was carried out. Injection of wild-type MYO6 mRNA in embryos rescued the phenotype, whereas using the mutant MYO6 mRNA (carrying c.2782C>A variant) had no effect. These results strongly suggest the deleterious effect of this variant on the mobility of stereocilia in zebrafish neuromasts, and hence on the auditory system. In the present work, we demonstrated that our algorithm is suitable for the sequential multigenic approach to HL in our cohort. These results highlight the importance of a combined strategy in order to identify candidate variants as well as the in silico and in vivo studies to analyze and prove their pathogenicity and accomplish a better understanding of the mechanisms underlying the physiopathology of the hearing impairment.

Keywords: diagnosis, genetics, hearing loss, in silico analysis, in vivo analysis, WES, zebrafish

Procedia PDF Downloads 66
319 Improving the Biomechanical Resistance of a Treated Tooth via Composite Restorations Using Optimised Cavity Geometries

Authors: Behzad Babaei, B. Gangadhara Prusty

Abstract:

The objective of this study is to assess the hypotheses that a restored tooth with a class II occlusal-distal (OD) cavity can be strengthened by designing an optimized cavity geometry, as well as selecting the composite restoration with optimized elastic moduli when there is a sharp de-bonded edge at the interface of the tooth and restoration. Methods: A scanned human maxillary molar tooth was segmented into dentine and enamel parts. The dentine and enamel profiles were extracted and imported into a finite element (FE) software. The enamel rod orientations were estimated virtually. Fifteen models for the restored tooth with different cavity occlusal depths (1.5, 2, and 2.5 mm) and internal cavity angles were generated. By using a semi-circular stone part, a 400 N load was applied to two contact points of the restored tooth model. The junctions between the enamel, dentine, and restoration were considered perfectly bonded. All parts in the model were considered homogeneous, isotropic, and elastic. The quadrilateral and triangular elements were employed in the models. A mesh convergence analysis was conducted to verify that the element numbers did not influence the simulation results. According to the criteria of a 5% error in the stress, we found that a total element number of over 14,000 elements resulted in the convergence of the stress. A Python script was employed to automatically assign 2-22 GPa moduli (with increments of 4 GPa) for the composite restorations, 18.6 GPa to the dentine, and two different elastic moduli to the enamel (72 GPa in the enamel rods’ direction and 63 GPa in perpendicular one). The linear, homogeneous, and elastic material models were considered for the dentine, enamel, and composite restorations. 108 FEA simulations were successively conducted. Results: The internal cavity angles (α) significantly altered the peak maximum principal stress at the interface of the enamel and restoration. The strongest structures against the contact loads were observed in the models with α = 100° and 105. Even when the enamel rods’ directional mechanical properties were disregarded, interestingly, the models with α = 100° and 105° exhibited the highest resistance against the mechanical loads. Regarding the effect of occlusal cavity depth, the models with 1.5 mm depth showed higher resistance to contact loads than the model with thicker cavities (2.0 and 2.5 mm). Moreover, the composite moduli in the range of 10-18 GPa alleviated the stress levels in the enamel. Significance: For the class II OD cavity models in this study, the optimal geometries, composite properties, and occlusal cavity depths were determined. Designing the cavities with α ≥100 ̊ was significantly effective in minimizing peak stress levels. The composite restoration with optimized properties reduced the stress concentrations on critical points of the models. Additionally, when more enamel was preserved, the sturdier enamel-restoration interface against the mechanical loads was observed.

Keywords: dental composite restoration, cavity geometry, finite element approach, maximum principal stress

Procedia PDF Downloads 80
318 Navigate the Labyrinth of Leadership: Leaders’ Experiences in Saudi Higher Education

Authors: Laila Albughayl

Abstract:

The purpose of this qualitative case study was to explore Saudi females’ leadership journeys as they navigate the labyrinth of leadership in higher education. To gain a better understanding of how these leaders overcame challenges and accessed support as they progressed through the labyrinth to top positions in Saudi higher education. The significance of this research derived from the premise that leaders need to acquire essential leadership competencies such as knowledge, skills, and practices to effectively lead through economic transformation, growing globalism, and rapidly developing technology in an increasingly diverse world. In addition, understanding Saudi women’s challenges in the labyrinth will encourage policymakers to improve the situation under which these women work. The metaphor ‘labyrinth’ for Eagly and Carli (2007) encapsulates the winding paths, dead ends, and maze-like pathways that are full of challenges and supports that women traverse to access and maintain leadership positions was used. In this study, ‘labyrinth’ was used as the conceptual framework to explore women leaders’ challenges and opportunities in leadership in Saudi higher education. A proposed model for efficient navigation of the labyrinth of leadership was used. This model focused on knowledge, skills, and behaviours (KSB) as the analytical framework for examining responses to the research questions. This research was conducted using an interpretivist qualitative approach. A case study was the methodology used. Semi-structured interviews were the main data collection method. Purposive sampling was used to select ten Saudi leaders in three public universities. In coding, the 6-step framework of thematic analysis for Braun and Clarke was used to identify, analyze, and report themes within the data. NVivo software was also used as a tool to assist with managing and organizing the data. The resultant findings showed that the challenges identified by participants in navigating the labyrinth of leadership in Saudi higher education replicated some of those identified in the literature. The onset findings also revealed that the organizational barriers in Saudi higher education came as the top hindrance to women’s advancement in the labyrinth of leadership, followed by societal barriers. The findings also showed that women’s paths in the labyrinth of leadership in higher education were still convoluted and tedious compared to their male counterparts. In addition, the findings revealed that Saudi women leaders use significant strategies to access leadership posts and effectively navigate the labyrinth; this was not indicated in the literature. In addition, the resultant findings revealed that there are keys that assisted Saudi female leaders in effectively navigating the labyrinth of leadership. For example, the findings indicated that spirituality (religion) was a powerful key that enabled Saudi women leaders to pursue and persist in their leadership paths. Based on participants' experiences, a compass for effective navigation of the labyrinth of leadership in higher education was created for current and aspirant Saudi women leaders to follow. Finally, the findings had several significant implications for practice, policy, theory, and future research.

Keywords: women, leadership, labyrinth, higher education

Procedia PDF Downloads 58
317 Exploring Perspectives and Complexities of E-tutoring: Insights from Students Opting out of Online Tutor Service

Authors: Prince Chukwuneme Enwereji, Annelien Van Rooyen

Abstract:

In recent years, technology integration in education has transformed the learning landscape, particularly in online institutions. One technological advancement that has gained popularity is e-tutoring, which offers personalised academic support to students through online platforms. While e-tutoring has become well-known and has been adopted to promote collaborative learning, there are still students who do not use these services for various reasons. However, little attention has been given to understanding the perspectives of students who have not utilized these services. The research objectives include identifying the perceived benefits that non-e-tutoring students believe e-tutoring could offer, such as enhanced academic support, personalized learning experiences, and improved performance. Additionally, the study explored the potential drawbacks or concerns that non-e-tutoring students associate with e-tutoring, such as concerns about efficacy, a lack of face-to-face interaction, and platform accessibility. The study adopted a quantitative research approach with a descriptive design to gather and analyze data on non-e-tutoring students' perspectives. Online questionnaires were employed as the primary data collection method, allowing for the efficient collection of data from many participants. The collected data was analyzed using the Statistical Package for the Social Sciences (SPSS). Ethical concepts such as informed consent, anonymity of responses and protection of respondents against harm were maintained. Findings indicate that non-e-tutoring students perceive a sense of control over their own pace of learning, suggesting a preference for self-directed learning and the ability to tailor their educational experience to their individual needs and learning styles. They also exhibit high levels of motivation, believe in their ability to effectively participate in their studies and organize their academic work, and feel comfortable studying on their own without the help of e-tutors. However, non-e-tutoring students feel that e-tutors do not sufficiently address their academic needs and lack engagement. They also perceive a lack of clarity in the roles of e-tutors, leading to uncertainty about their responsibilities. In terms of communication, students feel overwhelmed by the volume of announcements and find repetitive information frustrating. Additionally, some students face challenges with their internet connection and associated cost, which can hinder their participation in online activities. Furthermore, non-e-tutoring students express a desire for interactions with their peers and a sense of belonging to a group or team. They value opportunities for collaboration, teamwork in their learning experience, the importance of fostering social interactions and creating a sense of community in online learning environments. This study recommended that students seek alternate support systems by reaching out to professors or academic advisors for guidance and clarification. Developing self-directed learning skills is essential, empowering students to take charge of their own learning through setting objectives, creating own study plans, and utilising resources. For HEIs, it was recommended that they should ensure that a variety of support services are available to cater to the needs of all students, including non-e-tutoring students. HEIs should also ensure easy access to online resources, promote a supportive community, and regularly evaluate and adapt their support techniques to meet students' changing requirements.

Keywords: online-tutor;, student support;, online education, educational practices, distance education

Procedia PDF Downloads 52
316 Autonomous Strategic Aircraft Deconfliction in a Multi-Vehicle Low Altitude Urban Environment

Authors: Loyd R. Hook, Maryam Moharek

Abstract:

With the envisioned future growth of low altitude urban aircraft operations for airborne delivery service and advanced air mobility, strategies to coordinate and deconflict aircraft flight paths must be prioritized. Autonomous coordination and planning of flight trajectories is the preferred approach to the future vision in order to increase safety, density, and efficiency over manual methods employed today. Difficulties arise because any conflict resolution must be constrained by all other aircraft, all airspace restrictions, and all ground-based obstacles in the vicinity. These considerations make pair-wise tactical deconfliction difficult at best and unlikely to find a suitable solution for the entire system of vehicles. In addition, more traditional methods which rely on long time scales and large protected zones will artificially limit vehicle density and drastically decrease efficiency. Instead, strategic planning, which is able to respond to highly dynamic conditions and still account for high density operations, will be required to coordinate multiple vehicles in the highly constrained low altitude urban environment. This paper develops and evaluates such a planning algorithm which can be implemented autonomously across multiple aircraft and situations. Data from this evaluation provide promising results with simulations showing up to 10 aircraft deconflicted through a relatively narrow low-altitude urban canyon without any vehicle to vehicle or obstacle conflict. The algorithm achieves this level of coordination beginning with the assumption that each vehicle is controlled to follow an independently constructed flight path, which is itself free of obstacle conflict and restricted airspace. Then, by preferencing speed change deconfliction maneuvers constrained by the vehicles flight envelope, vehicles can remain as close to the original planned path and prevent cascading vehicle to vehicle conflicts. Performing the search for a set of commands which can simultaneously ensure separation for each pair-wise aircraft interaction and optimize the total velocities of all the aircraft is further complicated by the fact that each aircraft's flight plan could contain multiple segments. This means that relative velocities will change when any aircraft achieves a waypoint and changes course. Additionally, the timing of when that aircraft will achieve a waypoint (or, more directly, the order upon which all of the aircraft will achieve their respective waypoints) will change with the commanded speed. Put all together, the continuous relative velocity of each vehicle pair and the discretized change in relative velocity at waypoints resembles a hybrid reachability problem - a form of control reachability. This paper proposes two methods for finding solutions to these multi-body problems. First, an analytical formulation of the continuous problem is developed with an exhaustive search of the combined state space. However, because of computational complexity, this technique is only computable for pairwise interactions. For more complicated scenarios, including the proposed 10 vehicle example, a discretized search space is used, and a depth-first search with early stopping is employed to find the first solution that solves the constraints.

Keywords: strategic planning, autonomous, aircraft, deconfliction

Procedia PDF Downloads 73
315 Dys-Regulation of Immune and Inflammatory Response in in vitro Fertilization Implantation Failure Patients under Ovarian Stimulation

Authors: Amruta D. S. Pathare, Indira Hinduja, Kusum Zaveri

Abstract:

Implantation failure (IF) even after the good-quality embryo transfer (ET) in the physiologically normal endometrium is the main obstacle in in vitro fertilization (IVF). Various microarray studies have been performed worldwide to elucidate the genes requisite for endometrial receptivity. These studies have included the population based on different phases of menstrual cycle during natural cycle and stimulated cycle in normal fertile women. Additionally, the literature is also available in recurrent implantation failure patients versus oocyte donors in natural cycle. However, for the first time, we aim to study the genomics of endometrial receptivity in IF patients under controlled ovarian stimulation (COS) during which ET is generally practised in IVF. Endometrial gene expression profiling in IF patients (n=10) and oocyte donors (n=8) were compared during window of implantation under COS by whole genome microarray (using Illumina platform). Enrichment analysis of microarray data was performed to determine dys-regulated biological functions and pathways using Database for Annotation, Visualization and Integrated Discovery, v6.8 (DAVID). The enrichment mapping was performed with the help of Cytoscape software. Microarray results were validated by real-time PCR. Localization of genes related to immune response (Progestagen-Associated Endometrial Protein (PAEP), Leukaemia Inhibitory Factor (LIF), Interleukin-6 Signal Transducer (IL6ST) was detected by immunohistochemistry. The study revealed 418 genes downregulated and 519 genes upregulated in IF patients compared to healthy fertile controls. The gene ontology, pathway analysis and enrichment mapping revealed significant downregulation in activation and regulation of immune and inflammation response in IF patients under COS. The lower expression of Progestagen Associated Endometrial Protein (PAEP), Leukemia Inhibitory Factor (LIF) and Interleukin 6 Signal Transducer (IL6ST) in cases compared to controls by real time and immunohistochemistry suggests the functional importance of these genes. The study was proved useful to uncover the probable reason of implantation failure being imbalance of immune and inflammatory regulation in our group of subjects. Based on the present study findings, a panel of significant dysregulated genes related to immune and inflammatory pathways needs to be further substantiated in larger cohort in natural as well as stimulated cycle. Upon which these genes could be screened in IF patients during window of implantation (WOI) before going for embryo transfer or any other immunological treatment. This would help to estimate the regulation of specific immune response during WOI in a patient. The appropriate treatment of either activation of immune response or suppression of immune response can be then attempted in IF patients to enhance the receptivity of endometrium.

Keywords: endometrial receptivity, immune and inflammatory response, gene expression microarray, window of implantation

Procedia PDF Downloads 125
314 Hyperelastic Constitutive Modelling of the Male Pelvic System to Understand the Prostate Motion, Deformation and Neoplasms Location with the Influence of MRI-TRUS Fusion Biopsy

Authors: Muhammad Qasim, Dolors Puigjaner, Josep Maria López, Joan Herrero, Carme Olivé, Gerard Fortuny

Abstract:

Computational modeling of the human pelvis using the finite element (FE) method has become extremely important to understand the mechanics of prostate motion and deformation when transrectal ultrasound (TRUS) guided biopsy is performed. The number of reliable and validated hyperelastic constitutive FE models of the male pelvis region is limited, and given models did not precisely describe the anatomical behavior of pelvis organs, mainly of the prostate and its neoplasms location. The motion and deformation of the prostate during TRUS-guided biopsy makes it difficult to know the location of potential lesions in advance. When using this procedure, practitioners can only provide roughly estimations for the lesions locations. Consequently, multiple biopsy samples are required to target one single lesion. In this study, the whole pelvis model (comprised of the rectum, bladder, pelvic muscles, prostate transitional zone (TZ), and peripheral zone (PZ)) is used for the simulation results. An isotropic hyperelastic approach (Signorini model) was used for all the soft tissues except the vesical muscles. The vesical muscles are assumed to have a linear elastic behavior due to the lack of experimental data to determine the constants involved in hyperelastic models. The tissues and organ geometry is taken from the existing literature for 3D meshes. Then the biomechanical parameters were obtained under different testing techniques described in the literature. The acquired parametric values for uniaxial stress/strain data are used in the Signorini model to see the anatomical behavior of the pelvis model. The five mesh nodes in terms of small prostate lesions are selected prior to biopsy and each lesion’s final position is targeted when TRUS probe force of 30 N is applied at the inside rectum wall. Code_Aster open-source software is used for numerical simulations. Moreover, the overall effects of pelvis organ deformation were demonstrated when TRUS–guided biopsy is induced. The deformation of the prostate and neoplasms displacement showed that the appropriate material properties to organs altered the resulting lesion's migration parametrically. As a result, the distance traveled by these lesions ranged between 3.77 and 9.42 mm. The lesion displacement and organ deformation are compared and analyzed with our previous study in which we used linear elastic properties for all pelvic organs. Furthermore, the visual comparison of axial and sagittal slices are also compared, which is taken for Magnetic Resource Imaging (MRI) and TRUS images with our preliminary study.

Keywords: code-aster, magnetic resonance imaging, neoplasms, transrectal ultrasound, TRUS-guided biopsy

Procedia PDF Downloads 60
313 Ganga Rejuvenation through Forestation and Conservation Measures in Riverscape

Authors: Ombir Singh

Abstract:

In spite of the religious and cultural pre-dominance of the river Ganga in the Indian ethos, fragmentation and degradation of the river continued down the ages. Recognizing the national concern on environmental degradation of the river and its basin, Ministry of Water Resources, River Development & Ganga Rejuvenation (MoWR,RD&GR), Government of India has initiated a number of pilot schemes for the rejuvenation of river Ganga under the ‘Namami Gange’ Programme. Considering the diversity, complexity, and intricacies of forest ecosystems and pivotal multiple functions performed by them and their inter-connectedness with highly dynamic river ecosystems, forestry interventions all along the river Ganga from its origin at Gaumukh, Uttarakhand to its mouth at Ganga Sagar, West Bengal has been planned by the ministry. For that Forest Research Institute (FRI) in collaboration with National Mission for Clean Ganga (NMCG) has prepared a Detailed Project Report (DPR) on Forestry Interventions for Ganga. The Institute has adopted an extensive consultative process at the national and state levels involving various stakeholders relevant in the context of river Ganga and employed a science-based methodology including use of remote sensing and GIS technologies for geo-spatial analysis, modeling and prioritization of sites for proposed forestation and conservation interventions. Four sets of field data formats were designed to obtain the field based information for forestry interventions, mainly plantations and conservation measures along the river course. In response, five stakeholder State Forest Departments had submitted more than 8,000 data sheets to the Institute. In order to analyze a voluminous field data received from five participating states, the Institute also developed a software to collate, analyze and generation of reports on proposed sites in Ganga basin. FRI has developed potential plantation and treatment models for the proposed forestry and other conservation measures in major three types of landscape components visualized in the Ganga riverscape. These are: (i) Natural, (ii) Agriculture, and (iii) Urban Landscapes. Suggested plantation models broadly varied for the Uttarakhand Himalayas and the Ganga Plains in five participating states. Besides extensive plantations in three type of landscapes within the riverscape, various conservation measures such as soil and water conservation, riparian wildlife management, wetland management, bioremediation and bio-filtration and supporting activities such as policy and law intervention, concurrent research, monitoring and evaluation, and mass awareness campaigns have been envisioned in the DPR. The DPR also incorporates the details of the implementation mechanism, budget provisioned for different components of the project besides allocation of budget state-wise to five implementing agencies, national partner organizations and the Nodal Ministry.

Keywords: conservation, Ganga, river, water, forestry interventions

Procedia PDF Downloads 132
312 Ventilator Associated Pneumonia in a Medical Intensive Care Unit, Incidence and Risk Factors: A Case Control Study

Authors: Ammar Asma, Bouafia Nabiha, Ben Cheikh Asma, Ezzi Olfa, Mahjoub Mohamed, Sma Nesrine, Chouchène Imed, Boussarsar Hamadi, Njah Mansour

Abstract:

Background: Ventilator-associated pneumonia (VAP) is currently recognized as one of the most relevant causes of morbidity and mortality among intensive care unit (ICU) patients worldwide. Identifying modifiable risk factors for VAP could be helpful for future controlled interventional studies aiming at improving prevention of VAP. The purposes of this study were to determine the incidence and risk factors for VAP in in a Tunisian medical ICU. Materials / Methods: A retrospective case-control study design based on the prospective database collected over a 14-month period from September 15th, 2015 through November 15th, 2016 in an 8-bed medical ICU. Patients under ventilation for over 48 h were included. The number of cases was estimated by Epi-info Software with the power of statistical test equal to 90 %. Each case patient was successfully matched to two controls according to the length of mechanical ventilation (MV) before VAP for cases and the total length of MV in controls. VAP in the ICU was defined according to American Thoracic Society; Infectious Diseases Society of America guidelines. Early onset or late-onset VAP were defined whether the infectious process occurred within or after 96 h of ICU admission. Patients’ risk factors, causes of admission, comorbidities and respiratory specimens collected were reviewed. Univariate and multivariate analyses were performed to determine variables associated with VAP with a p-value < 0.05. Results: During the period study, a total of 169 patients under mechanical ventilation were considered, 34 patients (20.11%) developed at least one episode of VAP in the ICU. The incidence rate for VAP was 14.88/1000 ventilation days. Among these cases, 9 (26.5 %) were early-onset VAP and 25 (73.5 %) were late-onset VAP. It was a certain diagnosis in 66.7% of cases. Tracheal aspiration was positive in 80% of cases. Multi-drug resistant Acinerobacter baumanii was the most common species detected in cases; 67.64% (n=23). The rate of mortality out of cases was 88.23% (n= 30). In univariate analysis, the patients with VAP were statistically more likely to suffer from cardiovascular diseases (p=0.035) and prolonged duration of sedation (p=0.009) and tracheostomy (p=0.001), they also had a higher number of re-intubation (p=0.017) and a longer total time of intubation (p=0.012). Multivariate analysis showed that cardiovascular diseases (OR= 4.44; 95% IC= [1.3 - 14]; p=0.016), tracheostomy (OR= 4.2; 95% IC= [1.16 -15.12]; p= 0.028) and prolonged duration of sedation (OR=1.21; 95% IC= [1.07, 1.36]; p=0.002) were independent risk factors for the development of VAP. Conclusion: VAP constitutes a therapeutic challenge in an ICU setting, therefore; strategies that effectively prevent VAP are needed. An infection control-training program intended to all professional heath care in this unit insisting on bundles and elaboration of procedures are planned to reduce effectively incidence rate of VAP.

Keywords: case control study, intensive care unit, risk factors, ventilator associated pneumonia

Procedia PDF Downloads 376
311 Coil-Over Shock Absorbers Compared to Inherent Material Damping

Authors: Carina Emminger, Umut D. Cakmak, Evrim Burkut, Rene Preuer, Ingrid Graz, Zoltan Major

Abstract:

Damping accompanies us daily in everyday life and is used to protect (e.g., in shoes) and make our life more comfortable (damping of unwanted motion) and calm (noise reduction). In general, damping is the absorption of energy which is either stored in the material (vibration isolation systems) or changed into heat (vibration absorbers). In case of the last, the damping mechanism can be split in active, passive, as well as semi-active (a combination of active and passive). Active damping is required to enable an almost perfect damping over the whole application range and is used, for instance, in sport cars. In contrast, passive damping is a response of the material due to external loading. Consequently, the material composition has a huge influence on the damping behavior. For elastomers, the material behavior is inherent viscoelastic, temperature, and frequency dependent. However, passive damping is not adjustable during application. Therefore, it is of importance to understand the fundamental viscoelastic behavior and the dissipation capability due to external loading. The objective of this work is to assess the limitation and applicability of viscoelastic material damping for applications in which currently coil-over shock absorbers are utilized. Coil-over shock absorbers are usually made of various mechanical parts and incorporate fluids within the damper. These shock absorbers are well-known and studied in the industry, and when needed, they can be easily adjusted during their product lifetime. In contrary, dampers made of – ideally – a single material are more resource efficient, have an easier serviceability, and are easier manufactured. However, they lack of adaptability and adjustability in service. Therefore, a case study with a remote-controlled sport car was conducted. The original shock absorbers were redesigned, and the spring-dashpot system was replaced by both an elastomer and a thermoplastic-elastomer, respectively. Here, five different formulations of elastomers were used, including a pure and an iron-particle filled thermoplastic poly(urethan) (TPU) and blends of two different poly(dimethyl siloxane) (PDMS). In addition, the TPUs were investigated as full and hollow dampers to investigate the difference between solid and structured material. To get comparative results each material formulation was comprehensively characterized, by monotonic uniaxial compression tests, dynamic thermomechanical analysis (DTMA), and rebound resilience. Moreover, the new material-based shock absorbers were compared with spring-dashpot shock absorbers. The shock absorbers were analyzed under monotonic and cyclic loading. In addition, an impact loading was applied on the remote-controlled car to measure the damping properties in operation. A servo-hydraulic high-speed linear actuator was utilized to apply the loads. The acceleration of the car and the displacement of specific measurement points were recorded while testing by a sensor and high-speed camera, respectively. The results prove that elastomers are suitable in damping applications, but they are temperature and frequency dependent. This is a limitation in applicability of viscous material damper. Feasible fields of application may be in the case of micromobility, like bicycles, e-scooters, and e-skateboards. Furthermore, the viscous material damping could be used to increase the inherent damping of a whole structure, e.g., in bicycle-frames.

Keywords: damper structures, material damping, PDMS, TPU

Procedia PDF Downloads 95
310 Superhydrophobic Materials: A Promising Way to Enhance Resilience of Electric System

Authors: M. Balordi, G. Santucci de Magistris, F. Pini, P. Marcacci

Abstract:

The increasing of extreme meteorological events represents the most important causes of damages and blackouts of the whole electric system. In particular, the icing on ground-wires and overheads lines, due to snowstorms or harsh winter conditions, very often gives rise to the collapse of cables and towers both in cold and warm climates. On the other hand, the high concentration of contaminants in the air, due to natural and/or antropic causes, is reflected in high levels of pollutants layered on glass and ceramic insulators, causing frequent and unpredictable flashover events. Overheads line and insulator failures lead to blackouts, dangerous and expensive maintenances and serious inefficiencies in the distribution service. Inducing superhydrophobic (SHP) properties to conductors, ground-wires and insulators, is one of the ways to face all these problems. Indeed, in some cases, the SHP surface can delay the ice nucleation time and decrease the ice nucleation temperature, preventing ice formation. Besides, thanks to the low surface energy, the adhesion force between ice and a superhydrophobic material are low and the ice can be easily detached from the surface. Moreover, it is well known that superhydrophobic surfaces can have self-cleaning properties: these hinder the deposition of pollution and decrease the probability of flashover phenomena. Here this study presents three different studies to impart superhydrophobicity to aluminum, zinc and glass specimens, which represent the main constituent materials of conductors, ground-wires and insulators, respectively. The route to impart the superhydrophobicity to the metallic surfaces can be summarized in a three-step process: 1) sandblasting treatment, 2) chemical-hydrothermal treatment and 3) coating deposition. The first step is required to create a micro-roughness. In the chemical-hydrothermal treatment a nano-scale metallic oxide (Al or Zn) is grown and, together with the sandblasting treatment, bring about a hierarchical micro-nano structure. By coating an alchilated or fluorinated siloxane coating, the surface energy decreases and gives rise to superhydrophobic surfaces. In order to functionalize the glass, different superhydrophobic powders, obtained by a sol-gel synthesis, were prepared. Further, the specimens were covered with a commercial primer and the powders were deposed on them. All the resulting metallic and glass surfaces showed a noticeable superhydrophobic behavior with a very high water contact angles (>150°) and a very low roll-off angles (<5°). The three optimized processes are fast, cheap and safe, and can be easily replicated on industrial scales. The anti-icing and self-cleaning properties of the surfaces were assessed with several indoor lab-tests that evidenced remarkable anti-icing properties and self-cleaning behavior with respect to the bare materials. Finally, to evaluate the anti-snow properties of the samples, some SHP specimens were exposed under real snow-fall events in the RSE outdoor test-facility located in Vinadio, western Alps: the coated samples delay the formation of the snow-sleeves and facilitate the detachment of the snow. The good results for both indoor and outdoor tests make these materials promising for further development in large scale applications.

Keywords: superhydrophobic coatings, anti-icing, self-cleaning, anti-snow, overheads lines

Procedia PDF Downloads 163
309 Aspiring to Achieve a Fairer Society

Authors: Bintou Jobe

Abstract:

Background: The research is focused on the concept of equality, diversity, and inclusion (EDI) and the need to achieve equity by treating individuals according to their circumstances and needs. The research is rooted in the UK Equality Act 2010, which emphasizes the importance of equal opportunities for all individuals regardless of their background and social life. However, inequality persists in society, particularly for those from minority backgrounds who face discrimination. Research Aim: The aim of this research is to promote equality, diversity, and inclusion by encouraging the regeneration of minds and the eradication of stereotypes. The focus is on promoting good Equality, Diversity and Inclusion practices in various settings, including schools, colleges, universities, and workplaces, to create environments where every individual feels a sense of belonging. Methodology: The research utilises a literature review approach to gather information on promoting inclusivity, diversity, and inclusion. Findings: The research highlights the significance of promoting equality, diversity, and inclusion practices to ensure that individuals receive the respect and dignity they deserve. It emphasises the importance of treating individuals based on their unique circumstances and needs rather than relying on stereotypes. The research also emphasises the benefits of diversity and inclusion in enhancing innovation, creativity, and productivity. The theoretical importance of this research is to raise awareness about the importance of regenerating minds, challenging stereotypes, and promoting equality, diversity, and inclusion. The emphasis is on treating individuals based on their circumstances and needs rather than relying on generalizations. Diversity and inclusion are beneficial in different settings, as highlighted by the research. By raising awareness about the importance of mind regeneration, eradicating stereotypes, and promoting equality, diversity, and inclusion, this research makes a significant contribution to the subject area. It emphasizes the necessity of treating individuals based on their unique circumstances instead of relying on generalizations. However, the methodology could be strengthened by incorporating primary research to complement the literature review approach. Data Collection and Analysis Procedures: The research utilised a literature review approach to gather relevant information on promoting inclusivity, diversity, and inclusion. NVivo software application was used to analysed and synthesize the findings to identify themes and support the research aim and objectives. Question Addressed: This research addresses the question of how to promote inclusivity, diversity, and inclusion and reduce the prevalence of stereotypes and prejudice. It explores the need to treat individuals based on their unique circumstances and needs rather than relying on generic assumptions. Encourage individuals to adopt a more inclusive approach. Provide managers with responsibility and training that helps them understand the importance of their roles in shaping the workplace culture. Have an equality, diversity, and inclusion manager from a majority background at the senior level who can speak up for underrepresented groups and flag any issues that need addressing. Conclusion: The research emphasizes the importance of promoting equality, diversity, and inclusion practices to create a fairer society. It highlights the need to challenge stereotypes, treat individuals according to their circumstances and needs, and promote a culture of respect and dignity.

Keywords: equality, fairer society, inclusion, diversity

Procedia PDF Downloads 29
308 Enhancing Efficiency of Building through Translucent Concrete

Authors: Humaira Athar, Brajeshwar Singh

Abstract:

Generally, the brightness of the indoor environment of buildings is entirely maintained by the artificial lighting which has consumed a large amount of resources. It is reported that lighting consumes about 19% of the total generated electricity which accounts for about 30-40% of total energy consumption. One possible way is to reduce the lighting energy by exploiting sunlight either through the use of suitable devices or energy efficient materials like translucent concrete. Translucent concrete is one such architectural concrete which allows the passage of natural light as well as artificial light through it. Several attempts have been made on different aspects of translucent concrete such as light guiding materials (glass fibers, plastic fibers, cylinder etc.), concrete mix design and manufacturing methods for use as building elements. Concerns are, however, raised on various related issues such as poor compatibility between the optical fibers and cement paste, unaesthetic appearance due to disturbance occurred in the arrangement of fibers during vibration and high shrinkage in flowable concrete due to its high water/cement ratio. Need is felt to develop translucent concrete to meet the requirement of structural safety as OPC concrete with the maximized saving in energy towards the power of illumination and thermal load in buildings. Translucent concrete was produced using pre-treated plastic optical fibers (POF, 2mm dia.) and high slump white concrete. The concrete mix was proportioned in the ratio of 1:1.9:2.1 with a w/c ratio of 0.40. The POF was varied from 0.8-9 vol.%. The mechanical properties and light transmission of this concrete were determined. Thermal conductivity of samples was measured by a transient plate source technique. Daylight illumination was measured by a lux grid method as per BIS:SP-41. It was found that the compressive strength of translucent concrete increased with decreasing optical fiber content. An increase of ~28% in the compressive strength of concrete was noticed when fiber was pre-treated. FE-SEM images showed little-debonded zone between the fibers and cement paste which was well supported with pull-out bond strength test results (~187% improvement over untreated). The light transmission of concrete was in the range of 3-7% depending on fiber spacing (5-20 mm). The average daylight illuminance (~75 lux) was nearly equivalent to the criteria specified for illumination for circulation (80 lux). The thermal conductivity of translucent concrete was reduced by 28-40% with respect to plain concrete. The thermal load calculated by heat conduction equation was ~16% more than the plain concrete. Based on Design-Builder software, the total annual illumination energy load of a room using one side translucent concrete was 162.36 kW compared with the energy load of 249.75 kW for a room without concrete. The calculated energy saving on an account of the power of illumination was ~25%. A marginal improvement towards thermal comfort was also noticed. It is concluded that the translucent concrete has the advantages of the existing concrete (load bearing) with translucency and insulation characteristics. It saves a significant amount of energy by providing natural daylight instead of artificial power consumption of illumination.

Keywords: energy saving, light transmission, microstructure, plastic optical fibers, translucent concrete

Procedia PDF Downloads 104
307 Cut-Off of CMV Cobas® Taqman® (CAP/CTM Roche®) for Introduction of Ganciclovir Pre-Emptive Therapy in Allogeneic Hematopoietic Stem Cell Transplant Recipients

Authors: B. B. S. Pereira, M. O. Souza, L. P. Zanetti, L. C. S. Oliveira, J. R. P. Moreno, M. P. Souza, V. R. Colturato, C. M. Machado

Abstract:

Background: The introduction of prophylactic or preemptive therapies has effectively decreased the CMV mortality rates after hematopoietic stem cell transplantation (HSCT). CMV antigenemia (pp65) or quantitative PCR are methods currently approved for CMV surveillance in pre-emptive strategies. Commercial assays are preferred as cut-off levels defined by in-house assays may vary among different protocols and in general show low reproducibility. Moreover, comparison of published data among different centers is only possible if international standards of quantification are included in the assays. Recently, the World Health Organization (WHO) established the first international standard for CMV detection. The real time PCR COBAS Ampliprep/ CobasTaqMan (CAP/CTM) (Roche®) was developed using the WHO standard for CMV quantification. However, the cut-off for the introduction of antiviral has not been determined yet. Methods: We conducted a retrospective study to determine: 1) the sensitivity and specificity of the new CMV CAP/CTM test in comparison with pp65 antigenemia to detect episodes of CMV infection/reactivation, and 2) the cut-off of viral load for introduction of ganciclovir (GCV). Pp65 antigenemia was performed and the corresponding plasma samples were stored at -20°C for further CMV detection by CAP/CTM. Comparison of tests was performed by kappa index. The appearance of positive antigenemia was considered the state variable to determine the cut-off of CMV viral load by ROC curve. Statistical analysis was performed using SPSS software version 19 (SPSS, Chicago, IL, USA.). Results: Thirty-eight patients were included and followed from August 2014 through May 2015. The antigenemia test detected 53 episodes of CMV infection in 34 patients (89.5%), while CAP/CTM detected 37 episodes in 33 patients (86.8%). AG and PCR results were compared in 431 samples and Kappa index was 30.9%. The median time for first AG detection was 42 (28-140) days, while CAP/CTM detected at a median of 7 days earlier (34 days, ranging from 7 to 110 days). The optimum cut-off value of CMV DNA was 34.25 IU/mL to detect positive antigenemia with 88.2% of sensibility, 100% of specificity and AUC of 0.91. This cut-off value is below the limit of detection and quantification of the equipment which is 56 IU/mL. According to CMV recurrence definition, 16 episodes of CMV recurrence were detected by antigenemia (47.1%) and 4 (12.1%) by CAP/CTM. The duration of viremia as detected by antigenemia was shorter (60.5% of the episodes lasted ≤ 7 days) in comparison to CAP/CTM (57.9% of the episodes lasting 15 days or more). This data suggests that the use of antigenemia to define the duration of GCV therapy might prompt early interruption of antiviral, which may favor CMV reactivation. The CAP/CTM PCR could possibly provide a safer information concerning the duration of GCV therapy. As prolonged treatment may increase the risk of toxicity, this hypothesis should be confirmed in prospective trials. Conclusions: Even though CAP/CTM by ROCHE showed great qualitative correlation with the antigenemia technique, the fully automated CAP/CTM did not demonstrate increased sensitivity. The cut-off value below the limit of detection and quantification may result in delayed introduction of pre-emptive therapy.

Keywords: antigenemia, CMV COBAS/TAQMAN, cytomegalovirus, antiviral cut-off

Procedia PDF Downloads 169
306 Re-Evaluation of Field X Located in Northern Lake Albert Basin to Refine the Structural Interpretation

Authors: Calorine Twebaze, Jesca Balinga

Abstract:

Field X is located on the Eastern shores of L. Albert, Uganda, on the rift flank where the gross sedimentary fill is typically less than 2,000m. The field was discovered in 2006 and encountered about 20.4m of net pay across three (3) stratigraphic intervals within the discovery well. The field covers an area of 3 km2, with the structural configuration comprising a 3-way dip-closed hanging wall anticline that seals against the basement to the southeast along the bounding fault. Field X had been mapped on reprocessed 3D seismic data, which was originally acquired in 2007 and reprocessed in 2013. The seismic data quality is good across the field, and reprocessing work reduced the uncertainty in the location of the bounding fault and enhanced the lateral continuity of reservoir reflectors. The current study was a re-evaluation of Field X to refine fault interpretation and understand the structural uncertainties associated with the field. The seismic data, and three (3) wells datasets were used during the study. The evaluation followed standard workflows using Petrel software and structural attribute analysis. The process spanned from seismic- -well tie, structural interpretation, and structural uncertainty analysis. Analysis of three (3) well ties generated for the 3 wells provided a geophysical interpretation that was consistent with geological picks. The generated time-depth curves showed a general increase in velocity with burial depth. However, separation in curve trends observed below 1100m was mainly attributed to minimal lateral variation in velocity between the wells. In addition to Attribute analysis, three velocity modeling approaches were evaluated, including the Time-Depth Curve, Vo+ kZ, and Average Velocity Method. The generated models were calibrated at well locations using well tops to obtain the best velocity model for Field X. The Time-depth method resulted in more reliable depth surfaces with good structural coherence between the TWT and depth maps with minimal error at well locations of 2 to 5m. Both the NNE-SSW rift border fault and minor faults in the existing interpretation were reevaluated. However, the new interpretation delineated an E-W trending fault in the northern part of the field that had not been interpreted before. The fault was interpreted at all stratigraphic levels and thus propagates from the basement to the surface and is an active fault today. It was also noted that the entire field is less faulted with more faults in the deeper part of the field. The major structural uncertainties defined included 1) The time horizons due to reduced data quality, especially in the deeper parts of the structure, an error equal to one-third of the reflection time thickness was assumed, 2) Check shot analysis showed varying velocities within the wells thus varying depth values for each well, and 3) Very few average velocity points due to limited wells produced a pessimistic average Velocity model.

Keywords: 3D seismic data interpretation, structural uncertainties, attribute analysis, velocity modelling approaches

Procedia PDF Downloads 31
305 Television Sports Exposure and Rape Myth Acceptance: The Mediating Role of Sexual Objectification of Women

Authors: Sofia Mariani, Irene Leo

Abstract:

The objective of the present study is to define the mediating role of attitudes that objectify and devalue women (hostile sexism, benevolent sexism, and sexual objectification of women) in the indirect correlation between exposure to televised sports and acceptance of rape myths. A second goal is to contribute to research on the topic by defining the role of mediators in exposure to different types of sports, following the traditional gender classification of sports. Data collection was carried out by means of an online questionnaire, measuring television sport exposure, sport type, hostile sexism, benevolent sexism, and sexual objectification of women. Data analysis was carried out using IBM SPSS software. The model used was created using Ordinary Least Squares (OLS) regression path analysis. The predictor variable in the model was television sports exposure, the outcome was rape myths acceptance, and the mediators were (1) hostile sexism, (2) benevolent sexism, and (3) sexual objectification of women. Correlation analyses were carried out dividing by sport type and controlling for the participants’ gender. As seen in existing literature, television sports exposure was found to be indirectly and positively related to rape myth acceptance through the mediating role of: (1) hostile sexism, (2) benevolent sexism, and (3) sexual objectification of women. The type of sport watched influenced the role of the mediators: hostile sexism was found to be the common mediator to all sports type, exposure to traditionally considered feminine or neutral sports showed the additional mediation effect of sexual objectification of women. In line with existing literature, controlling for gender showed that the only significant mediators were hostile sexism for male participants and benevolent sexism for female participants. Given the prevalence of men among the viewers of traditionally considered masculine sports, the correlation between television sports exposure and rape myth acceptance through the mediation of hostile sexism is likely due to the gender of the participants. However, this does not apply to the viewers of traditionally considered feminine and neutral sports, as this group is balanced in terms of gender and shows a unique mediation: the correlation between television sports exposure and rape myth acceptance is mediated by both hostile sexism and sexual objectification. Given that hostile sexism is defined as hostility towards women who oppose or fail to conform to traditional gender roles, these findings confirm that sport is perceived as a non-traditional activity for women. Additionally, these results imply that the portrayal of women in traditionally considered feminine and neutral sports - which are defined as such because of their aesthetic characteristics - may have a strong component of sexual objectification of women. The present research contributes to defining the association between sports exposure and rape myth acceptance through the mediation effects of sexist attitudes and sexual objectification of women. The results of this study have practical implications, such as supporting the feminine sports teams who ask for more practical and less revealing uniforms, more similar to their male colleagues and therefore less objectifying.

Keywords: television exposure, sport, rape myths, objectification, sexism

Procedia PDF Downloads 70
304 Community Strengths and Indigenous Resilience as Drivers for Health Reform Change

Authors: Shana Malio-Satele, Lemalu Silao Vaisola Sefo

Abstract:

Introductory Statement: South Seas Healthcare is Ōtara’s largest Pacific health provider in South Auckland, New Zealand. Our vision is excellent health and well-being for Pacific people and all communities through strong Pacific values. During the DELTA and Omicron outbreak of COVID-19, our Pacific people, indigenous Māori, and the community of South Auckland were disproportionately affected and faced significant hardship with existing inequities magnified. This study highlights the community-based learnings of harnessing community-based strengths such as indigenous resilience, family-informed experiences and stories that provide critical insights that inform health reform changes that will be sustainable and equitable for all indigenous populations. This study is based on critical learnings acquired during COVID-19 that challenge the deficit narrative common in healthcare about indigenous populations. This study shares case studies of marginalised groups and religious groups and the successful application of indigenous cultural strengths, such as collectivism, positive protective factors, and using trusted relationships to create meaningful change in the way healthcare is delivered. The significance of this study highlights the critical conditions needed to adopt a community-informed way of creating integrated healthcare that works and the role that the community can play in being part of the solution. Methodologies: Key methodologies utilised are indigenous and Pacific-informed. To achieve critical learnings from the community, Pacific research methodologies, heavily informed by the Polynesian practice, were applied. Specifically, this includes; Teu Le Va (Understanding the importance of trusted relationships as a way of creating positive health solutions); The Fonofale Methodology (A way of understanding how health incorporates culture, family, the physical, spiritual, mental and other dimensions of health, as well as time, context and environment; The Fonua Methodology – Understanding the overall wellbeing and health of communities, families and individuals and their holistic needs and environmental factors and the Talanoa methodology (Researching through conversation, where understanding the individual and community is through understanding their history and future through stories). Major Findings: Key findings in the study included: 1. The collectivist approach in the community is a strengths-based response specific to populations, which highlights the importance of trusted relationships and cultural values to achieve meaningful outcomes. 2. The development of a “village model” which identified critical components to achieving health reform change; system navigation, a sense of service that was culturally responsive, critical leadership roles, culturally appropriate support, and the ability to influence the system enablers to support an alternative way of working. Concluding Statement: There is a strong connection between community-based strengths being implemented into healthcare strategies and reforms and the sustainable success of indigenous populations and marginalised communities accessing services that are cohesive, equitably resourced, accessible and meaningful for families. This study highlights the successful community-informed approaches and practices used during the COVID-19 response in New Zealand that are now being implemented in the current health reform.

Keywords: indigenous voice, community voice, health reform, New Zealand

Procedia PDF Downloads 66