Search results for: innovative shading systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11074

Search results for: innovative shading systems

3484 “The Forgotten People:” Analyzing the Invisible, Intersectional Discrimination Against Metis Women

Authors: Yifan Jia

Abstract:

The Metis is a group of indigenous peoples in Canada. Having experienced centuries of injustices, beginning with colonialism dating back to the 16th century, culminating with military defeats in the 1800s and the establishment of residential schools, and continuing with structural injustices in the 21st century, Metis people have long been, and continue to be marginalized and made invisible in the Canadian society. In particular, Metis women born between 1997 and 2012 face intersectional discrimination based on not only race, but also a multitude of identity factors, including gender, age, geographical location, health, sexual orientation, and lateral violence from First Nations peoples. This paper uncovers the multilayered oppression against young Metis women through a literature review and uses several theories to analyze the invisibility of this discrimination in society, including color-blind racism, collective shame, lack of understanding of intersectionality, and Mauvaise foi (bad faith). To address the invisible, intersectional discrimination against young Metis women, several suggestions and possibilities could be considered. These include amending the education system, fostering group affiliation, bringing structural changes to federal policies and funding systems, and cooperating with other indigenous nations such as First Nations and Inuit.

Keywords: discrimination, Metis Women, indigenous rights, intersectionality

Procedia PDF Downloads 70
3483 An Empirical Study on Employees’ Theft Behavior in Insurance Industry

Authors: B. Khorsandi Talab, M. Kordi

Abstract:

It is highly deplorable that every year, theft behavior among employees of the insurance industry is growing throughout the world. A very significant source of contraction (despite many costly technological and widespread security measures) needs to be addressed and prevented. Employee and agent theft cannot be ignored as it causes significant losses to employers. This study investigates the workplace factors that affect the insurance employee and agent theft behavior. Although identifying theft is difficult, this study will help employers to further understand employees’ theft behavior. This study was conducted in two service small and medium organizations (two branches of insurance companies) in ALBORZ’s capital city, KARAJ. Data has been collected via questionnaire from 30 employees and agents consisting employees and supervisors of branches and agencies. According to the results, it must be acknowledged that compensation, organizational justice, internal control systems, penalties and personal characteristics were associated with employees' theft behavior, it is despite the fact that, no effect could be assumed for organizational ethics and requirement in this case. Nevertheless, poor financial status cannot be considered as the driving factor in pushing employees to steal property as well as increasing their theft behavior. As mentioned earlier, the purpose of this study was to determine the factors contributing to employees’ theft (insurance employees and agencies) behavior in insurance organizations in Karaj.

Keywords: service theft, employee theft behavior, work theft, insurance agency, SMEs

Procedia PDF Downloads 437
3482 CRLH and SRR Based Microwave Filter Design Useful for Communication Applications

Authors: Subal Kar, Amitesh Kumar, A. Majumder, S. K. Ghosh, S. Saha, S. S. Sikdar, T. K. Saha

Abstract:

CRLH (composite right/left-handed) based and SRR (split-ring resonator) based filters have been designed at microwave frequency which can provide better performance compared to conventional edge-coupled band-pass filter designed around the same frequency, 2.45 GHz. Both CRLH and SRR are unit cells used in metamaterial design. The primary aim of designing filters with such structures is to realize size reduction and also to realize novel filter performance. The CRLH based filter has been designed in microstrip transmission line, while the SRR based filter is designed with SRR loading in waveguide. The CRLH based filter designed at 2.45 GHz provides an insertion loss of 1.6 dB with harmonic suppression up to 10 GHz with 67 % size reduction when compared with a conventional edge-coupled band-pass filter designed around the same frequency. One dimensional (1-D) SRR matrix loaded in a waveguide shows the possibility of realizing a stop-band with sharp skirts in the pass-band while a stop-band in the pass-band of normal rectangular waveguide with tailoring of the dimensions of SRR unit cells. Such filters are expected to be very useful for communication systems at microwave frequency.

Keywords: BPF, CRLH, harmonic, metamaterial, SRR and waveguide

Procedia PDF Downloads 427
3481 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models

Authors: Ramin Vafadary, Maryam Khanbaghi

Abstract:

Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting.

Keywords: bagging, Fbprophet, Holt-Winters, LSTM, load forecast, SARIMA, TensorFlow probability, time series

Procedia PDF Downloads 96
3480 Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

Authors: Shane D. Inder, Mehrdad Khamooshi

Abstract:

Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored for use in the discharge phase. It will also describe a thermodynamic model, developed in EES (Engineering Equation Solver) to evaluate the performance and critical parameters of the discharge phase of the proposed system. Three configurations are explained including: single turbine without preheater, two turbines with preheaters, and three turbines with preheaters. It is shown that the micro-scale A-CAES is highly dependent upon key parameters including; regulator pressure, air pressure and volume, thermal energy storage temperature and flow rate and the number of turbines. It was found that a micro-scale AA-CAES, when optimized with an appropriate configuration, could deliver energy input to output efficiency of up to 70%.

Keywords: CAES, adiabatic compressed air energy storage, expansion phase, micro generation, thermodynamic

Procedia PDF Downloads 311
3479 Efficiency of Google Translate and Bing Translator in Translating Persian-to-English Texts

Authors: Samad Sajjadi

Abstract:

Machine translation is a new subject increasingly being used by academic writers, especially students and researchers whose native language is not English. There are numerous studies conducted on machine translation, but few investigations have assessed the accuracy of machine translation from Persian to English at lexical, semantic, and syntactic levels. Using Groves and Mundt’s (2015) Model of error taxonomy, the current study evaluated Persian-to-English translations produced by two famous online translators, Google Translate and Bing Translator. A total of 240 texts were randomly selected from different academic fields (law, literature, medicine, and mass media), and 60 texts were considered for each domain. All texts were rendered by the two translation systems and then by four human translators. All statistical analyses were applied using SPSS. The results indicated that Google translations were more accurate than the translations produced by the Bing Translator, especially in the domains of medicine (lexis: 186 vs. 225; semantic: 44 vs. 48; syntactic: 148 vs. 264 errors) and mass media (lexis: 118 vs. 149; semantic: 25 vs. 32; syntactic: 110 vs. 220 errors), respectively. Nonetheless, both machines are reasonably accurate in Persian-to-English translation of lexicons and syntactic structures, particularly from mass media and medical texts.

Keywords: machine translations, accuracy, human translation, efficiency

Procedia PDF Downloads 78
3478 Reliability Based Performance Evaluation of Stone Column Improved Soft Ground

Authors: A. GuhaRay, C. V. S. P. Kiranmayi, S. Rudraraju

Abstract:

The present study considers the effect of variation of different geotechnical random variables in the design of stone column-foundation systems for assessing the bearing capacity and consolidation settlement of highly compressible soil. The soil and stone column properties, spacing, diameter and arrangement of stone columns are considered as the random variables. Probability of failure (Pf) is computed for a target degree of consolidation and a target safe load by Monte Carlo Simulation (MCS). The study shows that the variation in coefficient of radial consolidation (cr) and cohesion of soil (cs) are two most important factors influencing Pf. If the coefficient of variation (COV) of cr exceeds 20%, Pf exceeds 0.001, which is unsafe following the guidelines of US Army Corps of Engineers. The bearing capacity also exceeds its safe value for COV of cs > 30%. It is also observed that as the spacing between the stone column increases, the probability of reaching a target degree of consolidation decreases. Accordingly, design guidelines, considering both consolidation and bearing capacity of improved ground, are proposed for different spacing and diameter of stone columns and geotechnical random variables.

Keywords: bearing capacity, consolidation, geotechnical random variables, probability of failure, stone columns

Procedia PDF Downloads 359
3477 Neural Machine Translation for Low-Resource African Languages: Benchmarking State-of-the-Art Transformer for Wolof

Authors: Cheikh Bamba Dione, Alla Lo, Elhadji Mamadou Nguer, Siley O. Ba

Abstract:

In this paper, we propose two neural machine translation (NMT) systems (French-to-Wolof and Wolof-to-French) based on sequence-to-sequence with attention and transformer architectures. We trained our models on a parallel French-Wolof corpus of about 83k sentence pairs. Because of the low-resource setting, we experimented with advanced methods for handling data sparsity, including subword segmentation, back translation, and the copied corpus method. We evaluate the models using the BLEU score and find that transformer outperforms the classic seq2seq model in all settings, in addition to being less sensitive to noise. In general, the best scores are achieved when training the models on word-level-based units. For subword-level models, using back translation proves to be slightly beneficial in low-resource (WO) to high-resource (FR) language translation for the transformer (but not for the seq2seq) models. A slight improvement can also be observed when injecting copied monolingual text in the target language. Moreover, combining the copied method data with back translation leads to a substantial improvement of the translation quality.

Keywords: backtranslation, low-resource language, neural machine translation, sequence-to-sequence, transformer, Wolof

Procedia PDF Downloads 147
3476 Data Structure Learning Platform to Aid in Higher Education IT Courses (DSLEP)

Authors: Estevan B. Costa, Armando M. Toda, Marcell A. A. Mesquita, Jacques D. Brancher

Abstract:

The advances in technology in the last five years allowed an improvement in the educational area, as the increasing in the development of educational software. One of the techniques that emerged in this lapse is called Gamification, which is the utilization of video game mechanics outside its bounds. Recent studies involving this technique provided positive results in the application of these concepts in many areas as marketing, health and education. In the last area there are studies that cover from elementary to higher education, with many variations to adequate to the educators methodologies. Among higher education, focusing on IT courses, data structures are an important subject taught in many of these courses, as they are base for many systems. Based on the exposed this paper exposes the development of an interactive web learning environment, called DSLEP (Data Structure Learning Platform), to aid students in higher education IT courses. The system includes basic concepts seen on this subject such as stacks, queues, lists, arrays, trees and was implemented to ease the insertion of new structures. It was also implemented with gamification concepts, such as points, levels, and leader boards, to engage students in the search for knowledge and stimulate self-learning.

Keywords: gamification, Interactive learning environment, data structures, e-learning

Procedia PDF Downloads 495
3475 Virtualization and Visualization Based Driver Configuration in Operating System

Authors: Pavan Shah

Abstract:

In an Embedded system, Virtualization and visualization technology can provide us an effective response and measurable work in a software development environment. In addition to work of virtualization and virtualization can be easily deserved to provide the best resource sharing between real-time hardware applications and a healthy environment. However, the virtualization is noticeable work to minimize the I/O work and utilize virtualization & virtualization technology for either a software development environment (SDE) or a runtime environment of real-time embedded systems (RTMES) or real-time operating system (RTOS) eras. In this Paper, we particularly focus on virtualization and visualization overheads data of network which generates the I/O and implementation of standardized I/O (i.e., Virto), which can work as front-end network driver in a real-time operating system (RTOS) hardware module. Even there have been several work studies are available based on the virtualization operating system environment, but for the Virto on a general-purpose OS, my implementation is on the open-source Virto for a real-time operating system (RTOS). In this paper, the measurement results show that implementation which can improve the bandwidth and latency of memory management of the real-time operating system environment (RTMES) for getting more accuracy of the trained model.

Keywords: virtualization, visualization, network driver, operating system

Procedia PDF Downloads 133
3474 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control

Authors: Ming-Yen Chang, Sheng-Hung Ke

Abstract:

This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.

Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride

Procedia PDF Downloads 67
3473 Application of Intelligent City and Hierarchy Intelligent Buildings in Kuala Lumpur

Authors: Jalalludin Abdul Malek, Zurinah Tahir

Abstract:

When the Multimedia Super Corridor (MSC) was launched in 1995, it became the catalyst for the implementation of the intelligent city concept, an area that covers about 15 x 50 kilometres from Kuala Lumpur City Centre (KLCC), Putrajaya and Kuala Lumpur International Airport (KLIA). The concept of intelligent city means that the city has an advanced infrastructure and infostructure such as information technology, advanced telecommunication systems, electronic technology and mechanical technology to be utilized for the development of urban elements such as industries, health, services, transportation and communications. For example, the Golden Triangle of Kuala Lumpur has also many intelligent buildings developed by the private sector such as the KLCC Tower to implement the intelligent city concept. Consequently, the intelligent buildings in the Golden Triangle can be linked directly to the Putrajaya Intelligent City and Cyberjaya Intelligent City within the confines of the MSC. However, the reality of the situation is that there are not many intelligent buildings within the Golden Triangle Kuala Lumpur scope which can be considered of high-standard intelligent buildings as referred to by the Intelligence Quotient (IQ) building standard. This increases the need to implement the real ‘intelligent city’ concept. This paper aims to show the strengths and weaknesses of the intelligent buildings in the Golden Triangle by taking into account aspects of 'intelligence' in the areas of technology and infrastructure of buildings.

Keywords: intelligent city concepts, intelligent building, Golden Triangle, Kuala Lumpur

Procedia PDF Downloads 297
3472 Offline Signature Verification in Punjabi Based On SURF Features and Critical Point Matching Using HMM

Authors: Rajpal Kaur, Pooja Choudhary

Abstract:

Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capabilities to the reliably distinguish between an authorized person and an imposter. The Signature recognition systems can categorized as offline (static) and online (dynamic). This paper presents Surf Feature based recognition of offline signatures system that is trained with low-resolution scanned signature images. The signature of a person is an important biometric attribute of a human being which can be used to authenticate human identity. However the signatures of human can be handled as an image and recognized using computer vision and HMM techniques. With modern computers, there is need to develop fast algorithms for signature recognition. There are multiple techniques are defined to signature recognition with a lot of scope of research. In this paper, (static signature) off-line signature recognition & verification using surf feature with HMM is proposed, where the signature is captured and presented to the user in an image format. Signatures are verified depended on parameters extracted from the signature using various image processing techniques. The Off-line Signature Verification and Recognition is implemented using Mat lab platform. This work has been analyzed or tested and found suitable for its purpose or result. The proposed method performs better than the other recently proposed methods.

Keywords: offline signature verification, offline signature recognition, signatures, SURF features, HMM

Procedia PDF Downloads 384
3471 IoT and Advanced Analytics Integration in Biogas Modelling

Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma

Abstract:

The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.

Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization

Procedia PDF Downloads 20
3470 Bidirectional Long Short-Term Memory-Based Signal Detection for Orthogonal Frequency Division Multiplexing With All Index Modulation

Authors: Mahmut Yildirim

Abstract:

This paper proposed the bidirectional long short-term memory (Bi-LSTM) network-aided deep learning (DL)-based signal detection for Orthogonal frequency division multiplexing with all index modulation (OFDM-AIM), namely Bi-DeepAIM. OFDM-AIM is developed to increase the spectral efficiency of OFDM with index modulation (OFDM-IM), a promising multi-carrier technique for communication systems beyond 5G. In this paper, due to its strong classification ability, Bi-LSTM is considered an alternative to the maximum likelihood (ML) algorithm, which is used for signal detection in the classical OFDM-AIM scheme. The performance of the Bi-DeepAIM is compared with LSTM network-aided DL-based OFDM-AIM (DeepAIM) and classic OFDM-AIM that uses (ML)-based signal detection via BER performance and computational time criteria. Simulation results show that Bi-DeepAIM obtains better bit error rate (BER) performance than DeepAIM and lower computation time in signal detection than ML-AIM.

Keywords: bidirectional long short-term memory, deep learning, maximum likelihood, OFDM with all index modulation, signal detection

Procedia PDF Downloads 72
3469 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach

Authors: Abe Degale D., Cheng Jian

Abstract:

When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.

Keywords: violence detection, faster RCNN, transfer learning and, surveillance video

Procedia PDF Downloads 108
3468 Proposals for the Thermal Regulation of Buildings in Algeria: A New Energy Label for Social Housing

Authors: Marco Morini, Nicolandrea Calabrese, Dario Chello

Abstract:

Despite the international commitment of Algeria towards the development of energy efficiency and renewable energy in the country, the internal energy demand has been continuously growing during the last decade due to the substantial increase of population and of living conditions, which in turn has led to an unprecedented expansion of the residential building sector. The thermal building regulation is the technical document that establishes the calculation framework for the thermal performance of buildings in Algeria, setting up minimum obligatory targets for the thermal performance of new buildings. An update of this regulation is due in the coming years, and this paper discusses some proposals in this regard, with the aim to improve the energy efficiency of the building sector, particularly with regard to social housing. In particular, it proposes a methodology for drafting an energy performance label of new Algerian residential buildings, moving from the results of the thermal compliance verification and sizing of technical systems as defined in the RTB. Such an energy performance label – whose calculation method is briefly described in the paper – aims to raise citizens' awareness of the benefits of energy efficiency. It can represent the first step in a process of integrating technical installations into the calculation of the energy performance of buildings in Algeria.

Keywords: building, energy certification, energy efficiency, social housing, international cooperation, Mediterranean region

Procedia PDF Downloads 145
3467 The Suffering Other and the Deserving Self; When Humanitarianism Intersects with Individualism and Neo-Liberalism

Authors: Irene Bruna Seu

Abstract:

This paper draws on a three-year research project investigating everyday moral reasoning in relation to donations and prosocial behaviour in the humanitarian context. The analysis focuses on the principle of deservingness by which members of the public decide who and under which conditions to help and illustrates how the speakers engage in ideological dilemmas. The paper focuses on the theme ‘Something for nothing’ to examine how the position of ‘deserving’ and the speaker’s rights and duties in relation to victims of humanitarian crises are negotiated. Discursive analyses of this dilemmatic storyline of deservingness illuminate the cultural and ideological resources buttressing this construction. They also illustrate how humanitarianism intersects and clashes with other ideologies and value systems. The presentation will focus on the role of Individualism underpinned by Neo-liberalism ideology. The data propose that neo-liberal ideology, which endorses self-gratification, materialistic and individualistic ethics play an important role in decisions regarding humanitarian helping. The paper argues for the need for psychological research to engage more actively with the dilemmatic nature of moral reasoning in the humanitarian context, and to contextualize decisions about giving and helping within the socio-cultural and ideological landscape in which the helpers operate.

Keywords: humanitarianism, individualism, ideological dilemmas, discourse, neo-liberalism, prosocial behaviour

Procedia PDF Downloads 213
3466 A Cloud Computing System Using Virtual Hyperbolic Coordinates for Services Distribution

Authors: Telesphore Tiendrebeogo, Oumarou Sié

Abstract:

Cloud computing technologies have attracted considerable interest in recent years. Thus, these latters have become more important for many existing database applications. It provides a new mode of use and of offer of IT resources in general. Such resources can be used “on demand” by anybody who has access to the internet. Particularly, the Cloud platform provides an ease to use interface between providers and users, allow providers to develop and provide software and databases for users over locations. Currently, there are many Cloud platform providers support large scale database services. However, most of these only support simple keyword-based queries and can’t response complex query efficiently due to lack of efficient in multi-attribute index techniques. Existing Cloud platform providers seek to improve performance of indexing techniques for complex queries. In this paper, we define a new cloud computing architecture based on a Distributed Hash Table (DHT) and design a prototype system. Next, we perform and evaluate our cloud computing indexing structure based on a hyperbolic tree using virtual coordinates taken in the hyperbolic plane. We show through our experimental results that we compare with others clouds systems to show our solution ensures consistence and scalability for Cloud platform.

Keywords: virtual coordinates, cloud, hyperbolic plane, storage, scalability, consistency

Procedia PDF Downloads 425
3465 Political Economy of Foreign Direct Investment: Literature Review of Domestic Interest Groups’ Preferences

Authors: Chaiwat Wuthinitikornkit

Abstract:

Foreign Direct Investment (FDI) inevitably affects the landscape of the political economy of the host country. It is, therefore, significant to review and uncover how and in what way(s) FDI shapes the preferences of the interest groups within the host country, as such preferences may, in turn, influence the policies of the host country. By conducting a review of relevant literature, this paper attempts to outline the key forces behind such preferences and identify potential gaps for future studies. This paper argues that while existing theories have specified endowment and political and institutional factors as key explanations behind the preferences of domestic interest groups, other qualitative attributes of the foreign investors' side, such as their nationalities, have yet to be adequately investigated empirically and may potentially also possess explanatory power. This is particularly important in the current global economic landscape, where key global investors hail from origins from both developed and developing countries with diverse political systems and business practices. This paper aims to provide the groundwork for future studies on these potential gaps, which may provide not only contributions to the academic sphere but also practical insight into policymaking and business communities.

Keywords: foreign direct investment, interest groups, international political economy, political economy

Procedia PDF Downloads 90
3464 Ubiquitous Scaffold Learning Environment Using Problem-based Learning Activities to Enhance Problem-solving Skills and Context Awareness

Authors: Noppadon Phumeechanya, Panita Wannapiroon

Abstract:

The purpose of this research is to design the ubiquitous scaffold learning environment using problem-based learning activities that enhance problem-solving skills and context awareness, and to evaluate the suitability of the ubiquitous scaffold learning environment using problem-based learning activities. We divide the research procedures into two phases. The first phase is to design the ubiquitous scaffold learning environment using problem-based learning activities, and the second is to evaluate the ubiquitous scaffold learning environment using problem-based learning activities. The sample group in this study consists of five experts selected using the purposive sampling method. We analyse data by arithmetic mean and standard deviation. The research findings are as follows; the ubiquitous scaffold learning environment using problem-based learning activities consists of three major steps, the first is preparation before learning. This prepares learners to acknowledge details and learn through u-LMS. The second is the learning process, where learning activities happen in the ubiquitous learning environment and learners learn online with scaffold systems for each step of problem solving. The third step is measurement and evaluation. The experts agree that the ubiquitous scaffold learning environment using problem-based learning activities is highly appropriate.

Keywords: ubiquitous learning environment scaffolding, learning activities, problem-based learning, problem-solving skills, context awareness

Procedia PDF Downloads 498
3463 Human-Computer Interaction Pluriversal Framework for Ancestral Medicine App in Bogota: Asset-Based Design Case Study

Authors: Laura Niño Cáceres, Daisy Yoo, Caroline Hummels

Abstract:

COVID-19 accelerated digital healthcare technology usage in many countries, such as Colombia, whose digital healthcare vision and projects are proof of this. However, with a significant cultural indigenous and Afro-Colombian heritage, only some parts of the country are willing to follow the proposed digital Western approach to health. Our paper presents the national healthcare system’s digital narrative, which we contrast with the micro-narrative of an Afro-Colombian ethnomedicine unit in Bogota called Kilombo Yumma. This ethnomedical unit is building its mobile app to safeguard and represent its ancestral medicine practices in local and national healthcare information systems. Kilombo Yumma is keen on promoting their beliefs and practices, which have been passed on through oral traditions and currently exist in the hands of a few older women. We unraveled their ambition, core beliefs, and practices through asset-based design. These assets outlined pluriversal and decolonizing forms of digital healthcare to increase social justice and connect Western and ancestral medicine digital opportunities through HCI.

Keywords: asset-based design, mobile app, decolonizing HCI, Afro-Colombian ancestral medicine

Procedia PDF Downloads 79
3462 Uncovering Underwater Communication for Multi-Robot Applications via CORSICA

Authors: Niels Grataloup, Micael S. Couceiro, Manousos Valyrakis, Javier Escudero, Patricia A. Vargas

Abstract:

This paper benchmarks the possible underwater communication technologies that can be integrated into a swarm of underwater robots by proposing an underwater robot simulator named CORSICA (Cross platfORm wireleSs communICation simulator). Underwater exploration relies increasingly on the use of mobile robots, called Autonomous Underwater Vehicles (AUVs). These robots are able to reach goals in harsh underwater environments without resorting to human divers. The introduction of swarm robotics in these scenarios would facilitate the accomplishment of complex tasks with lower costs. However, swarm robotics requires implementation of communication systems to be operational and have a non-deterministic behaviour. Inter-robot communication is one of the key challenges in swarm robotics, especially in underwater scenarios, as communication must cope with severe restrictions and perturbations. This paper starts by presenting a list of the underwater propagation models of acoustic and electromagnetic waves, it also reviews existing transmitters embedded in current robots and simulators. It then proposes CORSICA, which allows validating the choices in terms of protocol and communication strategies, whether they are robot-robot or human-robot interactions. This paper finishes with a presentation of possible integration according to the literature review, and the potential to get CORSICA at an industrial level.

Keywords: underwater simulator, robot-robot underwater communication, swarm robotics, transceiver and communication models

Procedia PDF Downloads 301
3461 Importance of Standards in Engineering and Technology Education

Authors: Ahmed S. Khan, Amin Karim

Abstract:

During the past several decades, the economy of each nation has been significantly affected by globalization and technology. Government regulations and private sector standards affect a majority of world trade. Countries have been working together to establish international standards in almost every field. As a result, workers in all sectors need to have an understanding of standards. Engineering and technology students must not only possess an understanding of engineering standards and applicable government codes, but also learn to apply them in designing, developing, testing and servicing products, processes and systems. Accreditation Board for Engineering & Technology (ABET) criteria for engineering and technology education require students to learn and apply standards in their class projects. This paper is a follow-up of a 2006-2009 NSF initiative awarded to IEEE to help develop tutorials and case study modules for students and encourage standards education at college campuses. It presents the findings of a faculty/institution survey conducted through various U.S.-based listservs representing the major engineering and technology disciplines. The intent of the survey was to the gauge the status of use of standards and regulations in engineering and technology coursework and to identify benchmark practices. In light of survey findings, recommendations are made to standards development organizations, industry, and academia to help enhance the use of standards in engineering and technology curricula.

Keywords: standards, regulations, ABET, IEEE, engineering, technology curricula

Procedia PDF Downloads 288
3460 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time

Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani

Abstract:

This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.

Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management

Procedia PDF Downloads 84
3459 Development of Portable Hybrid Renewable Energy System for Sustainable Electricity Supply to Rural Communities in Nigeria

Authors: Abdulkarim Nasir, Alhassan T. Yahaya, Hauwa T. Abdulkarim, Abdussalam El-Suleiman, Yakubu K. Abubakar

Abstract:

The need for sustainable and reliable electricity supply in rural communities of Nigeria remains a pressing issue, given the country's vast energy deficit and the significant number of inhabitants lacking access to electricity. This research focuses on the development of a portable hybrid renewable energy system designed to provide a sustainable and efficient electricity supply to these underserved regions. The proposed system integrates multiple renewable energy sources, specifically solar and wind, to harness the abundant natural resources available in Nigeria. The design and development process involves the selection and optimization of components such as photovoltaic panels, wind turbines, energy storage units (batteries), and power management systems. These components are chosen based on their suitability for rural environments, cost-effectiveness, and ease of maintenance. The hybrid system is designed to be portable, allowing for easy transportation and deployment in remote locations with limited infrastructure. Key to the system's effectiveness is its hybrid nature, which ensures continuous power supply by compensating for the intermittent nature of individual renewable sources. Solar energy is harnessed during the day, while wind energy is captured whenever wind conditions are favourable, thus ensuring a more stable and reliable energy output. Energy storage units are critical in this setup, storing excess energy generated during peak production times and supplying power during periods of low renewable generation. These studies include assessing the solar irradiance, wind speed patterns, and energy consumption needs of rural communities. The simulation results inform the optimization of the system's design to maximize energy efficiency and reliability. This paper presents the development and evaluation of a 4 kW standalone hybrid system combining wind and solar power. The portable device measures approximately 8 feet 5 inches in width, 8 inches 4 inches in depth, and around 38 feet in height. It includes four solar panels with a capacity of 120 watts each, a 1.5 kW wind turbine, a solar charge controller, remote power storage, batteries, and battery control mechanisms. Designed to operate independently of the grid, this hybrid device offers versatility for use in highways and various other applications. It also presents a summary and characterization of the device, along with photovoltaic data collected in Nigeria during the month of April. The construction plan for the hybrid energy tower is outlined, which involves combining a vertical-axis wind turbine with solar panels to harness both wind and solar energy. Positioned between the roadway divider and automobiles, the tower takes advantage of the air velocity generated by passing vehicles. The solar panels are strategically mounted to deflect air toward the turbine while generating energy. Generators and gear systems attached to the turbine shaft enable power generation, offering a portable solution to energy challenges in Nigerian communities. The study also addresses the economic feasibility of the system, considering the initial investment costs, maintenance, and potential savings from reduced fossil fuel use. A comparative analysis with traditional energy supply methods highlights the long-term benefits and sustainability of the hybrid system.

Keywords: renewable energy, solar panel, wind turbine, hybrid system, generator

Procedia PDF Downloads 41
3458 A Study to Examine the Use of Traditional Agricultural Practices to Fight the Effects of Climate Change

Authors: Rushva Parihar, Anushka Barua

Abstract:

The negative repercussions of a warming planet are already visible, with biodiversity loss, water scarcity, and extreme weather events becoming ever so frequent. The agriculture sector is perhaps the most impacted, and modern agriculture has failed to defend farmers from the effects of climate change. This, coupled with the added pressure of higher demands for food production caused due to population growth, has only compounded the impact. Traditional agricultural practices that are routed in indigenous knowledge have long safeguarded the delicate balance of the ecosystem through sustainable production techniques. This paper uses secondary data to explore these traditional processes (like Beejamrita, Jeevamrita, sheep penning, earthen bunding, and others) from around the world that have been developed over centuries and focuses on how they can be used to tackle contemporary issues arising from climate change (such as nutrient and water loss, soil degradation, increased incidences of pests). Finally, the resulting framework has been applied to the context of Indian agriculture as a means to combat climate change and improve food security, all while encouraging documentation and transfer of local knowledge as a shared resource among farmers.

Keywords: sustainable food systems, traditional agricultural practices, climate smart agriculture, climate change, indigenous knowledge

Procedia PDF Downloads 127
3457 Scientific Insight Review of Corrosion Methods and Corrosion Control of Pre-Stressed Concrete Cylinder Pipes

Authors: Saad A. Bakheet, Ashraf A. Younees, Abdalsamia M. Falah

Abstract:

The main purpose of this study is to the occurrence of several failures in four-meter diameter pre-restressed concrete cylinder pipes, which transport a huge quantity of water from the Libyan Sahara Desert to the populated coastal area in the north. This study will help to address the problems related to corrosion of the pre-stressed concrete cylinder pipes and methods of controlling it. The methodologies used depended on reviewing the design and fabrication of pre-stressed concrete cylinder pipes and studying the cause of the corrosion, which resulted in the failure of the pre-stressed concrete cylinder pipe Man-Made River project in Libya. The chloride-induced corrosion penetrating through the mortar coat was the main reason for corrosion. The beginning of the occurrence of corrosion, its causes, and the mechanisms of its development in pre-stressed concrete pipes since 1937 have been reviewed and are continuing until now. Manufacturing technology control corrosion and all associated problems and technology to control it have been demonstrated, including variables during manufacture, the use of a modified coating, and cathodic protection systems. It has been revised and is still based on international standards. The development of these standards and the change in some of their technical contents reflect the world's interest in the problems of corrosion and the cost of maintenance and replacement.

Keywords: PCCP corrosion, international standard, coating system, failure assessment

Procedia PDF Downloads 75
3456 Advances in Artificial intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance

Procedia PDF Downloads 478
3455 Precise Identification of Clustered Regularly Interspaced Short Palindromic Repeats-Induced Mutations via Hidden Markov Model-Based Sequence Alignment

Authors: Jingyuan Hu, Zhandong Liu

Abstract:

CRISPR genome editing technology has transformed molecular biology by accurately targeting and altering an organism’s DNA. Despite the state-of-art precision of CRISPR genome editing, the imprecise mutation outcome and off-target effects present considerable risk, potentially leading to unintended genetic changes. Targeted deep sequencing, combined with bioinformatics sequence alignment, can detect such unwanted mutations. Nevertheless, the classical method, Needleman-Wunsch (NW) algorithm may produce false alignment outcomes, resulting in inaccurate mutation identification. The key to precisely identifying CRISPR-induced mutations lies in determining optimal parameters for the sequence alignment algorithm. Hidden Markov models (HMM) are ideally suited for this task, offering flexibility across CRISPR systems by leveraging forward-backward algorithms for parameter estimation. In this study, we introduce CRISPR-HMM, a statistical software to precisely call CRISPR-induced mutations. We demonstrate that the software significantly improves precision in identifying CRISPR-induced mutations compared to NW-based alignment, thereby enhancing the overall understanding of the CRISPR gene-editing process.

Keywords: CRISPR, HMM, sequence alignment, gene editing

Procedia PDF Downloads 52