Search results for: traditional knowledge resources classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17523

Search results for: traditional knowledge resources classification

16803 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 134
16802 Relationship between Creative Market Actor and Traditional Market Vendor toward a Sustainable Market Model in Jakarta, Indonesia

Authors: Galuh Pramesti

Abstract:

In Indonesia, the rise of the middle class and consumer purchasing power has created a trend of shifting the traditional into a modern retail market. Development of the creative economy as an impact of the global economy has invaded the traditional market, due to low rents and minimum innovation, raising the issue of sustainability and urban resilience for survival of the traditional market. The study aims to understand the current market conditions by examining the challenges, resiliency, and identify the relationship between the traditional market and creative market. Using a single-case study approach as the research methodology, Santa Market has been chosen as the case study. It is a pilot project of collaboration between a traditional market and creative economy in Jakarta, Indonesia. The research was conducted as a qualitative study through in-depth interviews with the market vendors and the market management, besides a desk-based study of the leasing data and spatial analysis. The findings indicate traffic fluctuation as the main challenge. It is related to the tenant’s presence, rental fluctuation, gentrification, infrastructure, and market competition. Thus, the findings on resilience show a different response for creative and traditional markets. The traditional market’s response remained stable with minimum innovation, whereas the creative market relies on technological development. Regarding the relationship, supply and demand have become the main relationship occurring in Santa Market. It is then developed into the context of society and regulation. The conclusion provides recommendations for more solid regulation to protect the market tenants from stakeholder interests that can disrupt market viability, and a critical discussion on the concept of collaboration between traditional and creative markets. There is also a suggestion for further study on relation with the surroundings, to create a holistic study on how the collaboration can work well in the traditional market.

Keywords: creative economy, market sustainability, traditional market, urban resilience

Procedia PDF Downloads 195
16801 MSIpred: A Python 2 Package for the Classification of Tumor Microsatellite Instability from Tumor Mutation Annotation Data Using a Support Vector Machine

Authors: Chen Wang, Chun Liang

Abstract:

Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite (MS) length due to a deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types and its status can be considered as an important indicator for tumor prognostic. Conventional clinical diagnosis of MSI examines PCR products of a panel of MS markers using electrophoresis (MSI-PCR) which is laborious, time consuming, and less reliable. MSIpred, a python 2 package for automatic classification of MSI was released by this study. It computes important somatic mutation features from files in mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, subsequently using these to predict tumor MSI status with a support vector machine (SVM) classifier trained by MAF files of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent 358-tumor test set achieved overall accuracy of over 98% and area under receiver operating characteristic (ROC) curve of 0.967. These results indicated that MSIpred is a robust pan-cancer MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.

Keywords: microsatellite instability, pan-cancer classification, somatic mutation, support vector machine

Procedia PDF Downloads 173
16800 The Effect of Feature Selection on Pattern Classification

Authors: Chih-Fong Tsai, Ya-Han Hu

Abstract:

The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.

Keywords: data mining, feature selection, pattern classification, dimensionality reduction

Procedia PDF Downloads 669
16799 Approaches To Counseling As Done By Traditional Cultural Healers In North America

Authors: Lewis Mehl-Madrona, Barbara Mainguy

Abstract:

We describe the type of counseling done by traditional cultural healers in North America. We follow an autoethnographic course development through the first author’s integration of mainstream training and Native-American heritage and study with traditional medicine people. We assemble traditional healing elders from North America and discuss with them their practices and their philosophies of healing. We draw parallels for their approaches in some European-based philosophies and religion, including the work of Heidegger, Levin, Fox, Kierkegaard, and others. An example of the treatment process with a depressed client is provided and similarities and differences with conventional psychotherapies are described.

Keywords: indigenous approaches to counseling, indigenous bodywork, indigenous healing, North American indigenous people

Procedia PDF Downloads 273
16798 The Role of the University of Zululand in Documenting and Disseminating Indigenous Knowledge, in KwaZulu-Natal, South Africa

Authors: Smiso Buthelezi, Petros Dlamini, Dennis Ocholla

Abstract:

The study assesses the University of Zululand's practices for documenting, sharing, and accessing indigenous knowledge. Two research objectives guided it: to determine how indigenous knowledge (IK) is developed at the University of Zululand and how indigenous knowledge (IK) is documented at the University of Zululand. The study adopted both interpretive and positivist research paradigms. Ultimately, qualitative and quantitative research methods were used. The qualitative research approach collected data from academic and non-academic staff members. Interviews were conducted with 18 academic staff members and 5 with support staff members. The quantitative research approach was used to collect data from indigenous knowledge (IK) theses and dissertations from the University of Zululand Institutional Repository between 2009-2019. The study results revealed that many departments across the University of Zululand were involved in creating indigenous knowledge (IK)-related content. The department of African Languages was noted to be more involved in creating IK-related content. Moreover, the documentation of the content related to indigenous knowledge (IK) at the University of Zululand is done frequently but is not readily known. It was found that the creation and documentation of indigenous knowledge by different departments faced several challenges. The common challenges are a lack of interest among indigenous knowledge (IK) owners in sharing their knowledge, the local language as a barrier, and a shortage of proper tools for recording and capturing indigenous knowledge (IK). One of the study recommendations is the need for an indigenous knowledge systems (IKS) policy to be in place at the University of Zululand.

Keywords: knowledge creation, SECI model, information and communication technology., indigenous knowledge

Procedia PDF Downloads 113
16797 Towards a Resources Provisioning for Dynamic Workflows in the Cloud

Authors: Fairouz Fakhfakh, Hatem Hadj Kacem, Ahmed Hadj Kacem

Abstract:

Cloud computing offers a new model of service provisioning for workflow applications, thanks to its elasticity and its paying model. However, it presents various challenges that need to be addressed in order to be efficiently utilized. The resources provisioning problem for workflow applications has been widely studied. Nevertheless, the existing works did not consider the change in workflow instances while they are being executed. This functionality has become a major requirement to deal with unusual situations and evolution. This paper presents a first step towards the resources provisioning for a dynamic workflow. In fact, we propose a provisioning algorithm which minimizes the overall workflow execution cost, while meeting a deadline constraint. Then, we extend it to support the dynamic adding of tasks. Experimental results show that our proposed heuristic demonstrates a significant reduction in resources cost by using a consolidation process.

Keywords: cloud computing, resources provisioning, dynamic workflow, workflow applications

Procedia PDF Downloads 295
16796 Geographical Information System for Sustainable Management of Water Resources

Authors: Vakhtang Geladze, Nana Bolashvili, Nino Machavariani, Tamazi Karalashvili, Nino Chikhradze, Davit Kartvelishvili

Abstract:

Fresh water deficit is one of the most important global problems today. In the countries with scarce water resources, they often become a reason of armed conflicts. The peaceful settlement of relations connected with management and water consumption issues within and beyond the frontiers of the country is an important guarantee of the region stability. The said problem is urgent in Georgia as well because of its water objects are located at the borders and the transit run-off that is 12% of the total one. Fresh water resources are the major natural resources of Georgia. Despite of this, water supply of population at its Eastern part is an acute issue. Southeastern part of the country has been selected to carry out the research. This region is notable for deficiency of water resources in the country. The region tends to desertification which aggravates fresh water problem even more and presumably may lead to migration of local population from the area. The purpose of study was creation geographical information system (GIS) of water resources. GIS contains almost all layers of different content (water resources, springs, channels, hydrological stations, population water supply, etc.). The results of work provide an opportunity to identify the resource potential of the mentioned region, control and manage it, carry out monitoring and plan regional economy.

Keywords: desertification, GIS, irrigation, water resources

Procedia PDF Downloads 693
16795 Proposal for a Monster Village in Namsan Mountain, Seoul: Significance from a Phenomenological Perspective

Authors: Hyuk-Jin Lee

Abstract:

Korea is a country with thousands of years of history, like its neighbors China and Japan. However, compared to China, which is famous for its ancient fantasy novel "Journey to the West", and Japan, which is famous for its monsters, its “monster culture” is not actively used for tourism. The reason is that the culture closest to the present, from the 17th to 20th centuries, was the Joseon Dynasty, when Neo-Confucianism, which suppressed a monster culture, was the strongest. This trend became stronger after Neo-Confucianism became dogmatic in the mid-17th century. However, Korea, which has a history of Taoism for thousands of years, clearly has many literatures on monsters that can be used as tourism resources. The problem is that these data are buried in texts and are unfamiliar even to Koreans. This study examines the possibility of developing them into attractive tourism resources based on the literary records of the so-called 'monsters densely located in Namsan Mountain, located in the center of Seoul' buried in texts from the 16th to early 17th centuries. In particular, we introduce the surprising consistency in the description of the area north of Namsan Mountain in terms of 'feng shui geography', an oriental philosophy, in a contemporary Korean newspaper. Finally, based on the theoretical foundation through the phenomenological classification table of cultural heritage, we examine phenomenologically how important this ‘visualization of imaginary or text-based entities’ is to changes in the perception of specific cultural resources in a society. In addition, we will deeply analyze related cases, including Japan's ninja culture.

Keywords: monster culture, Namsan mountain, neo-confucianism, phenomenology, tourism

Procedia PDF Downloads 32
16794 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System

Authors: Kaoutar Ben Azzou, Hanaa Talei

Abstract:

Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.

Keywords: automated recruitment, candidate screening, machine learning, human resources management

Procedia PDF Downloads 56
16793 Students’ Experiential Knowledge Production in the Teaching-Learning Process of Universities

Authors: Didiosky Benítez-Erice, Frederik Questier, Dalgys Pérez-Luján

Abstract:

This paper aims to present two models around the production of students’ experiential knowledge in the teaching-learning process of higher education: the teacher-centered production model and the student-centered production model. From a range of knowledge management and experiential learning theories, the paper elaborates into the nature of students’ experiential knowledge and proposes further adjustments of existing second-generation knowledge management theories taking into account the particularities of higher education. Despite its theoretical nature the paper can be relevant for future studies that stress student-driven improvement and innovation at higher education institutions.

Keywords: experiential knowledge, higher education, knowledge management, teaching-learning process

Procedia PDF Downloads 446
16792 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network

Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui

Abstract:

Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.

Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN

Procedia PDF Downloads 131
16791 The Role of Piaget's Theory in Conjecture via Analogical Reasoning

Authors: Supratman Ahman Maedi

Abstract:

The construction of knowledge is the goal of learning. The purpose of this research is to know how the role of Piaget theory in allegation via analogy reasoning. This study uses Think out loads when troubleshooting. To explore conjecturing via analogical reasoning is given the question of open analogy. The result: conjecture via analogical reasoning has been done by students in the construction of knowledge, in conjecture there are differences in thinking flow depending on the basic knowledge of the students, in the construction of knowledge occurs assimilation and accommodation problems, strategies and relationships.

Keywords: analogical reasoning, conjecturing, knowledge construction, Piaget's theory

Procedia PDF Downloads 324
16790 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation

Authors: Tokihiko Akita, Seiichi Mita

Abstract:

A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.

Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation

Procedia PDF Downloads 93
16789 Information Tree: Establishment of Lifestyle-Based IT Visual Model

Authors: Chiung-Hui Chen

Abstract:

Traditional service channel is losing its edge due to emerging service technology. To establish interaction with the clients, the service industry is using effective mechanism to give clients direct access to services with emerging technologies. Thus, as service science receives attention, special and unique consumption pattern evolves; henceforth, leading to new market mechanism and influencing attitudes toward life and consumption patterns. The market demand for customized services is thus valued due to the emphasis of personal value, and is gradually changing the demand and supply relationship in the traditional industry. In respect of interior design service, in the process of traditional interior design, a designer converts to a concrete form the concept generated from the ideas and needs dictated by a user (client), by using his/her professional knowledge and drawing tool. The final product is generated through iterations of communication and modification, which is a very time-consuming process. Although this process has been accelerated with the help of computer graphics software today, repeated discussions and confirmations with users are still required to complete the task. In consideration of what is addressed above a space user’s life model is analyzed with visualization technique to create an interaction system modeled after interior design knowledge. The space user document intuitively personal life experience in a model requirement chart, allowing a researcher to analyze interrelation between analysis documents, identify the logic and the substance of data conversion. The repeated data which is documented are then transformed into design information for reuse and sharing. A professional interior designer may sort out the correlation among user’s preference, life pattern and design specification, thus deciding the critical design elements in the process of service design.

Keywords: information design, life model-based, aesthetic computing, communication

Procedia PDF Downloads 298
16788 Attribute Index and Classification Method of Earthquake Damage Photographs of Engineering Structure

Authors: Ming Lu, Xiaojun Li, Bodi Lu, Juehui Xing

Abstract:

Earthquake damage phenomenon of each large earthquake gives comprehensive and profound real test to the dynamic performance and failure mechanism of different engineering structures. Cognitive engineering structure characteristics through seismic damage phenomenon are often far superior to expensive shaking table experiments. After the earthquake, people will record a variety of different types of engineering damage photos. However, a large number of earthquake damage photographs lack sufficient information and reduce their using value. To improve the research value and the use efficiency of engineering seismic damage photographs, this paper objects to explore and show seismic damage background information, which includes the earthquake magnitude, earthquake intensity, and the damaged structure characteristics. From the research requirement in earthquake engineering field, the authors use the 2008 China Wenchuan M8.0 earthquake photographs, and provide four kinds of attribute indexes and classification, which are seismic information, structure types, earthquake damage parts and disaster causation factors. The final object is to set up an engineering structural seismic damage database based on these four attribute indicators and classification, and eventually build a website providing seismic damage photographs.

Keywords: attribute index, classification method, earthquake damage picture, engineering structure

Procedia PDF Downloads 765
16787 A Review Paper on Data Security in Precision Agriculture Using Internet of Things

Authors: Tonderai Muchenje, Xolani Mkhwanazi

Abstract:

Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions.

Keywords: precision agriculture, security, IoT, EIDE

Procedia PDF Downloads 90
16786 Classification of Cosmological Wormhole Solutions in the Framework of General Relativity

Authors: Usamah Al-Ali

Abstract:

We explore the effect of expanding space on the exoticity of the matter supporting a traversable Lorentzian wormhole of zero radial tide whose line element is given by ds2 = dt^2 − a^2(t)[ dr^2/(1 − kr2 −b(r)/r)+ r2dΩ^2 in the context of General Relativity. This task is achieved by deriving the Einstein field equations for anisotropic matter field corresponding to the considered cosmological wormhole metric and performing a classification of their solutions on the basis of a variable equations of state (EoS) of the form p = ω(r)ρ. Explicit forms of the shape function b(r) and the scale factor a(t) arising in the classification are utilized to construct the corresponding energy-momentum tensor where the energy conditions for each case is investigated. While the violation of energy conditions is inevitable in case of static wormholes, the classification we performed leads to interesting solutions in which this violation is either reduced or eliminated.

Keywords: general relativity, Einstein field equations, energy conditions, cosmological wormhole

Procedia PDF Downloads 63
16785 Forms of Promoting and Disseminating Traditional Local Wisdom to Create Occupations among the Elderly in Nonmueng Community, Muang Sub-District, Baan Doong District, Udonthani Province

Authors: Pennapa Palapin

Abstract:

This research sought to study the traditional local wisdom and study the promotion and dissemination of traditional local wisdom in order to find the forms of promotion and dissemination of traditional local wisdom to create occupations among the elderly at Nonmueng Community, Muang Sub-District, Baan Dung District, UdonThani Province. The criterion used to select the research sample group was, being a person having a role involved in the promotion and dissemination of traditional local wisdom to create occupations among the elderly at Nonmueng Community, Muang Sub-District, Baan Dung District, UdonThani Province; being an experienced person whom the residents of Nonmueng Community find trustworthy; and having lived in Nonmueng Community for a long time so as to be able to see the development and change that occurs. A total of 16 people were selected. Data was gathered as a qualitative study, through semi-structured in-depth interviews. The collected data was then summarised and discussed according to the research objectives. Finally, the data was presented in a narrative format. Results found that the identifying traditional local wisdom of the community (which grew from the residents’ experience and beneficial usage in daily life, passed down from generation to generation) was the weaving of cloth and basketry. As for the manner of promotion and dissemination of traditional local wisdom, the skills were passed down through teaching by example to family members, relatives and others in the community. This was done by the elders or elderly members of the community. For the promotion and dissemination of traditional local wisdom to create occupations among the elderly, the traditional local wisdom should be supported in every way through participation of the community members. For example, establish a museum of traditional local wisdom for the collection of traditional local wisdom in various fields, both in the past and at present. This would be a source of pride for the community, in order to make traditional local wisdom widely known and to create income for the community’s elderly. Additional ways include exhibitions of products made by traditional local wisdom, finding both domestic and international markets, as well as building both domestic and international networks aiming to find opportunities to market products made by traditional local wisdom.

Keywords: traditional local wisdom, occupation, elderly, community

Procedia PDF Downloads 301
16784 Review of Studies on Agility in Knowledge Management

Authors: Ferdi Sönmez, Başak Buluz

Abstract:

Agility in Knowledge Management (AKM) tries to capture agility requirements and their respective answers within the framework of knowledge and learning for organizations. Since it is rather a new construct, it is difficult to claim that it has been sufficiently discussed and analyzed in practical and theoretical realms. Like the term ‘agile learning’, it is also commonly addressed in the software development and information technology fields and across the related areas where those technologies can be applied. The organizational perspective towards AKM, seems to need some more time to become scholarly mature. Nevertheless, in the literature one can come across some implicit usages of this term occasionally. This research is aimed to explore the conceptual background of agility in KM, re-conceptualize it and extend it to business applications with a special focus on e-business.

Keywords: knowledge management, agility requirements, agility, knowledge

Procedia PDF Downloads 264
16783 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision

Procedia PDF Downloads 126
16782 The Impact of Information and Communication Technology in Knowledge Fraternization

Authors: Muhammad Aliyu

Abstract:

Significant improvement in Information and Communication Technology (ICT) and the enforced global competition are revolutionizing the way knowledge is managed and the way organizations compete. The emergence of new organizations calls for a new way to fraternize knowledge, which is known as 'knowledge fraternization.' In this modern economy, it is the knowledge if properly managed that can harness the organization's competitive advantage. This competitive advantage is realized through the full utilization of information and data coupled with the harnessing of people’s skills and ideas as well as their commitment and motivations, which can be accomplished through socializing the knowledge management processes. A fraternize network for knowledge management is a web-based system designed using PHP that is Dreamweaver web development tool, with the help of CS4 Adobe Dreamweaver as the PHP code Editor that supports the use of Cascadian Style Sheet (CSS), MySQL with Xamp, Php My Admin (Version 3.4.7) localhost server via TCP/IP for containing the databases of the system to support this in a distributed way, spreading the workload over the whole organization. This paper reviews the technologies and the technology tools to be used in the development of social networks in an organization.

Keywords: Information and Communication Technology (ICT), knowledge, fraternization, social network

Procedia PDF Downloads 394
16781 Knowledge Management Strategies as a Tool to Change the Organizational Culture

Authors: Doaa Abbas Zaher

Abstract:

For the past two decades demand for knowledge has been increasing. Management of society’s knowledge has far reaching effects to economic growth through increased capacity to complete viable activities. Organizations use information technology to effect organizational change. This is a challenge for the less developed nations whose capacity to integrate knowledge in core functions is limited. This creates organizational problems as there is global competition amongst organizations. Cross-cultural perceptions influence difference knowledge Management. This study provides a cross-cultural analysis on the influence in knowledge culture in Japan and Saudi Arabia to effect change in organizations. Since different countries adopt different knowledge management strategies, this dictates the state of organizational development through enriched organizational culture. The research uses a mixed approach design to collect data from primary and secondary sources. Primary source will use the questionnaires while secondary sources uses case analysis from books, articles, reports, and journals. The study will take a period of three years to come up with a complete paper.

Keywords: knowledge management, organizational culture, information, society knowledge

Procedia PDF Downloads 358
16780 Unravelling the Impact of Job Resources: Alleviating Job-Related Anxiety to Forster Employee Creativity Within the Oil and Gas Industry

Authors: Nana Kojo Ayimadu Baafi, Kwesi Amponsah-Tawiah

Abstract:

The study investigated the relationship between job-related anxiety and employee creativity. The study further explored the role of job resources in moderating the relationship between job-related anxiety and employee creativity within the oil and gas industries. The study utilized a cross-sectional survey design. A non-probability sampling technique, specifically convenience sampling, was used to sample 1200 participants from multiple companies within the oil and gas industries. The collected data were analyzed using Regression analysis and PROCESS macro for the moderation analysis. The study empirically demonstrated a negative significant relationship between job-related anxiety and employee creativity. It also exhibited that job resources moderated the relationship between job-related anxiety and creativity. This study addresses gaps in previous studies by highlighting the significance of job resources in how job-related anxiety affects employee creativity.

Keywords: employee creativity, job-related anxiety, job resource, human resources

Procedia PDF Downloads 46
16779 A Case from China on the Situation of Knowledge Management in Government

Authors: Qiaoyun Yang

Abstract:

Organizational scholars have paid enormous attention on how local governments manage their knowledge during the past two decades. Government knowledge management (KM) research recognizes that the management of knowledge flows and networks is critical to reforms on government service efficiency and the effect of administration. When dealing with complex affairs, all the limitations resulting from a lack of KM concept, processes and technologies among all the involved organizations begin to be exposed and further compound the processing difficulty of the affair. As a result, the challenges for individual or group knowledge sharing, knowledge digging and organizations’ collaboration in government's activities are diverse and immense. This analysis presents recent situation of government KM in China drawing from a total of more than 300 questionnaires and highlights important challenges that remain. The causes of the lapses in KM processes within and across the government agencies are discussed.

Keywords: KM processes, KM technologies, government, KM situation

Procedia PDF Downloads 362
16778 A Case Study on How Biomedical Engineering (BME) Outreach Programmes Serve as An Alternative Educational Approach to Form and Develop the BME Community in Hong Kong

Authors: Sum Lau, Wing Chung Cleo Lau, Wing Yan Chu, Long Ching Ip, Wan Yin Lo, Jo Long Sam Yau, Ka Ho Hui, Sze Yi Mak

Abstract:

Biomedical engineering (BME) is an interdisciplinary subject where knowledge about biology and medicine is applied to novel applications, solving clinical problems. This subject is crucial for cities such as Hong Kong, where the burden on the medical system is rising due to reasons like the ageing population. Hong Kong, who is actively boosting technological advancements in recent years, sets BME, or biotechnology, as a major category, as reflected in the 2018-19 Budget, where biotechnology was one of the four pillars for development. Over the years, while resources in terms of money and space have been provided, there has been a lack of talents expressed by both the academia and industry. While exogenous factors, such as COVID, may have hindered talents from outside Hong Kong to come, endogenous factors should also be considered. In particular, since there are already a few local universities offering BME programmes, their curriculum or style of education requires to be reviewed to intensify the network of the BME community and support post-academic career development. It was observed that while undergraduate (UG) studies focus on knowledge teaching with some technical training and postgraduate (PG) programmes concentrate on upstream research, the programmes are generally confined to the academic sector and lack connections to the industry. In light of that, a “Biomedical Innovation and Outreach Programme 2022” (“B.I.O.2022”) was held to connect students and professors from academia with clinicians and engineers from the industry, serving as a comparative approach to conventional education methods (UG and PG programmes from tertiary institutions). Over 100 participants, including undergraduates, postgraduates, secondary school students, researchers, engineers, and clinicians, took part in various outreach events such as conference and site visits, all held from June to July 2022. As a case study, this programme aimed to tackle the aforementioned problems with the theme of “4Cs” (connection, communication, collaboration, and commercialisation). The effectiveness of the programme is investigated by its ability to serve as an adult and continuing education and the effectiveness of causing social change to tackle current societal challenges, with the focus on tackling the lack of talents engaging in biomedical engineering. In this study, B.I.O.2022 is found to be able to complement the traditional educational methods, particularly in terms of knowledge exchange between the academia and the industry. With enhanced communications between participants from different career stages, there were students who followed up to visit or even work with the professionals after the programme. Furthermore, connections between the academia and industry could foster the generation of new knowledge, which ultimately pointed to commercialisation, adding value to the BME industry while filling the gap in terms of human resources. With the continuation of events like B.I.O.2022, it provides a promising starting point for the development and relationship strengthening of a BME community in Hong Kong, and shows potential as an alternative way of adult education or learning with societal benefits.

Keywords: biomedical engineering, adult education for social change, comparative methods and principles, lifelong learning, faced problems, promises, challenges and pitfalls

Procedia PDF Downloads 116
16777 Application of Argumentation for Improving the Classification Accuracy in Inductive Concept Formation

Authors: Vadim Vagin, Marina Fomina, Oleg Morosin

Abstract:

This paper contains the description of argumentation approach for the problem of inductive concept formation. It is proposed to use argumentation, based on defeasible reasoning with justification degrees, to improve the quality of classification models, obtained by generalization algorithms. The experiment’s results on both clear and noisy data are also presented.

Keywords: argumentation, justification degrees, inductive concept formation, noise, generalization

Procedia PDF Downloads 442
16776 Topics of Blockchain Technology to Teach at Community College

Authors: Penn P. Wu, Jeannie Jo

Abstract:

Blockchain technology has rapidly gained popularity in industry. This paper attempts to assist academia to answer four questions. First, should community colleges begin offering education to nurture blockchain-literate students for the job market? Second, what are the appropriate topical areas to cover? Third, should it be an individual course? And forth, should it be a technical or management course? This paper starts with identifying the knowledge domains of blockchain technology and the topical areas each domain has, and continues with placing them in appropriate academic territories (Computer Sciences vs. Business) and subjects (programming, management, marketing, and laws), and then develops an evaluation model to determine the appropriate topical area for community colleges to teach. The evaluation is based on seven factors: maturity of technology, impacts on management, real-world applications, subject classification, knowledge prerequisites, textbook readiness, and recommended pedagogies. The evaluation results point to an interesting direction that offering an introductory course is an ideal option to guide students through the learning journey of what blockchain is and how it applies to business. Such an introductory course does not need to engage students in the discussions of mathematics and sciences that make blockchain technologies possible. While it is inevitable to brief technical topics to help students build a solid knowledge foundation of blockchain technologies, community colleges should avoid offering students a course centered on the discussion of developing blockchain applications.

Keywords: blockchain, pedagogies, blockchain technologies, blockchain course, blockchain pedagogies

Procedia PDF Downloads 133
16775 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization

Authors: Wenqi Liu, Reginald Bailey

Abstract:

This study proposes a comprehensive and effective approach to business-to-business (B2B) sales forecasting by integrating advanced machine learning models with a rule-based decision-making framework. The methodology addresses the critical challenge of optimizing sales pipeline performance and improving conversion rates through predictive analytics and actionable insights. The first component involves developing a classification model to predict the likelihood of conversion, aiming to outperform traditional methods such as logistic regression in terms of accuracy, precision, recall, and F1 score. Feature importance analysis highlights key predictive factors, such as client revenue size and sales velocity, providing valuable insights into conversion dynamics. The second component focuses on forecasting sales value using a regression model, designed to achieve superior performance compared to linear regression by minimizing mean absolute error (MAE), mean squared error (MSE), and maximizing R-squared metrics. The regression analysis identifies primary drivers of sales value, further informing data-driven strategies. To bridge the gap between predictive modeling and actionable outcomes, a rule-based decision framework is introduced. This model categorizes leads into high, medium, and low priorities based on thresholds for conversion probability and predicted sales value. By combining classification and regression outputs, this framework enables sales teams to allocate resources effectively, focus on high-value opportunities, and streamline lead management processes. The integrated approach significantly enhances lead prioritization, increases conversion rates, and drives revenue generation, offering a robust solution to the declining pipeline conversion rates faced by many B2B organizations. Our findings demonstrate the practical benefits of blending machine learning with decision-making frameworks, providing a scalable, data-driven solution for strategic sales optimization. This study underscores the potential of predictive analytics to transform B2B sales operations, enabling more informed decision-making and improved organizational outcomes in competitive markets.

Keywords: machine learning, XGBoost, regression, decision making framework, system engineering

Procedia PDF Downloads 17
16774 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems

Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu

Abstract:

In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.

Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP

Procedia PDF Downloads 40