Search results for: statistical machine learning
11318 BART Matching Method: Using Bayesian Additive Regression Tree for Data Matching
Authors: Gianna Zou
Abstract:
Propensity score matching (PSM), introduced by Paul R. Rosenbaum and Donald Rubin in 1983, is a popular statistical matching technique which tries to estimate the treatment effects by taking into account covariates that could impact the efficacy of study medication in clinical trials. PSM can be used to reduce the bias due to confounding variables. However, PSM assumes that the response values are normally distributed. In some cases, this assumption may not be held. In this paper, a machine learning method - Bayesian Additive Regression Tree (BART), is used as a more robust method of matching. BART can work well when models are misspecified since it can be used to model heterogeneous treatment effects. Moreover, it has the capability to handle non-linear main effects and multiway interactions. In this research, a BART Matching Method (BMM) is proposed to provide a more reliable matching method over PSM. By comparing the analysis results from PSM and BMM, BMM can perform well and has better prediction capability when the response values are not normally distributed.Keywords: BART, Bayesian, matching, regression
Procedia PDF Downloads 14711317 Modelling the Behavior of Commercial and Test Textiles against Laundering Process by Statistical Assessment of Their Performance
Authors: M. H. Arslan, U. K. Sahin, H. Acikgoz-Tufan, I. Gocek, I. Erdem
Abstract:
Various exterior factors have perpetual effects on textile materials during wear, use and laundering in everyday life. In accordance with their frequency of use, textile materials are required to be laundered at certain intervals. The medium in which the laundering process takes place have inevitable detrimental physical and chemical effects on textile materials caused by the unique parameters of the process inherently existing. Connatural structures of various textile materials result in many different physical, chemical and mechanical characteristics. Because of their specific structures, these materials have different behaviors against several exterior factors. By modeling the behavior of commercial and test textiles as group-wise against laundering process, it is possible to disclose the relation in between these two groups of materials, which will lead to better understanding of their behaviors in terms of similarities and differences against the washing parameters of the laundering. Thus, the goal of the current research is to examine the behavior of two groups of textile materials as commercial textiles and as test textiles towards the main washing machine parameters during laundering process such as temperature, load quantity, mechanical action and level of water amount by concentrating on shrinkage, pilling, sewing defects, collar abrasion, the other defects other than sewing, whitening and overall properties of textiles. In this study, cotton fabrics were preferred as commercial textiles due to the fact that garments made of cotton are the most demanded products in the market by the textile consumers in daily life. Full factorial experimental set-up was used to design the experimental procedure. All profiles always including all of the commercial and the test textiles were laundered for 20 cycles by commercial home laundering machine to investigate the effects of the chosen parameters. For the laundering process, a modified version of ‘‘IEC 60456 Test Method’’ was utilized. The amount of detergent was altered as 0.5% gram per liter depending on varying load quantity levels. Datacolor 650®, EMPA Photographic Standards for Pilling Test and visual examination were utilized to test and characterize the textiles. Furthermore, in the current study the relation in between commercial and test textiles in terms of their performance was deeply investigated by the help of statistical analysis performed by MINITAB® package program modeling their behavior against the parameters of the laundering process. In the experimental work, the behaviors of both groups of textiles towards washing machine parameters were visually and quantitatively assessed in dry state.Keywords: behavior against washing machine parameters, performance evaluation of textiles, statistical analysis, commercial and test textiles
Procedia PDF Downloads 35911316 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model
Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson
Abstract:
The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania
Procedia PDF Downloads 10511315 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach
Authors: Abe Degale D., Cheng Jian
Abstract:
When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.Keywords: violence detection, faster RCNN, transfer learning and, surveillance video
Procedia PDF Downloads 10611314 Failure Analysis and Fatigue Life Estimation of a Shaft of a Rotary Draw Bending Machine
Authors: B. Engel, Sara Salman Hassan Al-Maeeni
Abstract:
Human consumption of the Earth's resources increases the need for a sustainable development as an important ecological, social, and economic theme. Re-engineering of machine tools, in terms of design and failure analysis, is defined as steps performed on an obsolete machine to return it to a new machine with the warranty that matches the customer requirement. To understand the future fatigue behavior of the used machine components, it is important to investigate the possible causes of machine parts failure through design, surface, and material inspections. In this study, the failure modes of the shaft of the rotary draw bending machine are inspected. Furthermore, stress and deflection analysis of the shaft subjected to combined torsion and bending loads are carried out by an analytical method and compared with a finite element analysis method. The theoretical fatigue strength, correction factors, and fatigue life sustained by the shaft before damaged are estimated by creating a stress-cycle (S-N) diagram. In conclusion, it is seen that the shaft can work in the second life, but it needs some surface treatments to increase the reliability and fatigue life.Keywords: failure analysis, fatigue life, FEM analysis, shaft, stress analysis
Procedia PDF Downloads 30111313 Solving Mean Field Problems: A Survey of Numerical Methods and Applications
Authors: Amal Machtalay
Abstract:
In this survey, we aim to review the rapidly growing literature on numerical methods to solve different forms of mean field problems, namely mean field games (MFG), mean field controls (MFC), potential MFGs, and master equations, as well as their corresponding recent applications. Here, we distinguish two families of numerical methods: iterative methods based on mesh generation and those called mesh-free, normally related to neural networking and learning frameworks.Keywords: mean-field games, numerical schemes, partial differential equations, complex systems, machine learning
Procedia PDF Downloads 11311312 An Online Mastery Learning Method Based on a Dynamic Formative Evaluation
Authors: Jeongim Kang, Moon Hee Kim, Seong Baeg Kim
Abstract:
This paper proposes a novel e-learning model that is based on a dynamic formative evaluation. On evaluating the existing format of e-learning, conditions regarding repetitive learning to achieve mastery, causes issues for learners to lose tension and become neglectful of learning. The dynamic formative evaluation proposed is able to supplement limitation of the existing approaches. Since a repetitive learning method does not provide a perfect feedback, this paper puts an emphasis on the dynamic formative evaluation that is able to maximize learning achievement. Through the dynamic formative evaluation, the instructor is able to refer to the evaluation result when making estimation about the learner. To show the flow chart of learning, based on the dynamic formative evaluation, the model proves its effectiveness and validity.Keywords: online learning, dynamic formative evaluation, mastery learning, repetitive learning method, learning achievement
Procedia PDF Downloads 51111311 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 8611310 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment
Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman
Abstract:
Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands
Procedia PDF Downloads 6711309 The Effect of Mobile Technology Use in Education: A Meta-Analysis Study
Authors: Şirin Küçük, Ayşe Kök, İsmail Şahin
Abstract:
Mobile devices are very popular and useful tools for assisting people in daily life. With the advancement of mobile technologies, the issue of mobile learning has been widely investigated in education. Many researches consider that it is important to integrate pedagogical and technical strengths of mobile technology into learning environments. For this reason, the purpose of this research is to examine the effect of mobile technology use in education with meta-analysis method. Meta-analysis is a statistical technique which combines the findings of independent studies in a specific subject. In this respect, the articles will be examined by searching the databases for researches which are conducted between 2005 and 2014. It is expected that the results of this research will contribute to future research related to mobile technology use in education.Keywords: mobile learning, meta-analysis, mobile technology, education
Procedia PDF Downloads 72111308 Alternator Fault Detection Using Wigner-Ville Distribution
Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi
Abstract:
This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution
Procedia PDF Downloads 37411307 Profiling Risky Code Using Machine Learning
Authors: Zunaira Zaman, David Bohannon
Abstract:
This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties
Procedia PDF Downloads 10611306 Synchronous Generator in Case Voltage Sags for Different Loads
Authors: Benalia Nadia, Bensiali Nadia, Zezouri Noura
Abstract:
This paper studies the effects of voltage sags, both symmetrical and unsymmetrical, on the three-phase Synchronous Machine (SM) when powering an isolate load or infinite bus bar. The vast majority of the electrical power generation systems in the world is consist of synchronous generators coupled to the electrical network though a transformer. Voltage sags on SM cause speed variations, current and torque peaks and hence may cause tripping and equipment damage. The consequences of voltage sags in the machine behavior depends on different factors such as its magnitude (or depth), duration , the parameters of the machine and also the size of load. In this study, we consider the machine feeds an infinite bus bar in the first and the isolate load using symmetric and asymmetric defaults to see the behavior of the machine in both case the simulation have been used on SIMULINK MATLAB.Keywords: power quality, voltage sag, synchronous generator, infinite system
Procedia PDF Downloads 67911305 Supply Chains Resilience within Machine-Made Rug Producers in Iran
Authors: Malihe Shahidan, Azin Madhi, Meisam Shahbaz
Abstract:
In recent decades, the role of supply chains in sustaining businesses and establishing their superiority in the market has been under focus. The realization of the goals and strategies of a business enterprise is largely dependent on the cooperation of the chain, including suppliers, distributors, retailers, etc. Supply chains can potentially be disrupted by both internal and external factors. In this paper, resilience strategies have been identified and analyzed in three levels: sourcing, producing, and distributing by considering economic depression as a current risk factor for the machine-made rugs industry. In this study, semi-structured interviews for data gathering and thematic analysis for data analysis are applied. Supply chain data has been gathered from seven rug factories before and after the economic depression through semi-structured interviews. The identified strategies were derived from literature review and validated by collecting data from a group of eighteen industry and university experts, and the results were analyzed using statistical tests. Finally, the outsourcing of new products and products in the new market, the development and completion of the product portfolio, the flexibility in the composition and volume of products, the expansion of the market to price-sensitive, direct sales, and disintermediation have been determined as strategies affecting supply chain resilience of machine-made rugs' industry during an economic depression.Keywords: distribution, economic depression, machine-made rug, outsourcing, production, sourcing, supply chain, supply chain resilience
Procedia PDF Downloads 16211304 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power
Authors: T. Mohammed Chikouche, K. Hartani
Abstract:
Based on the analysis of basic direct torque control, a parallel master slave for four in-wheel permanent magnet synchronous motors (PMSM) fed by two three phase inverters used in electric vehicle is proposed in this paper. A conventional system with multi-inverter and multi-machine comprises a three phase inverter for each machine to be controlled. Another approach consists in using only one three-phase inverter to supply several permanent magnet synchronous machines. A modified direct torque control (DTC) algorithm is used for the control of the bi-machine traction system. Simulation results show that the proposed control strategy is well adapted for the synchronism of this system and provide good speed tracking performance.Keywords: electric vehicle, multi-machine single-inverter system, multi-machine multi-inverter control, in-wheel motor, master-slave control
Procedia PDF Downloads 22111303 Using Learning Apps in the Classroom
Authors: Janet C. Read
Abstract:
UClan set collaboration with Lingokids to assess the Lingokids learning app's impact on learning outcomes in classrooms in the UK for children with ages ranging from 3 to 5 years. Data gathered during the controlled study with 69 children includes attitudinal data, engagement, and learning scores. Data shows that children enjoyment while learning was higher among those children using the game-based app compared to those children using other traditional methods. It’s worth pointing out that engagement when using the learning app was significantly higher than other traditional methods among older children. According to existing literature, there is a direct correlation between engagement, motivation, and learning. Therefore, this study provides relevant data points to conclude that Lingokids learning app serves its purpose of encouraging learning through playful and interactive content. That being said, we believe that learning outcomes should be assessed with a wider range of methods in further studies. Likewise, it would be beneficial to assess the level of usability and playability of the app in order to evaluate the learning app from other angles.Keywords: learning app, learning outcomes, rapid test activity, Smileyometer, early childhood education, innovative pedagogy
Procedia PDF Downloads 7111302 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System
Authors: J. K. Adedeji, M. O. Oyekanmi
Abstract:
This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.Keywords: biometric characters, facial recognition, neural network, OpenCV
Procedia PDF Downloads 25611301 Using the Semantic Web Technologies to Bring Adaptability in E-Learning Systems
Authors: Fatima Faiza Ahmed, Syed Farrukh Hussain
Abstract:
The last few decades have seen a large proportion of our population bending towards e-learning technologies, starting from learning tools used in primary and elementary schools to competency based e-learning systems specifically designed for applications like finance and marketing. The huge diversity in this crowd brings about a large number of challenges for the designers of these e-learning systems, one of which is the adaptability of such systems. This paper focuses on adaptability in the learning material in an e-learning course and how artificial intelligence and the semantic web can be used as an effective tool for this purpose. The study proved that the semantic web, still a hot topic in the area of computer science can prove to be a powerful tool in designing and implementing adaptable e-learning systems.Keywords: adaptable e-learning, HTMLParser, information extraction, semantic web
Procedia PDF Downloads 33911300 Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model
Authors: Shaira L. Kee, Michael Aaron G. Sy, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar AlDahoul
Abstract:
Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16.Keywords: deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma
Procedia PDF Downloads 8111299 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation
Authors: Rizwan Rizwan
Abstract:
This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats
Procedia PDF Downloads 3011298 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation
Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park
Abstract:
In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.Keywords: aerial image, image process, machine vision, open field smart farm, segmentation
Procedia PDF Downloads 8111297 Enabling Oral Communication and Accelerating Recovery: The Creation of a Novel Low-Cost Electroencephalography-Based Brain-Computer Interface for the Differently Abled
Authors: Rishabh Ambavanekar
Abstract:
Expressive Aphasia (EA) is an oral disability, common among stroke victims, in which the Broca’s area of the brain is damaged, interfering with verbal communication abilities. EA currently has no technological solutions and its only current viable solutions are inefficient or only available to the affluent. This prompts the need for an affordable, innovative solution to facilitate recovery and assist in speech generation. This project proposes a novel concept: using a wearable low-cost electroencephalography (EEG) device-based brain-computer interface (BCI) to translate a user’s inner dialogue into words. A low-cost EEG device was developed and found to be 10 to 100 times less expensive than any current EEG device on the market. As part of the BCI, a machine learning (ML) model was developed and trained using the EEG data. Two stages of testing were conducted to analyze the effectiveness of the device: a proof-of-concept and a final solution test. The proof-of-concept test demonstrated an average accuracy of above 90% and the final solution test demonstrated an average accuracy of above 75%. These two successful tests were used as a basis to demonstrate the viability of BCI research in developing lower-cost verbal communication devices. Additionally, the device proved to not only enable users to verbally communicate but has the potential to also assist in accelerated recovery from the disorder.Keywords: neurotechnology, brain-computer interface, neuroscience, human-machine interface, BCI, HMI, aphasia, verbal disability, stroke, low-cost, machine learning, ML, image recognition, EEG, signal analysis
Procedia PDF Downloads 11911296 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions
Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams
Abstract:
The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.Keywords: architecture, central pavilions, classicism, machine learning
Procedia PDF Downloads 14011295 Using Implicit Data to Improve E-Learning Systems
Authors: Slah Alsaleh
Abstract:
In the recent years and with popularity of internet and technology, e-learning became a major part of majority of education systems. One of the advantages the e-learning systems provide is the large amount of information available about the students' behavior while communicating with the e-learning system. Such information is very rich and it can be used to improve the capability and efficiency of e-learning systems. This paper discusses how e-learning can benefit from implicit data in different ways including; creating homogeneous groups of student, evaluating students' learning, creating behavior profiles for students and identifying the students through their behaviors.Keywords: e-learning, implicit data, user behavior, data mining
Procedia PDF Downloads 31011294 Technological Affordances: Guidelines for E-Learning Design
Authors: Clement Chimezie Aladi, Itamar Shabtai
Abstract:
A review of the literature in the last few years reveals that little attention has been paid to technological affordances in e-learning designs. However, affordances are key to engaging students and enabling teachers to actualize learning goals. E-learning systems (software and artifacts) need to be designed in such a way that the features facilitate perceptions of the affordances with minimal cognition. This study aimed to fill this gap in the literature and encourage further research in this area. It provides guidelines for facilitating the perception of affordances in e-learning design and advances Technology Affordance and Constraints Theory by incorporating the affordance-based design process, the principles of multimedia learning, e-learning design philosophy, and emotional and cognitive affordances.Keywords: e-learning, technology affrodances, affordance based design, e-learning design
Procedia PDF Downloads 6211293 Enhancement of Learning Style in Kolej Poly-Tech MARA (KPTM) via Mobile EEF Learning System (MEEFLS)
Authors: M. E. Marwan, A. R. Madar, N. Fuad
Abstract:
Mobile communication provides access to the outside world without borders everywhere and at any time. The learning method that related to mobile communication technology is known as mobile learning (M-learning). It is a method that communicates learning materials with mobile device technology. The purpose of this method is to increase the interest in learning among students and assist them in obtaining learning materials at Kolej Poly-Tech MARA (KPTM) in order to improve the student’s performance in their study and to encourage educators to diversify the teaching practices. This paper discusses the student’s awareness for enhancement of learning style using mobile technologies and their readiness to apply the elements of mobile learning in learning to improve performance and interest in learning among students. An application called Mobile EEF Learning System (MEEFLS) has been developed as a tool to be used as a pilot test in KPTM.Keywords: awareness, mobile learning, MEEFLS, teaching and learning, readiness
Procedia PDF Downloads 37911292 Polarity Classification of Social Media Comments in Turkish
Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras
Abstract:
People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews
Procedia PDF Downloads 14611291 DQN for Navigation in Gazebo Simulator
Authors: Xabier Olaz Moratinos
Abstract:
Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.Keywords: machine learning, DQN, gazebo, navigation
Procedia PDF Downloads 11311290 Analysis of Photic Zone’s Summer Period-Dissolved Oxygen and Temperature as an Early Warning System of Fish Mass Mortality in Sampaloc Lake in San Pablo, Laguna
Authors: Al Romano, Jeryl C. Hije, Mechaela Marie O. Tabiolo
Abstract:
The decline in water quality is a major factor in aquatic disease outbreaks and can lead to significant mortality among aquatic organisms. Understanding the relationship between dissolved oxygen (DO) and water temperature is crucial, as these variables directly impact the health, behavior, and survival of fish populations. This study investigated how DO levels, water temperature, and atmospheric temperature interact in Sampaloc Lake to assess the risk of fish mortality. By employing a combination of linear regression models and machine learning techniques, researchers developed predictive models to forecast DO concentrations at various depths. The results indicate that while DO levels generally decrease with depth, the predicted concentrations are sufficient to support the survival of common fish species in Sampaloc Lake during March, April, and May 2025.Keywords: aquaculture, dissolved oxygen, water temperature, regression analysis, machine learning, fish mass mortality, early warning system
Procedia PDF Downloads 3511289 Using Machine Learning to Classify Different Body Parts and Determine Healthiness
Authors: Zachary Pan
Abstract:
Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.Keywords: body part, healthcare, machine learning, neural networks
Procedia PDF Downloads 103