Search results for: protein interaction network
9816 A Novel PfkB Gene Cloning and Characterization for Expression in Potato Plants
Authors: Arfan Ali, Idrees Ahmad Nasir
Abstract:
Potato (Solanum tuberosum) is an important cash crop and popular vegetable in Pakistan and throughout the world. Cold storage of potatoes accelerates the conversion of starch into reduced sugars (glucose and fructose). This process causes dry mass and bitter taste in the potatoes that are not acceptable to end consumers. In the current study, the phosphofructokinase B gene was cloned into the pET-30 vector for protein expression and the pCambia-1301 vector for plant expression. Amplification of a 930bp product from an E. coli strain determined the successful isolation of the phosphofructokinase B gene. Restriction digestion using NcoI and BglII along with the amplification of the 930bp product using gene specific primers confirmed the successful cloning of the PfkB gene in both vectors. The protein was expressed as a His-PfkB fusion protein. Western blot analysis confirmed the presence of the 35 Kda PfkB protein when hybridized with anti-His antibodies. The construct Fani-01 was evaluated transiently using a histochemical gus assay. The appearance of blue color in the agroinfiltrated area of potato leaves confirmed the successful expression of construct Fani-01. Further, the area displaying gus expression was evaluated for PfkB expression using ELISA. Moreover, PfkB gene expression evaluated through transient expression determined successful gene expression and highlighted its potential utilization for stable expression in potato to reduce sweetening due to long-term storage.Keywords: potato, Solanum tuberosum, transformation, PfkB, anti-sweetening
Procedia PDF Downloads 4719815 Impact of the Photovoltaic Integration in Power Distribution Network: Case Study in Badak Liquefied Natural Gas (LNG)
Authors: David Hasurungan
Abstract:
This paper objective is to analyze the impact from photovoltaic system integration to power distribution network. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. Badak LNG electricity network is operated in islanded mode. The total power generation in Badak LNG plant is significantly affected to feed gas supply. Meanwhile, to support the Government regulation, Badak LNG continuously implemented the grid-connected photovoltaic system in existing power distribution network. The impact between train operational mode change in Badak LNG plant and the growth of photovoltaic system is also encompassed in analysis. The analysis and calculation are performed using software Power Factory 15.1.Keywords: power quality, distribution network, grid-connected photovoltaic system, power management system
Procedia PDF Downloads 3599814 Nest-Building Using Place Cells for Spatial Navigation in an Artificial Neural Network
Authors: Thomas E. Portegys
Abstract:
An animal behavior problem is presented in the form of a nest-building task that involves two cooperating virtual birds, a male and female. The female builds a nest into which she lays an egg. The male's job is to forage in a forest for food for both himself and the female. In addition, the male must fetch stones from a nearby desert for the female to use as nesting material. The task is completed when the nest is built, and an egg is laid in it. A goal-seeking neural network and a recurrent neural network were trained and tested with little success. The goal-seeking network was then enhanced with “place cells”, allowing the birds to spatially navigate the world, building the nest while keeping themselves fed. Place cells are neurons in the hippocampus that map space.Keywords: artificial animal intelligence, artificial life, goal-seeking neural network, nest-building, place cells, spatial navigation
Procedia PDF Downloads 579813 Visualization of Taiwan's Religious Social Networking Sites
Authors: Jia-Jane Shuai
Abstract:
Purpose of this research aims to improve understanding of the nature of online religion by examining the religious social websites. What motivates individual users to use the online religious social websites, and which factors affect those motivations. We survey various online religious social websites provided by different religions, especially the Taiwanese folk religion. Based on the theory of the Content Analysis and Social Network Analysis, religious social websites and religious web activities are examined. This research examined the folk religion websites’ presentation and contents that promote the religious use of the Internet in Taiwan. The difference among different religions and religious websites also be compared. First, this study used keywords to examine what types of messages gained the most clicks of “Like”, “Share” and comments on Facebook. Dividing the messages into four media types, namely, text, link, video, and photo, reveal which category receive more likes and comments than the others. Meanwhile, this study analyzed the five dialogic principles of religious websites accessed from mobile phones and also assessed their mobile readiness. Using the five principles of dialogic theory as a basis, do a general survey on the websites with elements of online religion. Second, the project analyzed the characteristics of Taiwanese participants for online religious activities. Grounded by social network analysis and text mining, this study comparatively explores the network structure, interaction pattern, and geographic distribution of users involved in communication networks of the folk religion in social websites and mobile sites. We studied the linkage preference of different religious groups. The difference among different religions and religious websites also be compared. We examined the reasons for the success of these websites, as well as reasons why young users accept new religious media. The outcome of the research will be useful for online religious service providers and non-profit organizations to manage social websites and internet marketing.Keywords: content analysis, online religion, social network analysis, social websites
Procedia PDF Downloads 1679812 Effect of Different Phosphorus Levels on Vegetative Growth of Maize Variety
Authors: Tegene Nigussie
Abstract:
Introduction: Maize is the most domesticated of all the field crops. Wild maize has not been found to date and there has been much speculation on its origin. Regardless of the validity of different theories, it is generally agreed that the center of origin of maize is Central America, primarily Mexico and the Caribbean. Maize in Africa is of a recent introduction although data suggest that it was present in Nigeria even before Columbus voyages. After being taken to Europe in 1493, maize was introduced to Africa and distributed (spread through the continent by different routes. Maize is an important cereal crop in Ethiopia in general, it is the primarily stable food, and rural households show strong preference. For human food, the important constituents of grain are carbohydrates (starch and sugars), protein, fat or oil (in the embryo) and minerals. About 75 percent of the kernel is starch, a range of 60.80 percent but low protein content (8-15%). In Ethiopia, the introduction of modern farming techniques appears to be a priority. However, the adoption of modern inputs by peasant farmers is found to be very slow, for example, the adoption rate of fertilizer, an input that is relatively adopted, is very slow. The difference in socio-economic factors lay behind the low rate of technological adoption, including price & marketing input. Objective: The aim of the study is to determine the optimum application rate or level of different phosphorus fertilizers for the vegetative growth of maize and to identify the effect of different phosphorus rates on the growth and development of maize. Methods: The vegetative parameter (above ground) measurement from five plants randomly sampled from the middle rows of each plot. Results: The interaction of nitrogen and maize variety showed a significant at (p<0.01) effect on plant height, with the application of 60kg/ha and BH140 maize variety in combination and root length with the application of 60kg/ha of nitrogen and BH140 variety of maize. The highest mean (12.33) of the number of leaves per plant and mean (7.1) of the number of nodes per plant can be used as an alternative for better vegetative growth of maize. Conclusion and Recommendation: Maize is one of the popular and cultivated crops in Ethiopia. This study was conducted to investigate the best dosage of phosphorus for vegetative growth, yield, and better quality of maize variety and to recommend a level of phosphorus rate and the best variety adaptable to the specific soil condition or area.Keywords: leaf, carbohydrate protein, adoption, sugar
Procedia PDF Downloads 89811 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network
Authors: Sajjad Baghernezhad
Abstract:
Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm
Procedia PDF Downloads 659810 Sampling Effects on Secondary Voltage Control of Microgrids Based on Network of Multiagent
Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon
Abstract:
This paper studies a secondary voltage control framework of the microgrids based on the consensus for a communication network of multiagent. The proposed control is designed by the communication network with one-way links. The communication network is modeled by a directed graph. At this time, the concept of sampling is considered as the communication constraint among each distributed generator in the microgrids. To analyze the sampling effects on the secondary voltage control of the microgrids, by using Lyapunov theory and some mathematical techniques, the sufficient condition for such problem will be established regarding linear matrix inequality (LMI). Finally, some simulation results are given to illustrate the necessity of the consideration of the sampling effects on the secondary voltage control of the microgrids.Keywords: microgrids, secondary control, multiagent, sampling, LMI
Procedia PDF Downloads 3319809 Network Governance and Renewable Energy Transition in Sub-Saharan Africa: Contextual Evidence from Ghana
Authors: Kyere Francis, Sun Dongying, Asante Dennis, Nkrumah Nana Kwame Edmund, Naana Yaa Gyamea Kumah
Abstract:
With a focus on renewable energy to achieve low-carbon transition objectives, there is a greater demand for effective collaborative strategies for planning, strategic decision mechanisms, and long-term policy designs to steer the transitions. Government agencies, NGOs, the private sector, and individual citizens play an important role in sustainable energy production. In Ghana, however, such collaboration is fragile in the fight against climate change. This current study seeks to re-examine the position or potential of network governance in Ghana's renewable energy transition. The study adopted a qualitative approach and employed semi-structured interviews for data gathering. To explore network governance and low carbon transitions in Ghana, we examine key themes such as political environment and impact, actor cooperation and stakeholder interactions, financing and the transition, market design and renewable energy integration, existing regulation and policy gaps for renewable energy transition, clean cooking accessibility, and affordability. The findings reveal the following; Lack of comprehensive consultations with relevant stakeholders leads to lower acceptance of the policy model and sometimes lack of policy awareness. Again, the unavailability and affordability of renewable energy technologies and access to credit facilities is a significant hurdle to long-term renewable transition. Ghana's renewable energy transitions require strong networking and interaction among the public, private, and non-governmental organizations. The study participants believe that the involvement of relevant energy experts and stakeholders devoid of any political biases is instrumental in accelerating renewable energy transitions, as emphasized in the proposed framework. The study recommends that the national renewable energy transition plan be evident to all stakeholders and political administrators. Such policy may encourage renewable energy investment through stable and fixed lending rates by the financial institutions and build a network with international organizations and corporations. These findings could serve as valuable information for the transition-based energy process, primarily aiming to govern sustainability changes through network governance.Keywords: actors, development, sustainable energy, network governance, renewable energy transition
Procedia PDF Downloads 889808 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network
Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti
Abstract:
Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness
Procedia PDF Downloads 4109807 Comparing Community Detection Algorithms in Bipartite Networks
Authors: Ehsan Khademi, Mahdi Jalili
Abstract:
Despite the special features of bipartite networks, they are common in many systems. Real-world bipartite networks may show community structure, similar to what one can find in one-mode networks. However, the interpretation of the community structure in bipartite networks is different as compared to one-mode networks. In this manuscript, we compare a number of available methods that are frequently used to discover community structure of bipartite networks. These networks are categorized into two broad classes. One class is the methods that, first, transfer the network into a one-mode network, and then apply community detection algorithms. The other class is the algorithms that have been developed specifically for bipartite networks. These algorithms are applied on a model network with prescribed community structure.Keywords: community detection, bipartite networks, co-clustering, modularity, network projection, complex networks
Procedia PDF Downloads 6249806 A Blockchain-Based Protection Strategy against Social Network Phishing
Authors: Francesco Buccafurri, Celeste Romolo
Abstract:
Nowadays phishing is the most frequent starting point of cyber-attack vectors. Phishing is implemented both via email and social network messages. While a wide scientific literature exists which addresses the problem of contrasting email spam-phishing, no specific countermeasure has been so far proposed for phishing included into private messages of social network platforms. Unfortunately, the problem is severe. This paper proposes an approach against social network phishing, based on a non invasive collaborative information-sharing approach which leverages blockchain. The detection method works by filtering candidate messages, by distilling them by means of a distance-preserving hash function, and by publishing hashes over a public blockchain through a trusted smart contract (thus avoiding denial of service attacks). Phishing detection exploits social information embedded into social network profiles to identify similar messages belonging to disjoint contexts. The main contribution of the paper is to introduce a new approach to contrasting the problem of social network phishing, which, despite its severity, received little attention by both research and industry.Keywords: phishing, social networks, information sharing, blockchain
Procedia PDF Downloads 3279805 A Topological Study of an Urban Street Network and Its Use in Heritage Areas
Authors: Jose L. Oliver, Taras Agryzkov, Leandro Tortosa, Jose F. Vicent, Javier Santacruz
Abstract:
This paper aims to demonstrate how a topological study of an urban street network can be used as a tool to be applied to some heritage conservation areas in a city. In the last decades, we find different kinds of approaches in the discipline of Architecture and Urbanism based in the so-called Sciences of Complexity. In this context, this paper uses mathematics from the Network Theory. Hence, it proposes a methodology based in obtaining information from a graph, which is created from a network of urban streets. Then, it is used an algorithm that establishes a ranking of importance of the nodes of that network, from its topological point of view. The results are applied to a heritage area in a particular city, confronting the data obtained from the mathematical model, with the ones from the field work in the case study. As a result of this process, we may conclude the necessity of implementing some actions in the area, and where those actions would be more effective for the whole heritage site.Keywords: graphs, heritage cities, spatial analysis, urban networks
Procedia PDF Downloads 3959804 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids
Authors: Priya Arora, Ashutosh Mishra
Abstract:
Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences
Procedia PDF Downloads 1399803 Over Expression of Mapk8ip3 Patient Variants in Zebrafish to Establish a Spectrum of Phenotypes in a Rare-Neurodevelopmental Disorder
Authors: Kinnsley Travis, Camerron M. Crowder
Abstract:
Mapk8ip3 (Mitogen-Activated Protein Kinase 8 Interacting Protein 3) is a gene that codes for the JIP3 protein, which is a part of the JIP scaffolding protein family. This protein is involved in axonal vesicle transport, elongation and regeneration. Variants in the Mapk8ip3 gene are associated with a rare-genetic condition that results in a neurodevelopmental disorder that can cause a range of phenotypes including global developmental delay and intellectual disability. Currently, there are 18 known individuals diagnosed to have sequenced confirmed Mapk8ip3 genetic disorders. This project focuses on examining the impact of a subset of missense patient variants on the Jip3 protein function by overexpressing the mRNA of these variants in a zebrafish knockout model for Jip3. Plasmids containing cDNA with individual missense variants were reverse transcribed, purified, and injected into single-cell zebrafish embryos (Wild Type, Jip3 -/+, and Jip3 -/-). At 6-days post mRNA microinjection, morphological, behavioral, and microscopic phenotypes were examined in zebrafish larvae. Morphologically, we compared the size and shape of the zebrafish during their development over a 5-day period. Total locomotive activity was assessed using the Microtracker assay and patterns of movement over time were examined using the DanioVision assay. Lastly, we used confocal microscopy to examine sensory axons for swelling and shortened length, which are phenotypes observed in the loss-of-function knockout Jip3 zebrafish model. Using these assays during embryonic development, we determined the impact of various missense variants on Jip3 protein function, compared to knockout and wild-type zebrafish embryo models. Variants in the gene Mapk8ip3 cause rare-neurodevelopmental disorders due to an essential role in axonal vesicle transport, elongation and regeneration. A subset of missense variants was examined by overexpressing the mRNA of these variants in a Jip3 knock-out zebrafish. Morphological, behavioral, and microscopic phenotypes were examined in zebrafish larvae. Using these assays, the spectrum of disorders can be phenotypically determined and the impact of variant location can be compared to knockout and wild-type zebrafish embryo models.Keywords: rare disease, neurodevelopmental disorders, mrna overexpression, zebrafish research
Procedia PDF Downloads 1159802 Numerical Investigations on Group Piles’ Lateral Bearing Capacity Considering Interaction of Soil and Structure
Authors: Mahdi Sadeghian, Mahmoud Hassanlourad, Alireza Ardakani, Reza Dinarvand
Abstract:
In this research, the behavior of monopiles, under lateral loads, was investigated with vertical and oblique piles by Finite Element Method. In engineering practice when soil-pile interaction comes to the picture some simplifications are applied to reduce the design time. As a simplified replacement of soil and pile interaction analysis, pile could be replaced by a column. The height of the column would be equal to the free length of the pile plus a portion of the embedded length of it. One of the important factors studied in this study was that columns with an equivalent length (free length plus a part of buried depth) could be used instead of soil and pile modeling. The results of the analysis show that the more internal friction angle of the soil increases, the more the bearing capacity of the soil is achieved. This additional length is 6 to 11 times of the pile diameter in dense soil although in loose sandy soil this range might increase.Keywords: Depth of fixity, Lateral bearing capacity, Oblique pile, Pile group, Soil-structure interaction
Procedia PDF Downloads 2329801 Antitrypanosomal Activity of Stigmasterol: An in silico Approach
Authors: Mohammed Auwal Ibrahim, Aminu Mohammed
Abstract:
Stigmasterol has previously been reported to possess antitrypanosomal activity using in vitro and in vivo models. However, the mechanism of antitrypanosomal activity is yet to be elucidated. In the present study, molecular docking was used to decipher the mode of interaction and binding affinity of stigmasterol to three known antitrypanosomal drug targets viz; adenosine kinase, ornithine decarboxylase and triose phosphate isomerase. Stigmasterol was found to bind to the selected trypanosomal enzymes with minimum binding energy of -4.2, -6.5 and -6.6 kcal/mol for adenosine kinase, ornithine decarboxylase, and triose phosphate isomerase respectively. However, hydrogen bond was not involved in the interaction of stigmasterol with all the three enzymes, but hydrophobic interaction seemed to play a vital role in the binding phenomenon which was predicted to be non-competitive like type of inhibition. It was concluded that binding to the three selected enzymes, especially triose phosphate isomerase, might be involved in the antitrypanosomal activity of stigmasterol but not mediated via a hydrogen bond interaction.Keywords: antitrypanosomal, in silico, molecular docking, stigmasterol
Procedia PDF Downloads 2769800 Diabetes Mellitus and Food Balance in the Kingdom of Saudi Arabia
Authors: Aljabryn Dalal Hamad
Abstract:
The present explanatory study concerns with the relation between Diabetes Mellitus and Food Balance in the Kingdom of Saudi Arabia during 2005-2010, using published data. Results illustrated that Saudi citizen daily protein consumption (DPC) during 2005-2007 (g/capita/day) is higher than the average global consumption level of protein with 15.27%, daily fat consumption (DFC) with 24.56% and daily energy consumption (DEC) with 16.93% and increases than recommended level by International Nutrition Organizations (INO) with 56% for protein, 60.49% for fat and 27.37% for energy. On the other hand, DPC per capita in Saudi Arabia decreased during the period 2008-2010 from 88.3 to 82.36 gram/ day. Moreover, DFC per capita in Saudi Arabia decreased during the period 2008-2010 from 3247.90 to 3176.43 Cal/capita/ day, and daily energy consumption (DEC) of Saudi citizen increases than world consumption with 16.93%, while increases with 27.37% than INO. Despite this, DPC, DFC and DEC per capita in Saudi Arabia still higher than world mean. On the other side, results illustrated that the number of diabetic patients in Saudi Arabia during the same period (2005-2010). The curve of diabetic patient’s number in Saudi Arabia during 2005-2010 is regular ascending with increasing level ranged between 7.10% in 2005 and 12.44% in 2010. It is essential to devise Saudi National programs to educate the public about the relation of food balances and diabetes so it could be avoided, and provide citizens with healthy dietary balances tables.Keywords: Diabetes mellitus, food balance, energy, fat, protein, Saudi Arabia
Procedia PDF Downloads 4599799 Application of Arbuscular Mycorrhizal Fungi as Biologically Based Strategy for Mitigation of Adverse Impact of Salt Stress on Wheat
Authors: Abeer Hashem, Khalid F. Almutairi, Ulkar Ibrahimova, Elsayed Fathi Abdallah
Abstract:
Salinity poses a significant challenge to wheat production, necessitating the exploration of strategies to mitigate its adverse effects. The present investigation aims to study the impact of arbuscular mycorrhizal fungi (AMF) application to improve plant tolerance in terms of growth, carbohydrate, photosynthetic characteristics, and antioxidant enzyme activities under salt stress conditions. So, a randomized complete block design with five replications was employed comprising various treatments of AMF application under salinity stress (200mM), and control samples were used for each treatment. The obtained results demonstrated significantly that AMF used in this study showed beneficial impacts in all parameters used as sensitive monitor for relation of plant-salt microbe interaction. The root colonization by AMF showed the highest plant growth criteria, relative water content, soluble sugar, starch, and total non-structural carbohydrates under both control and salinity stress conditions. Moreover, the application of AMF-treated plants showed the highest soluble protein concentration and activity in leaves and antioxidant enzymes (catalase, superoxide dismutase, guaiacol peroxidase). These findings highlight the potential impact of AMF application as a biologically based strategy to manage the mitigation of salt stress on wheat, which increases the availability of many salt marsh habitats for sustainable agriculture of such strategy crops.Keywords: arbuscular mycorrhizal fungi, salt stress, plant growth criteria, soluble protein, antioxidant enzymes, wheat plant
Procedia PDF Downloads 459798 User Experience Measurement of User Interfaces
Authors: Mohammad Hashemi, John Herbert
Abstract:
Quantifying and measuring Quality of Experience (QoE) are important and difficult concerns in Human Computer Interaction (HCI). Quality of Service (QoS) and the actual User Interface (UI) of the application are both important contributors to the QoE of a user. This paper describes a framework that measures accurately the way a user uses the UI in order to model users' behaviours and profiles. It monitors the use of the mouse and use of UI elements with accurate time measurement. It does this in real-time and does so unobtrusively and efficiently allowing the user to work as normal with the application. This real-time accurate measurement of the user's interaction provides valuable data and insight into the use of the UI, and is also the basis for analysis of the user's QoE.Keywords: user modelling, user interface experience, quality of experience, user experience, human and computer interaction
Procedia PDF Downloads 5009797 Association of Airborne Emissions with Pulmonary Dysfunction, XRCC1 Gene Polymorphism, and Some Inflammatory Markers in Aluminum Workers
Authors: Gehan Moubarz, Atef M. F. Mohammed, Inas A. Saleh, Heba Mahdy-Abdallah, Amal Saad-Hussein
Abstract:
This study estimates the association between respiratory outcomes among employees of a secondary aluminum plant and airborne pollutants. Additionally, it looks into the relationship between pulmonary dysfunction in workers and XRCC1 gene polymorphisms. 110 exposed workers and 58 non-exposed workers participated in the study. Measurements have been conducted on SO₂, NO₂, and particulate particles. Pulmonary function was tested. Eosinophil cationic protein (ECP), C-reactive protein (CRP), matrix metalloproteinase-1 (MMP-1), interleukin 6 (IL6), GM-CSF, X-Ray Repair Cross Complementing 1 (XRCC1) protein, and genotyping of XRCC1 gene polymorphisms were examined. Results: The annual average concentrations of (PM₂.₅, PM₁₀, TSP, SO₂, and NO₂) were lower than the permissible limit. The areas around ovens, evaporators, and cold rolling mills exhibited the highest amounts. The majority of employees in these departments had impaired lung function. With longer exposure times, the exposed group's FEV1% and FVC% considerably reduced. The exposed workers had considerably higher XRCC1 levels. The evaluated inflammatory biomarkers showed no statistically significant difference. Conclusion: Aluminum workers are at risk of developing respiratory disorders. The level of serum XRCC1 may act as a biomarker that might be very useful for detecting susceptible workers.Keywords: aluminum industry, particulate matter, SO₂, NO₂, lung function, XRCC1 gene polymorphism, XRCC1 protein, inflammatory biomarkers
Procedia PDF Downloads 89796 Comparative Proteomic Analysis of Rice bri1 Mutant Leaves at Jointing-Booting Stage
Authors: Jiang Xu, Daoping Wang, Yinghong Pan
Abstract:
The jointing-booting stage is a critical period of both vegetative growth and reproductive growth in rice. Therefore, the proteomic analysis of the mutant Osbri1, whose corresponding gene OsBRI1 encodes the putative BRs receptor OsBRI1, at jointing-booting stage is very important for understanding the effects of BRs on vegetative and reproductive growth. In this study, the proteomes of leaves from an allelic mutant of the DWARF 61 (D61, OsBRI1) gene, Fn189 (dwarf54, d54) and its wild-type variety T65 (Taichung 65) at jointing-booting stage were analysed by using a Q Exactive plus orbitrap mass spectrometer, and more than 3,100 proteins were identified in each sample. Ontology analysis showed that these proteins distribute in various space of the cells, such as the chloroplast, mitochondrion, and nucleus, they functioned as structural components and/or catalytic enzymes and involved in many physiological processes. Moreover, quantitative analysis displayed that 266 proteins were differentially expressed in two samples, among them, 77 proteins decreased and 189 increased more than two times in Fn189 compared with T65, the proteins whose content decreased in Fn189 including b5-like Heme/Steroid binding domain containing protein, putative retrotransposon protein, putative glutaminyl-tRNA synthetase, and higher content proteins such as mTERF, putative Oligopeptidase homologue, zinc knuckle protein, and so on. A former study founded that the transcription level of a mTERF was up-regulated in the leaves of maize seedling after EBR treatment. In our experiments, it was interesting that one mTERF protein increased, but another mTERF decreased in leaves of Fn189 at jointing-booting stage, which suggested that BRs may have differential regulation mechanisms on the expression of various mTERF proteins. The relationship between other differential proteins with BRs is still unclear, and the effects of BRs on rice protein contents and its regulation mechanisms still need further research.Keywords: bri1 mutant, jointing-booting stage, proteomic analysis, rice
Procedia PDF Downloads 2469795 Effects of Learner-Content Interaction Activities on the Context of Verbal Learning Outcomes in Interactive Courses
Authors: Alper Tolga Kumtepe, Erdem Erdogdu, M. Recep Okur, Eda Kaypak, Ozlem Kaya, Serap Ugur, Deniz Dincer, Hakan Yildirim
Abstract:
Interaction is one of the most important components of open and distance learning. According to Moore, who proposed one of the keystones on interaction types, there are three basic types of interaction: learner-teacher, learner-content, and learner-learner. From these interaction types, learner-content interaction, without doubt, can be identified as the most fundamental one on which all education is based. Efficacy, efficiency, and attraction of open and distance learning systems can be achieved by the practice of effective learner-content interaction. With the development of new technologies, interactive e-learning materials have been commonly used as a resource in open and distance learning, along with the printed books. The intellectual engagement of the learners with the content that is course materials may also affect their satisfaction for the open and distance learning practices in general. Learner satisfaction holds an important place in open and distance learning since it will eventually contribute to the achievement of learning outcomes. Using the learner-content interaction activities in course materials, Anadolu University, by its Open Education system, tries to involve learners in deep and meaningful learning practices. Especially, during the e-learning material design and production processes, identifying appropriate learner-content interaction activities within the context of learning outcomes holds a big importance. Considering the lack of studies adopting this approach, as well as its being a study on the use of e-learning materials in Open Education system, this research holds a big value in open and distance learning literature. In this respect, the present study aimed to investigate a) which learner-content interaction activities included in interactive courses are the most effective in learners’ achievement of verbal information learning outcomes and b) to what extent distance learners are satisfied with these learner-content interaction activities. For this study, the quasi-experimental research design was adopted. The 120 participants of the study were from Anadolu University Open Education Faculty students living in Eskişehir. The students were divided into 6 groups randomly. While 5 of these groups received different learner-content interaction activities as a part of the experiment, the other group served as the control group. The data were collected mainly through two instruments: pre-test and post-test. In addition to those tests, learners’ perceived learning was assessed with an item at the end of the program. The data collected from pre-test and post-test were analyzed by ANOVA, and in the light of the findings of this approximately 24-month study, suggestions for the further design of e-learning materials within the context of learner-content interaction activities will be provided at the conference. The current study is planned to be an antecedent for the following studies that will examine the effects of activities on other learning domains.Keywords: interaction, distance education, interactivity, online courses
Procedia PDF Downloads 1949794 The Optical Properties of CdS and Conjugated Cadmium Sulphide-Cowpea Chlorotic Mottle Virus
Authors: Afiqah Shafify Amran, Siti Aisyah Shamsudin, Nurul Yuziana Mohd Yusof
Abstract:
Cadmium Sulphide (CdS) from group II-IV quantum dots with good optical properties was successfully synthesized by using the simple colloidal method. Capping them with ligand Polyethylinamine (PEI) alters the surface defect of CdS while, thioglycolic acid (TGA) was added to the reaction as a stabilizer. Due to their cytotoxicity, we decided to conjugate them with the protein cage nanoparticles. In this research, we used capsid of Cowpea Chlorotic Mottle Virus (CCMV) to package the CdS because they have the potential to serve in drug delivery, cell targeting and imaging. Adding Sodium Hydroxide (NaOH) changes the pH of the systems hence the isoelectric charge is adjusted. We have characterized and studied the morphology and the optical properties of CdS and CdS-CCMV by transmitted electron microscopic (TEM), UV-Vis spectroscopy, photoluminescence spectroscopy, UV lamp and Fourier transform infrared spectroscopy (FTIR), respectively. The results obtained suggest that the protein cage nanoparticles do not affect the optical properties of CdS.Keywords: cadmium sulphide, cowpea chlorotic mottle virus, protein cage nanoparticles, quantum dots
Procedia PDF Downloads 3379793 New Isolate of Cucumber Mosaic Virus Infecting Banana
Authors: Abdelsabour G. A. Khaled, Ahmed W. A. Abdalla And Sabry Y. M. Mahmoud
Abstract:
Banana plants showing typical mosaic and yellow stripes on leaves as symptoms were collected from Assiut Governorate in Egypt. The causal agent was identified as Cucumber mosaic virus (CMV) on the basis of symptoms, transmission, serology, transmission electron microscopy and reverse transcription polymerase chain reaction (RT-PCR). Coat protein (CP) gene was amplified using gene specific primers for coat protein (CP), followed by cloning into desired cloning vector for sequencing. In this study the CMV was transmitted into propagation host either by aphid or mechanically. The transmission was confirmed through Direct Antigen Coating Enzyme Linked Immuno Sorbent Assay (DAC-ELISA). Analysis of the 120 deduced amino acid sequence of the coat protein gene revealed that the EG-A strain of CMV shared from 97.50 to 98.33% with those strains belonging to subgroup IA. The cluster analysis grouped the Egyptian isolate with strains Fny and Ri8 belonging sub-group IA. It appears that there occurs a high incidence of CMV infecting banana belonging to IA subgroup in most parts of Egypt.Keywords: banana, CMV, transmission, CP gene, RT-PCR
Procedia PDF Downloads 3419792 Artificial Neural Network in Predicting the Soil Response in the Discrete Element Method Simulation
Authors: Zhaofeng Li, Jun Kang Chow, Yu-Hsing Wang
Abstract:
This paper attempts to bridge the soil properties and the mechanical response of soil in the discrete element method (DEM) simulation. The artificial neural network (ANN) was therefore adopted, aiming to reproduce the stress-strain-volumetric response when soil properties are given. 31 biaxial shearing tests with varying soil parameters (e.g., initial void ratio and interparticle friction coefficient) were generated using the DEM simulations. Based on these 45 sets of training data, a three-layer neural network was established which can output the entire stress-strain-volumetric curve during the shearing process from the input soil parameters. Beyond the training data, 2 additional sets of data were generated to examine the validity of the network, and the stress-strain-volumetric curves for both cases were well reproduced using this network. Overall, the ANN was found promising in predicting the soil behavior and reducing repetitive simulation work.Keywords: artificial neural network, discrete element method, soil properties, stress-strain-volumetric response
Procedia PDF Downloads 3949791 Deubiquitinase USP35 Regulates Mitosis Progression by Blocking CDH1-Mediated Degradation of Aurora B.
Authors: Jinyoung Park, Eun Joo Song
Abstract:
Introduction: Deubiquitinating enzymes (DUBs) are proteases that cleave ubiquitin or ubiquitin-like modifications on substrates. Deubiquitination could regulate cellular physiology, such as signal transduction, DNA damage and repair, and cell cycle progression. Although more than 100 DUBs are encoded in the human and the importance of DUBs has been realized, the functions of most DUBs are unknown. This study aims to identify the molecular mechanism by which deubiquitinating enzyme USP35 regulates cell cycle progression for the first time. Methods: USP35 RNAi was mainly used to identify the function of USP35 in cell cycle progression. To find substrates of USP35, we analyzed protein-protein interaction using LC-MS. Several biological methods, such as ubiquitination assay, cell synchronization, immunofluorescence, and immunoprecipitation assay were used to investigate the exact mechanism by which USP35 affects successful completion of mitosis. Results: USP35 knockdown caused not only reduction of mitotic cell number but also induction of mitotic cells with abnormal spindle formation. Actually, cell proliferation was decreased by USP35 knockdown. Interestingly, we found that loss of USP35 decreased the stability and expression of Aurora B, a member of chromosomal passenger complex (CPC), and the phosphorylation of its substrate. Indeed, USP35 interacted with Aurora B and deubiquitinated it. In addition, USP35 knockdown induced abnormal localization of Aurora B in mitotic cells. Finally, CDH1-mediated ubiquitination of Aurora B level was rescued by USP35 overexpression, but not inactive form of USP35, USP35 C450A. Discussion: Our findings suggest that USP35 regulates Aurora B-mediated mitotic spindle assembly and G2-M transition by blocking CDH1-induced degradation of Aurora B.Keywords: USP35, HSP90, Aurora B, cell cycle progression
Procedia PDF Downloads 3569790 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime
Authors: Vrince Vimal, Madhav J. Nigam
Abstract:
Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.Keywords: Wireless Sensor network (WSN), Random Deployment, Clustering, Isolated Nodes, Networks Lifetime
Procedia PDF Downloads 3359789 Identifying the Host Substrates for the Mycobacterial Virulence Factor Protein Kinase G
Authors: Saha Saradindu, Das Payel, Somdeb BoseDasgupta
Abstract:
Tuberculosis caused by Mycobacteria tuberculosis is a dreadful disease and more so with the advent of extreme and total drug-resistant species. Mycobacterial pathogenesis is an ever-changing paradigm from phagosome maturation block to phagosomal escape into macrophage cytosol and finally acid tolerance and survival inside the lysosome. Mycobacteria are adept at subverting the host immune response by highjacking host cell signaling and secreting virulence factors. One such virulence factor is a ser/thr kinase; Protein kinase G (PknG), which is known to prevent phagosome maturation. The host substrates of PknG, allowing successful pathogenesis still remain an enigma. Hence we carried out a comparative phosphoproteomic screen and identified a number of substrates phosphorylated by PknG. We characterized some of these substrates in vivo and in vitro and observed that PknG mediated phosphorylation of these substrates leads to reduced TNFa production as well as decreased response to TNFa induced macrophage necroptosis, thus enabling mycobacterial survival and proliferation.Keywords: mycobacteria, Protein kinase G, phosphoproteomics, necroptosis
Procedia PDF Downloads 1449788 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb
Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan
Abstract:
This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee
Procedia PDF Downloads 3879787 Rashba Spin Orbit Interaction Effect on Multiphoton Optical Transitions in a Quantum Dot for Bioimaging
Authors: Pradip Kumar Jha, Manoj Kumar
Abstract:
We demonstrate in this work the effect of Rashba spin orbit interaction on multiphoton optical transitions of a quantum dot in the presence of THz laser field and external static magnetic field. This combination is solved by accurate non-perturbative Floquet theory. Investigations are made for the optical response of intraband transition between the various states of the conduction band with spin flipping. Enhancement and power broadening observed for excited states probabilities with increase of external fields are directly linked to the emission spectra of QD and will be useful for making future bioimaging devices.Keywords: bioimaging, multiphoton processes, spin orbit interaction, quantum dot
Procedia PDF Downloads 479