Search results for: optimize controller
1361 Correlations and Impacts Of Optimal Rearing Parameters on Nutritional Value Of Mealworm (Tenebrio Molitor)
Authors: Fabienne Vozy, Anick Lepage
Abstract:
Insects are displaying high nutritional value, low greenhouse gas emissions, low land use requirements and high food conversion efficiency. They can contribute to the food chain and be one of many solutions to protein shortages. Currently, in North America, nutritional entomology is under-developed and the needs to better understand its benefits remain to convince large-scale producers and consumers (both for human and agricultural needs). As such, large-scale production of mealworms offers a promising alternative to replacing traditional sources of protein and fatty acids. To proceed orderly, it is required to collect more data on the nutritional values of insects such as, a) Evaluate the diets of insects to improve their dietary value; b) Test the breeding conditions to optimize yields; c) Evaluate the use of by-products and organic residues as sources of food. Among the featured technical parameters, relative humidity (RH) percentage and temperature, optimal substrates and hydration sources are critical elements, thus establishing potential benchmarks for to optimize conversion rates of protein and fatty acids. This research is to establish the combination of the most influential rearing parameters with local food residues, to correlate the findings with the nutritional value of the larvae harvested. 125 same-monthly old adults/replica are randomly selected in the mealworm breeding pool then placed to oviposit in growth chambers preset at 26°C and 65% RH. Adults are removed after 7 days. Larvae are harvested upon the apparition of the first nymphosis signs and batches, are analyzed for their nutritional values using wet chemistry analysis. The first samples analyses include total weight of both fresh and dried larvae, residual humidity, crude proteins (CP%), and crude fats (CF%). Further analyses are scheduled to include soluble proteins and fatty acids. Although they are consistent with previous published data, the preliminary results show no significant differences between treatments for any type of analysis. Nutritional properties of each substrate combination have yet allowed to discriminate the most effective residue recipe. Technical issues such as the particles’ size of the various substrate combinations and larvae screen compatibility are to be investigated since it induced a variable percentage of lost larvae upon harvesting. To address those methodological issues are key to develop a standardized efficient procedure. The aim is to provide producers with easily reproducible conditions, without incurring additional excessive expenditure on their part in terms of equipment and workforce.Keywords: entomophagy, nutritional value, rearing parameters optimization, Tenebrio molitor
Procedia PDF Downloads 1131360 Glass and Polypropylene Combinations for Thermoplastic Preforms
Authors: Hireni Mankodi
Abstract:
The textile preforms for thermoplastic composite play a key role in providing the mechanical properties and gives the idea about preparing combination of yarn from Glass, Basalt, Carbon as reinforcement and PP, PET, Nylon as thermoplastic matrix at yarn stage for preforms to improve the quality and performance of laminates. The main objectives of this work are to develop the hybrid yarn using different yarn manufacturing process and prepare different performs using hybrid yarns. It has been observed that the glass/pp combination give homogeneous distribution in yarn. The proportion varied to optimize the glass/pp composition. The different preform has been prepared with combination of hybrid yarn, PP, glass combination. Further studies will investigate the effect of glass content in fabric, effect of weave, warps and filling density, number of layer plays significant role in deciding mechanical properties of thermoplastic laminates.Keywords: thermoplastic, preform, laminates, hybrid yarn, glass
Procedia PDF Downloads 5821359 Empirical Research to Improve Performances of Paddy Columnar Dryer
Authors: Duong Thi Hong, Nguyen Van Hung, Martin Gummert
Abstract:
Good practices of mechanical drying can reduce losses of grain quality. Recently, with demands of higher capacity for paddy drying in the Mekong River Delta of Vietnam, columnar dryers have been introduced rapidly in this area. To improve the technology, this study was conducted to investigate and optimize the parameters for drying Jasmine paddy using an empirical cross-flow columnar dryer. The optimum parameters were resulted in air flow rate and drying temperature that are 1-1.5 m³ s-¹ t-¹ of paddy and 40-42°C, respectively. The investigation also addressed a solution of reversing drying air to achieve the uniformity of grain temperature and quality. Results of this study should be significant for developments of grain drying, contributing to reduce post harvest lossesKeywords: paddy drying, columnar dryer, air flow rate, drying temperature
Procedia PDF Downloads 3721358 Structural Changes Induced in Graphene Oxide Film by Low Energy Ion Beam Irradiation
Authors: Chetna Tyagi, Ambuj Tripathi, Devesh Avasthi
Abstract:
Graphene oxide consists of sp³ hybridization along with sp² hybridization due to the presence of different oxygen-containing functional groups on its edges and basal planes. However, its sp³ / sp² hybridization can be tuned by various methods to utilize it in different applications, like transistors, solar cells and biosensors. Ion beam irradiation can also be one of the methods to optimize sp² and sp³ hybridization ratio for its desirable properties. In this work, graphene oxide films were irradiated with 100 keV Argon ions at different fluences varying from 10¹³ to 10¹⁶ ions/cm². Synchrotron X-ray diffraction measurements showed an increase in crystallinity at the low fluence of 10¹³ ions/cm². Raman spectroscopy performed on irradiated samples determined the defects induced by the ion beam qualitatively. Also, identification of different groups and their removal with different fluences was done using Fourier infrared spectroscopy technique.Keywords: graphene oxide, ion beam irradiation, spectroscopy, X-ray diffraction
Procedia PDF Downloads 1361357 Management of Al-Khaldiyah Road (Al Khobar) in Order to Optimize Safety and Improve Sight View
Authors: Amer Alsari, Hassan Alhalal, Tahar Ayadat, Andi Asiz, Omar KM Ouda
Abstract:
Al Khaldiyah is a regional road situated in west-south of Al Khobar, precisely in the area of Half Moon Bay. It is characterized by four lines, which become six lines in some places, in both directions extending over about 10 km length. The road extends between the bridge near the Air Force Base and Half Moon Bay Road. Many accidents have been observed in this road notably over the last two years. Many injuries and deaths were recorded, some of the victims were PMU students. Consequently, management of the road to eliminate or reduce accidents to a large extend becomes imperative. The main goal of this project are to propose sustainable solutions for the purpose optimizing safety and improving its sight view by designing some appropriate junctions including bridge and tunnel in the critical locations.Keywords: management, road, accident, traffic, safety, sustainable, solutions
Procedia PDF Downloads 4501356 Temperature Control Improvement of Membrane Reactor
Authors: Pornsiri Kaewpradit, Chalisa Pourneaw
Abstract:
Temperature control improvement of a membrane reactor with exothermic and reversible esterification reaction is studied in this work. It is well known that a batch membrane reactor requires different control strategies from a continuous one due to the fact that it is operated dynamically. Due to the effect of the operating temperature, the suitable control scheme has to be designed based reliable predictive model to achieve a desired objective. In the study, the optimization framework has been preliminary formulated in order to determine an optimal temperature trajectory for maximizing a desired product. In model predictive control scheme, a set of predictive models have been initially developed corresponding to the possible operating points of the system. The multiple predictive control moves have been further calculated on-line using the developed models corresponding to current operating point. It is obviously seen in the simulation results that the temperature control has been improved compared to the performance obtained by the conventional predictive controller. Further robustness tests have also been investigated in this study.Keywords: model predictive control, batch reactor, temperature control, membrane reactor
Procedia PDF Downloads 4691355 Modeling and Control Design of a Centralized Adaptive Cruise Control System
Authors: Markus Mazzola, Gunther Schaaf
Abstract:
A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper, we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.Keywords: adaptive cruise control, centralized server, networked model predictive control, string stability
Procedia PDF Downloads 5151354 STATCOM’s Contribution to the Improvement of Voltage Plan and Power Flow in an Electrical Transmission Network
Authors: M. Adjabi, A. Amiar, P. O. Logerais
Abstract:
Flexible Alternative Current Systems Transmission (FACTS) are used since nearly four decades and present very good dynamic performances. The purpose of this work is to study the behavior of a system where Static Compensator (STATCOM) is located at the midpoint of a transmission line which is the idea of the project functioning in disturbed modes with various levels of load. The studied model and starting from the analysis of various alternatives will lead to the checking of the aptitude of the STATCOM to maintain the voltage plan and to improve the power flow in electro-energetic system which is the east region of Algerian 400 kV transmission network. The steady state performance of STATCOM’s controller is analyzed through computer simulations with Matlab/Simulink program. The simulation results have demonstrated that STATCOM can be effectively applied in power transmission systems to solve the problems of poor dynamic performance and voltage regulation.Keywords: STATCOM, reactive power, power flow, voltage plan, Algerian network
Procedia PDF Downloads 5691353 STATCOM's Contribution to the Improvement of Voltage Plan and Power Flow in an Electrical Transmission Network
Authors: M. Adjabi, A. Amiar, P. O. Logerais
Abstract:
Flexible Alternative Current Systems Transmission (FACTS) are used since nearly four decades and present very good dynamic performances. The purpose of this work is to study the behavior of a system where Static Compensator (STATCOM) is located at the midpoint of a transmission line which is the idea of the project functioning in disturbed modes with various levels of load. The studied model and starting from the analysis of various alternatives will lead to the checking of the aptitude of the STATCOM to maintain the voltage plan and to improve the power flow in electro-energetic system which is the east region of Algerian 400 kV transmission network. The steady state performance of STATCOM’s controller is analyzed through computer simulations with Matlab/Simulink program. The simulation results have demonstrated that STATCOM can be effectively applied in power transmission systems to solve the problems of poor dynamic performance and voltage regulation.Keywords: STATCOM, reactive power, power flow, voltage plan, Algerian network
Procedia PDF Downloads 6021352 A Continuous Switching Technique for a Single Phase Bridgeless and Transformer-Less Active Rectifier with High Power Factor and Voltage Stabilization
Authors: Rahul Ganpat Mapari, D. G. Wakde
Abstract:
In this paper, a proposed approach to improve the power factor of single-phase rectifiers and to regulate the output voltage against the change in grid voltage and load is presented. This converter topology is evaluated on the basis of performance and its salient features like simplicity, low cost and high performance are discussed to analyze its applicability. The proposed control strategy is bridgeless, transformer-less and output current sensor-less and consists of only two Bi-directional IGBTs and two diodes. The voltage regulation is achieved by a simple voltage divider to communicate to a controller to control the duty cycles of PWM. A control technique and operational procedure are also developed, both theoretically and experimentally. The experimental results clearly verify the theoretical analysis from the prototype connected to grid unity.Keywords: Active Rectifier (AC-DC), power factor, single phase, voltage regulation
Procedia PDF Downloads 5811351 X-Ray Detector Technology Optimization In CT Imaging
Authors: Aziz Ikhlef
Abstract:
Most of multi-slices CT scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80kVp and 140kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts
Procedia PDF Downloads 2741350 A New OvS Approach in Assembly Line Balancing Problem
Authors: P. Azimi, B. Behtoiy, A. A. Najafi, H. R. Charmchi
Abstract:
According to the previous studies, one of the most famous techniques which affect the efficiency of a production line is the assembly line balancing (ALB) technique. This paper examines the balancing effect of a whole production line of a real auto glass manufacturer in three steps. In the first step, processing time of each activity in the workstations is generated according to a practical approach. In the second step, the whole production process is simulated and the bottleneck stations have been identified, and finally in the third step, several improvement scenarios are generated to optimize the system throughput, and the best one is proposed. The main contribution of the current research is the proposed framework which combines two famous approaches including Assembly Line Balancing and Optimization via Simulation technique (OvS). The results show that the proposed framework could be applied in practical environments, easily.Keywords: assembly line balancing problem, optimization via simulation, production planning
Procedia PDF Downloads 5261349 A Timed and Colored Petri Nets for Modeling and Verify Cloud System Elasticity
Authors: Walid Louhichi, Mouhebeddine Berrima, Narjes Ben Rajed
Abstract:
Elasticity is the essential property of cloud computing. As the name suggests, it constitutes the ability of a cloud system to adjust resource provisioning in relation to fluctuating workload. There are two types of elasticity operations, vertical and horizontal. In this work, we are interested in horizontal scaling, which is ensured by two mechanisms; scaling in and scaling out. Following the sizing of the system, we can adopt scaling in in the event of over-supply and scaling out in the event of under-supply. In this paper, we propose a formal model, based on colored and temporized Petri nets, for the modeling of the duplication and the removal of a virtual machine from a server. This model is based on formal Petri Nets modeling language. The proposed models are edited, verified, and simulated with two examples implemented in CPNtools, which is a modeling tool for colored and timed Petri nets.Keywords: cloud computing, elasticity, elasticity controller, petri nets, scaling in, scaling out
Procedia PDF Downloads 1541348 Use RP-HPLC To Investigate Factors Influencing Sorghum Protein Extraction
Authors: Khaled Khaladi, Rafika Bibi, Hind Mokrane, Boubekeur Nadjemi
Abstract:
Sorghum (Sorghum bicolor (L.) Moench) is an important cereal crop grown in the semi-arid tropics of Africa and Asia due to its drought tolerance. Sorghum grain has protein content varying from 6 to 18%, with an average of 11%, Sorghum proteins can be broadly classified into prolamin and non-prolamin proteins. Kafirins, the major storage proteins, are classified as prolamins, and as such, they contain high levels of proline and glutamine and are soluble in non-polar solvents such as aqueous alcohols. Kafirins account for 77 to 82% of the protein in the endosperm, whereas non-prolamin proteins (namely, albumins, globulins, and glutelins) make up about 30% of the proteins. To optimize the extraction of sorghum proteins, several variables were examined: detergent type and concentration, reducing agent type and concentration, and buffer pH and concentration. Samples were quantified and characterized by RP-HPLC.Keywords: sorghum, protein extraction, detergent, food science
Procedia PDF Downloads 3221347 Development of Orbital TIG Welding Robot System for the Pipe
Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim
Abstract:
This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).Keywords: adaptive welding, automatic welding, pipe welding, orbital welding, laser vision sensor, LVS, welding D/B
Procedia PDF Downloads 6901346 Commitment Based Revenue Sharing Contract
Authors: Muhammad Shafiq, Huynh Trung Luong
Abstract:
In this paper, we proposed a commitment based revenue sharing contract for a supply chain comprising one manufacturer and one retailer facing highly uncertain demand of a short life span fashionable product. In our model, the retailer reserves a commitment level with the manufacturer prior to the selling season. In response, the manufacturer allocates and produces a specific quantity which is the maximum available quantity for the retailer. The retailer is motivated to commit more by offering higher revenue sharing percentage for reserved capacity than non-reserved capacity. Due to asymmetric information, it is found that the manufacturer can optimize quantity allocation decision while the commitment level decision of the retailer may not be optimal.Keywords: supply chain coordination, revenue sharing contract, commitment based revenue sharing, quantity allocation
Procedia PDF Downloads 4881345 Comparison Performance between PID and PD Controllers for 3 and 4 Cable-Based Robots
Authors: Fouad. Inel, Lakhdar. Khochemane
Abstract:
This article presents a comparative response specification performance between two controllers of three and four cable based robots for various applications. The main objective of this work is: The first is to use the direct and inverse geometric model to study and simulate the end effector position of the robot with three and four cables. A graphical user interface has been implemented in order to visualizing the position of the robot. Secondly, we present the determination of static and dynamic tensions and lengths of cables required to flow different trajectories. At the end, we study the response of our systems in closed loop with a Proportional-Integrated Derivative (PID) and Proportional-Integrated (PD) controllers then this last are compared the results of the same examples using MATLAB/Simulink; we found that the PID method gives the better performance, such as rapidly speed response, settling time, compared to PD controller.Keywords: parallel cable-based robots, geometric modeling, dynamic modeling, graphical user interface, open loop, PID/PD controllers
Procedia PDF Downloads 4511344 Sliding Mode Controller for Active Suspension System on a Passenger Car Model
Authors: Nouby M. Ghazaly, Ahmed O. Moaaz, Mostafa Makrahy
Abstract:
The main purpose of a car suspension system is to reduce the vibrations resulting from road roughness. The main objective of this research paper is to decrease vibration and improve passenger comfort through controlling car suspension system using sliding mode control techniques. The mathematical model for passive and active suspensions systems for quarter car model which subject to excitation from different road profiles is obtained. The active suspension system is synthesized based on sliding mode control for a quarter car model. The performance of the sliding mode control is determined through computer simulations using MATLAB and SIMULINK toolbox. The simulated results plotted in time domain, and root mean square values. It is found that active suspension system using sliding mode control improves the ride comfort and decrease vibration.Keywords: quarter car model, active suspension system, sliding mode control, road profile
Procedia PDF Downloads 3091343 Improvement in Tool Life Through Optimizing Cutting Parameters Using Cryogenic Media in Machining of Aerospace Alloy Steel
Authors: Waseem Tahir, Syed Hussain Imran Jaffery, Mohammad Azam
Abstract:
In this research work, liquid nitrogen gas (LN2) is used as a cryogenic media to optimize the cutting parameters for evaluation of tool flank wear width of Tungsten Carbide Insert (CNMG 120404-WF 4215) while turning a high strength alloy steel. Robust design concept of Taguchi L9 (34) method is applied to determine the optimum conditions. The analysis is revealed that cryogenic impact is more significant in reduction of the tool flank wear. However, High Speed Machining is shown most significant as compare to cooling media on work piece surface roughness.Keywords: turning, cryogenic cooling, liquid nitrogen, flank wear, surface finish
Procedia PDF Downloads 5121342 Determinants of Profitability in Indian Pharmaceutical Firms in the New Intellectual Property Rights Regime
Authors: Shilpi Tyagi, D. K. Nauriyal
Abstract:
This study investigates the firm level determinants of profitability of Indian drug and pharmaceutical industry. The study uses inflation adjusted panel data for a period 2000-2013 and applies OLS regression model with Driscoll-Kraay standard errors. It has been found that export intensity, A&M intensity, firm’s market power and stronger patent regime dummy have exercised positive influence on profitability. The negative and statistically significant influence of R&D intensity and raw material import intensity points to the need for firms to adopt suitable investment strategies. The study suggests that firms are required to pay far more attention to optimize their operating expenditures, advertisement and marketing expenditures and improve their export orientation, as part of the long term strategy.Keywords: Indian pharmaceutical industry, profits, TRIPS, performance
Procedia PDF Downloads 4371341 Adapting the Tweeting Factory Concept for Universal Production Optimization in Industry 5.0
Authors: Sławomir Lasota, Tomasz Kajdanowicz
Abstract:
This paper delves into adapting the Tweeting Factory paradigm to achieve universal production optimization under the Industry 5.0 framework. The proposed system creates a dynamic decision-making environment by collecting and analyzing structured telemetry data (”tweets”) from production lines. A hybrid recommendation engine combines rule-based systems with machine learning models to enhance real-time responsiveness and operator engagement. The research evaluates the system’s ability to optimize diverse industrial processes through predictive KPIs and real-time feedback loops. Results indicate significant advancements in eco-efficiency and operator productivity, showcasing the versatility of the Tweeting Factory approach in meeting the demands of human-centric and sustainable production.Keywords: tweeting factory, production optimization, industry 5.0, recommendation
Procedia PDF Downloads 71340 X-Ray Detector Technology Optimization in Computed Tomography
Authors: Aziz Ikhlef
Abstract:
Most of multi-slices Computed Tomography (CT) scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This is translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80 kVp and 140 kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts
Procedia PDF Downloads 1951339 Optimizing Pick and Place Operations in a Simulated Work Cell for Deformable 3D Objects
Authors: Troels Bo Jørgensen, Preben Hagh Strunge Holm, Henrik Gordon Petersen, Norbert Kruger
Abstract:
This paper presents a simulation framework for using machine learning techniques to determine robust robotic motions for handling deformable objects. The main focus is on applications in the meat sector, which mainly handle three-dimensional objects. In order to optimize the robotic handling, the robot motions have been parameterized in terms of grasp points, robot trajectory and robot speed. The motions are evaluated based on a dynamic simulation environment for robotic control of deformable objects. The evaluation indicates certain parameter setups, which produce robust motions in the simulated environment, and based on a visual analysis indicate satisfactory solutions for a real world system.Keywords: deformable objects, robotic manipulation, simulation, real world system
Procedia PDF Downloads 2811338 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro
Abstract:
The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.Keywords: NARX (Nonlinear Autoregressive Exogenous Model), prediction, stock market, time series
Procedia PDF Downloads 2441337 Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation
Authors: Gholamhosein Khosravi, Mohammad Azadi, Hamidreza Ghezavati
Abstract:
In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed.Keywords: carbon nanotubes, vibration control, piezoelectric layers, elastic foundation
Procedia PDF Downloads 2721336 Development of an Automatic Control System for ex vivo Heart Perfusion
Authors: Pengzhou Lu, Liming Xin, Payam Tavakoli, Zhonghua Lin, Roberto V. P. Ribeiro, Mitesh V. Badiwala
Abstract:
Ex vivo Heart Perfusion (EVHP) has been developed as an alternative strategy to expand cardiac donation by enabling resuscitation and functional assessment of hearts donated from marginal donors, which were previously not accepted. EVHP parameters, such as perfusion flow (PF) and perfusion pressure (PP) are crucial for optimal organ preservation. However, with the heart’s constant physiological changes during EVHP, such as coronary vascular resistance, manual control of these parameters is rendered imprecise and cumbersome for the operator. Additionally, low control precision and the long adjusting time may lead to irreversible damage to the myocardial tissue. To solve this problem, an automatic heart perfusion system was developed by applying a Human-Machine Interface (HMI) and a Programmable-Logic-Controller (PLC)-based circuit to control PF and PP. The PLC-based control system collects the data of PF and PP through flow probes and pressure transducers. It has two control modes: the RPM-flow mode and the pressure mode. The RPM-flow control mode is an open-loop system. It influences PF through providing and maintaining the desired speed inputted through the HMI to the centrifugal pump with a maximum error of 20 rpm. The pressure control mode is a closed-loop system where the operator selects a target Mean Arterial Pressure (MAP) to control PP. The inputs of the pressure control mode are the target MAP, received through the HMI, and the real MAP, received from the pressure transducer. A PID algorithm is applied to maintain the real MAP at the target value with a maximum error of 1mmHg. The precision and control speed of the RPM-flow control mode were examined by comparing the PLC-based system to an experienced operator (EO) across seven RPM adjustment ranges (500, 1000, 2000 and random RPM changes; 8 trials per range) tested in a random order. System’s PID algorithm performance in pressure control was assessed during 10 EVHP experiments using porcine hearts. Precision was examined through monitoring the steady-state pressure error throughout perfusion period, and stabilizing speed was tested by performing two MAP adjustment changes (4 trials per change) of 15 and 20mmHg. A total of 56 trials were performed to validate the RPM-flow control mode. Overall, the PLC-based system demonstrated the significantly faster speed than the EO in all trials (PLC 1.21±0.03, EO 3.69±0.23 seconds; p < 0.001) and greater precision to reach the desired RPM (PLC 10±0.7, EO 33±2.7 mean RPM error; p < 0.001). Regarding pressure control, the PLC-based system has the median precision of ±1mmHg error and the median stabilizing times in changing 15 and 20mmHg of MAP are 15 and 19.5 seconds respectively. The novel PLC-based control system was 3 times faster with 60% less error than the EO for RPM-flow control. In pressure control mode, it demonstrates a high precision and fast stabilizing speed. In summary, this novel system successfully controlled perfusion flow and pressure with high precision, stability and a fast response time through a user-friendly interface. This design may provide a viable technique for future development of novel heart preservation and assessment strategies during EVHP.Keywords: automatic control system, biomedical engineering, ex-vivo heart perfusion, human-machine interface, programmable logic controller
Procedia PDF Downloads 1751335 Development of a Congestion Controller of Computer Network Using Artificial Intelligence Algorithm
Authors: Mary Anne Roa
Abstract:
Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially for today’s very high speed networks. To address this undeniably global issue, the study focuses on the development of a fuzzy-based congestion control model concerned with allocating the resources of a computer network such that the system can operate at an adequate performance level when the demand exceeds or is near the capacity of the resources. Fuzzy logic based models have proven capable of accurately representing a wide variety of processes. The model built is based on bandwidth, the aggregate incoming traffic and the waiting time. The theoretical analysis and simulation results show that the proposed algorithm provides not only good utilization but also low packet loss.Keywords: congestion control, queue management, computer networks, fuzzy logic
Procedia PDF Downloads 4001334 Finite Element Simulation of Deep Drawing Process to Minimize Earing
Authors: Pawan S. Nagda, Purnank S. Bhatt, Mit K. Shah
Abstract:
Earing defect in drawing process is highly undesirable not only because it adds on an additional trimming operation but also because the uneven material flow demands extra care. The objective of this work is to study the earing problem in the Deep Drawing of circular cup and to optimize the blank shape to reduce the earing. A finite element model is developed for 3-D numerical simulation of cup forming process in ABAQUS. Extra-deep-drawing (EDD) steel sheet has been used for simulation. Properties and tool design parameters were used as input for simulation. Earing was observed in the simulated cup and it was measured at various angles with respect to rolling direction. To reduce the earing defect initial blank shape was modified with the help of anisotropy coefficient. Modified blanks showed notable reduction in earing.Keywords: anisotropy, deep drawing, earing, finite element simulation
Procedia PDF Downloads 3771333 Enzymatic Esterification of Sardine Oil Processed in Morocco
Authors: M. Kharroubi, Y. Rady, F. Bellali, S. Himmi
Abstract:
The global objective of this study is to upgrade the sardine oil processed in Morocco by using enzymatic solutions. The specific objective of this part of study is to optimize the various parameters involved in enzymatic deacidification of fish oil processed in Morocco: pressure, ratio of oil/novozymes 435, ratio of oil/glycerol, temperature. The best deacidification yields were obtained with: -A temperature of 70 °C; -A ratio -Oil/Glycerol: 2% (% P); -A ratio -Oil/Novozyme 435: 1% (% P); -A pressure: 15 to 25 mbar. On the other hand, the study of the effect of initial oil acidity showed that whatever the acidity of the oil studied (very acidic, or low acidic), the final yields are high. Acidity does not reduce the reaction efficiency. From an industrial point of view, this represents a competitive advantage to consider. This eco-friend enzymatic solution may allows Moroccan fish oil producers to achieve acid number values that meet the standard.Keywords: sardine oil, enzymatic esterfication, desacidification, acid number
Procedia PDF Downloads 3851332 Health Assessment of Power Transformer Using Fuzzy Logic
Authors: Yog Raj Sood, Rajnish Shrivastava, Anchal Wadhwa
Abstract:
Power transformer is one of the electrical equipment that has a central and critical role in the power system. In order to avoid power transformer failure, information system that provides the transformer condition is needed. This paper presents an information system to know the exact situations prevailing within the transformer by declaring its health index. Health index of a transformer is decided by considering several diagnostic tools. The current work deals with UV-Vis, IFT, FP, BDV and Water Content. UV/VIS results have been pre-accessed using separate FL controller for concluding with the Furan contents. It is broadly accepted that the life of a power transformer is the life of the oil/ paper insulating system. The method relies on the use of furan analysis (insulation paper), and other oil analysis results as a means to declare health index. Fuzzy logic system is used to develop the information system. The testing is done on 5 samples of oil of transformers of rating 132/66 KV to obtain the results and results are analyzed using fuzzy logic model.Keywords: interfacial tension analyzer (ift), flash point (fp), furfuraldehyde (fal), health index
Procedia PDF Downloads 636