Search results for: network distributed diagnosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8308

Search results for: network distributed diagnosis

7588 Improved Performance Using Adaptive Pre-Coding in the Cellular Network

Authors: Yong-Jun Kim, Jae-Hyun Ro, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

This paper proposes the cooperative transmission scheme with pre-coding because the cellular communication requires high reliability. The cooperative transmission scheme uses pre-coding method with limited feedback information among small cells. Particularly, the proposed scheme has adaptive mode according to the position of mobile station. Thus, demand of recent wireless communication is resolved by this scheme. From the simulation results, the proposed scheme has better performance compared to the conventional scheme in the cellular network.

Keywords: CDD, cellular network, pre-coding, SPC

Procedia PDF Downloads 569
7587 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural

Authors: Mohammad Heidari

Abstract:

In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.

Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network

Procedia PDF Downloads 416
7586 Grid Based Traffic Vulnerability Model Using Betweenness Centrality for Urban Disaster Management Information

Authors: Okyu Kwon, Dongho Kang, Byungsik Kim, Seungkwon Jung

Abstract:

We propose a technique to measure the impact of loss of traffic function in a particular area to surrounding areas. The proposed method is applied to the city of Seoul, which is the capital of South Korea, with a population of about ten million. Based on the actual road network in Seoul, we construct an abstract road network between 1kmx1km grid cells. The link weight of the abstract road network is re-adjusted considering traffic volume measured at several survey points. On the modified abstract road network, we evaluate the traffic vulnerability by calculating a network measure of betweenness centrality (BC) for every single grid cells. This study analyzes traffic impacts caused by road dysfunction due to heavy rainfall in urban areas. We could see the change of the BC value in all other grid cells by calculating the BC value once again when the specific grid cell lost its traffic function, that is, when the node disappeared on the grid-based road network. The results show that it is appropriate to use the sum of the BC variation of other cells as the influence index of each lattice cell on traffic. This research was supported by a grant (2017-MOIS31-004) from Fundamental Technology Development Program for Extreme Disaster Response funded by Korean Ministry of Interior and Safety (MOIS).

Keywords: vulnerability, road network, beweenness centrality, heavy rainfall, road impact

Procedia PDF Downloads 95
7585 Analysis of the Impact of Suez Canal on the Robustness of Global Shipping Networks

Authors: Zimu Li, Zheng Wan

Abstract:

The Suez Canal plays an important role in global shipping networks and is one of the most frequently used waterways in the world. The 2021 canal obstruction by ship Ever Given in March 2021, however, completed blocked the Suez Canal for a week and caused significant disruption to world trade. Therefore, it is very important to quantitatively analyze the impact of the accident on the robustness of the global shipping network. However, the current research on maritime transportation networks is usually limited to local or small-scale networks in a certain region. Based on the complex network theory, this study establishes a global shipping complex network covering 2713 nodes and 137830 edges by using the real trajectory data of the global marine transport ship automatic identification system in 2018. At the same time, two attack modes, deliberate (Suez Canal Blocking) and random, are defined to calculate the changes in network node degree, eccentricity, clustering coefficient, network density, network isolated nodes, betweenness centrality, and closeness centrality under the two attack modes, and quantitatively analyze the actual impact of Suez Canal Blocking on the robustness of global shipping network. The results of the network robustness analysis show that Suez Canal blocking was more destructive to the shipping network than random attacks of the same scale. The network connectivity and accessibility decreased significantly, and the decline decreased with the distance between the port and the canal, showing the phenomenon of distance attenuation. This study further analyzes the impact of the blocking of the Suez Canal on Chinese ports and finds that the blocking of the Suez Canal significantly interferes withChina's shipping network and seriously affects China's normal trade activities. Finally, the impact of the global supply chain is analyzed, and it is found that blocking the canal will seriously damage the normal operation of the global supply chain.

Keywords: global shipping networks, ship AIS trajectory data, main channel, complex network, eigenvalue change

Procedia PDF Downloads 182
7584 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network

Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy

Abstract:

The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.

Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence

Procedia PDF Downloads 127
7583 “Fake It Till You Make It”: A Qualitative Study into the Well-being of Autistic Women

Authors: Kathleen Seers, Rachel Hogg

Abstract:

Diagnosis of Autism Spectrum Disorder (ASD) in women is increasing, prompting research into the presentation of female ASD and exploring why females are failing to meet the diagnostic threshold. One explanation is the use of masking behaviors, where traits of ASD are suppressed and gender-appropriate behaviors are mimicked to reduce the visibility and victimization of ASD girls. Current research explores ASD presentation and the lived experiences of ASD girls and adolescents; however, there is a paucity of literature in relation to the intra- and inter- psychic experiences of ASD women. Through a social constructionist framework, this qualitative study sought to understand how the construction of gender and the medicalisation of ASD influences women’s experiences of ASD. This study also explored the use and consequence of masking strategies and the impact this has on well-being. Eight women were interviewed, and three major themes were identified. The themes outline the influence of gender expectations and social norms on the women’s experiences, the significance of diagnosis to their identity, and the influence of the medicalization of ASD. Participants shared experiences of feeling different and internalizing blame for this difference. The feeling of difference was a major contributor to the women’s positive or negative mental well-being. The process of diagnosis allowed participants to create and confirm their identity. Diagnosis also led to improvements in well-being, however, the findings also explore the complexity of labeling individuals with a disorder and the difficulties that arise from the construct of ‘functionality’ for those with Autism. The study also explores the temporal nature of ASD and the changing experiences of women as they mature. It is hoped this study promotes discussion and provides clinicians and those connected to ASD women with insights into the support ASD women require to live authentic lives.

Keywords: female autism, gender, masking, social constructionism

Procedia PDF Downloads 121
7582 Memory and Narratives Rereading before and after One Week

Authors: Abigail M. Csik, Gabriel A. Radvansky

Abstract:

As people read through event-based narratives, they construct an event model that captures information about the characters, goals, location, time, and causality. For many reasons, memory for such narratives is represented at different levels, namely, the surface form, textbase, and event model levels. Rereading has been shown to decrease surface form memory, while, at the same time, increasing textbase and event model memories. More generally, distributed practice has consistently shown memory benefits over massed practice for different types of materials, including texts. However, little research has investigated distributed practice of narratives at different inter-study intervals and these effects on these three levels of memory. Recent work in our lab has indicated that there may be dramatic changes in patterns of forgetting around one week, which may affect the three levels of memory. The present experiment aimed to determine the effects of rereading on the three levels of memory as a factor of whether the texts were reread before versus after one week. Participants (N = 42) read a set of stories, re-read them either before or after one week (with an inter-study interval of three days, seven days, or fourteen days), and then took a recognition test, from which the three levels of representation were derived. Signal detection results from this study reveal that differential patterns at the three levels as a factor of whether the narratives were re-read prior to one week or after one week. In particular, an ANOVA revealed that surface form memory was lower (p = .08) while textbase (p = .02) and event model memory (p = .04) were greater if narratives were re-read 14 days later compared to memory when narratives were re-read 3 days later. These results have implications for what type of memory benefits from distributed practice at various inter-study intervals.

Keywords: memory, event cognition, distributed practice, consolidation

Procedia PDF Downloads 225
7581 Design of a Real Time Closed Loop Simulation Test Bed on a General Purpose Operating System: Practical Approaches

Authors: Pratibha Srivastava, Chithra V. J., Sudhakar S., Nitin K. D.

Abstract:

A closed-loop system comprises of a controller, a response system, and an actuating system. The controller, which is the system under test for us, excites the actuators based on feedback from the sensors in a periodic manner. The sensors should provide the feedback to the System Under Test (SUT) within a deterministic time post excitation of the actuators. Any delay or miss in the generation of response or acquisition of excitation pulses may lead to control loop controller computation errors, which can be catastrophic in certain cases. Such systems categorised as hard real-time systems that need special strategies. The real-time operating systems available in the market may be the best solutions for such kind of simulations, but they pose limitations like the availability of the X Windows system, graphical interfaces, other user tools. In this paper, we present strategies that can be used on a general purpose operating system (Bare Linux Kernel) to achieve a deterministic deadline and hence have the added advantages of a GPOS with real-time features. Techniques shall be discussed how to make the time-critical application run with the highest priority in an uninterrupted manner, reduced network latency for distributed architecture, real-time data acquisition, data storage, and retrieval, user interactions, etc.

Keywords: real time data acquisition, real time kernel preemption, scheduling, network latency

Procedia PDF Downloads 147
7580 Security Issues in Long Term Evolution-Based Vehicle-To-Everything Communication Networks

Authors: Mujahid Muhammad, Paul Kearney, Adel Aneiba

Abstract:

The ability for vehicles to communicate with other vehicles (V2V), the physical (V2I) and network (V2N) infrastructures, pedestrians (V2P), etc. – collectively known as V2X (Vehicle to Everything) – will enable a broad and growing set of applications and services within the intelligent transport domain for improving road safety, alleviate traffic congestion and support autonomous driving. The telecommunication research and industry communities and standardization bodies (notably 3GPP) has finally approved in Release 14, cellular communications connectivity to support V2X communication (known as LTE – V2X). LTE – V2X system will combine simultaneous connectivity across existing LTE network infrastructures via LTE-Uu interface and direct device-to-device (D2D) communications. In order for V2X services to function effectively, a robust security mechanism is needed to ensure legal and safe interaction among authenticated V2X entities in the LTE-based V2X architecture. The characteristics of vehicular networks, and the nature of most V2X applications, which involve human safety makes it significant to protect V2X messages from attacks that can result in catastrophically wrong decisions/actions include ones affecting road safety. Attack vectors include impersonation attacks, modification, masquerading, replay, MiM attacks, and Sybil attacks. In this paper, we focus our attention on LTE-based V2X security and access control mechanisms. The current LTE-A security framework provides its own access authentication scheme, the AKA protocol for mutual authentication and other essential cryptographic operations between UEs and the network. V2N systems can leverage this protocol to achieve mutual authentication between vehicles and the mobile core network. However, this protocol experiences technical challenges, such as high signaling overhead, lack of synchronization, handover delay and potential control plane signaling overloads, as well as privacy preservation issues, which cannot satisfy the adequate security requirements for majority of LTE-based V2X services. This paper examines these challenges and points to possible ways by which they can be addressed. One possible solution, is the implementation of the distributed peer-to-peer LTE security mechanism based on the Bitcoin/Namecoin framework, to allow for security operations with minimal overhead cost, which is desirable for V2X services. The proposed architecture can ensure fast, secure and robust V2X services under LTE network while meeting V2X security requirements.

Keywords: authentication, long term evolution, security, vehicle-to-everything

Procedia PDF Downloads 167
7579 Three or Four Tonics and a Wave: The Trajectory of Health Insurance Regulation in Brazil

Authors: João Boaventura Branco De Matos

Abstract:

Currently, in Brazil, there is a considerable collection of publications on the supplementary health sector, but the vast majority is limited to retrospective examination of the sector. The present contribution starts from the diagnosis of an overwhelming change in the role of the State and its institutions, as well as an accelerated and no less forceful change in the way of producing goods and services, resulting in a clash between these different waves (state and market). This shock produces unique energy, capable of imposing major changes in the most varied sectors. Based on this diagnosis, there was an opportunity to offer the perspective and propositional study of regulatory measures relevant to the best conduct and performance of this sector in the future.

Keywords: private health regulation, state and market, forecasts in Brazilian regulation, political economy

Procedia PDF Downloads 151
7578 Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes

Authors: Zineb Nougrara

Abstract:

In this paper, we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We, therefore, have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country.

Keywords: satellite image, road network, nodes, image analysis and processing

Procedia PDF Downloads 274
7577 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
7576 Network Connectivity Knowledge Graph Using Dwave Quantum Hybrid Solvers

Authors: Nivedha Rajaram

Abstract:

Hybrid Quantum solvers have been given prime focus in recent days by computation problem-solving domain industrial applications. D’Wave Quantum Computers are one such paragon of systems built using quantum annealing mechanism. Discrete Quadratic Models is a hybrid quantum computing model class supplied by D’Wave Ocean SDK - a real-time software platform for hybrid quantum solvers. These hybrid quantum computing modellers can be employed to solve classic problems. One such problem that we consider in this paper is finding a network connectivity knowledge hub in a huge network of systems. Using this quantum solver, we try to find out the prime system hub, which acts as a supreme connection point for the set of connected computers in a large network. This paper establishes an innovative problem approach to generate a connectivity system hub plot for a set of systems using DWave ocean SDK hybrid quantum solvers.

Keywords: quantum computing, hybrid quantum solver, DWave annealing, network knowledge graph

Procedia PDF Downloads 127
7575 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models

Authors: Ethan James

Abstract:

Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.

Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina

Procedia PDF Downloads 181
7574 A Sensor Placement Methodology for Chemical Plants

Authors: Omid Ataei Nia, Karim Salahshoor

Abstract:

In this paper, a new precise and reliable sensor network methodology is introduced for unit processes and operations using the Constriction Coefficient Particle Swarm Optimization (CPSO) method. CPSO is introduced as a new search engine for optimal sensor network design purposes. Furthermore, a Square Root Unscented Kalman Filter (SRUKF) algorithm is employed as a new data reconciliation technique to enhance the stability and accuracy of the filter. The proposed design procedure incorporates precision, cost, observability, reliability together with importance-of-variables (IVs) as a novel measure in Instrumentation Criteria (IC). To the best of our knowledge, no comprehensive approach has yet been proposed in the literature to take into account the importance of variables in the sensor network design procedure. In this paper, specific weight is assigned to each sensor, measuring a process variable in the sensor network to indicate the importance of that variable over the others to cater to the ultimate sensor network application requirements. A set of distinct scenarios has been conducted to evaluate the performance of the proposed methodology in a simulated Continuous Stirred Tank Reactor (CSTR) as a highly nonlinear process plant benchmark. The obtained results reveal the efficacy of the proposed method, leading to significant improvement in accuracy with respect to other alternative sensor network design approaches and securing the definite allocation of sensors to the most important process variables in sensor network design as a novel achievement.

Keywords: constriction coefficient PSO, importance of variable, MRMSE, reliability, sensor network design, square root unscented Kalman filter

Procedia PDF Downloads 160
7573 Framework for Incorporating Environmental Performance in Network-Level Pavement Maintenance Program

Authors: Jessica Achebe, Susan Tighe

Abstract:

The reduction of material consumption and greenhouse gas emission when maintain and rehabilitating road networks can achieve added benefits including improved life cycle performance of pavements, reduced climate change impacts and human health effect due to less air pollution, improved productivity due to an optimal allocation of resources and reduced road user cost. This is the essence of incorporating environmental sustainability into pavement management. The functionality of performance measurement approach has made it one of the most valuable tool to Pavement Management Systems (PMSs) to account for different criteria in the decision-making process. However measuring the environmental performance of road network is still a far-fetched practice in road network management, more so an ostensive agency-wide environmental sustainability or sustainable maintenance specifications is missing. To address this challenge, this present research focuses on the environmental sustainability performance of network-level pavement management. The ultimate goal is to develop a framework to incorporate environmental sustainability in pavement management systems for network-level maintenance programming. In order to achieve this goal, this paper present the first step, the intention is to review the previous studies that employed environmental performance measures, as well as the suitability of environmental performance indicators for the evaluation of the sustainability of network-level pavement maintenance strategies. Through an industry practice survey, this paper provides a brief forward regarding the pavement manager motivations and barriers to making more sustainable decisions, and data needed to support the network-level environmental sustainability. The trends in network-level sustainable pavement management are also presented, existing gaps are highlighted, and ideas are proposed for network-level sustainable maintenance and rehabilitation programming.

Keywords: pavement management, environment sustainability, network-level evaluation, performance measures

Procedia PDF Downloads 306
7572 Differentially Expressed Genes in Atopic Dermatitis: Bioinformatics Analysis Of Pooled Microarray Gene Expression Datasets In Gene Expression Omnibus

Authors: Danna Jia, Bin Li

Abstract:

Background: Atopic dermatitis (AD) is a chronic and refractory inflammatory skin disease characterized by relapsing eczematous and pruritic skin lesions. The global prevalence of AD ranges from 1~ 20%, and its incidence rates are increasing. It affects individuals from infancy to adulthood, significantly impacting their daily lives and social activities. Despite its major health burden, the precise mechanisms underlying AD remain unknown. Understanding the genetic differences associated with AD is crucial for advancing diagnosis and targeted treatment development. This study aims to identify candidate genes of AD by using bioinformatics analysis. Methods: We conducted a comprehensive analysis of four pooled transcriptomic datasets (GSE16161, GSE32924, GSE130588, and GSE120721) obtained from the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was performed using the R statistical language. The differentially expressed genes (DEGs) between AD patients and normal individuals were functionally analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, a protein-protein interaction (PPI) network was constructed to identify candidate genes. Results: Among the patient-level gene expression datasets, we identified 114 shared DEGs, consisting of 53 upregulated genes and 61 downregulated genes. Functional analysis using GO and KEGG revealed that the DEGs were mainly associated with the negative regulation of transcription from RNA polymerase II promoter, membrane-related functions, protein binding, and the Human papillomavirus infection pathway. Through the PPI network analysis, we identified eight core genes: CD44, STAT1, HMMR, AURKA, MKI67, and SMARCA4. Conclusion: This study elucidates key genes associated with AD, providing potential targets for diagnosis and treatment. The identified genes have the potential to contribute to the understanding and management of AD. The bioinformatics analysis conducted in this study offers new insights and directions for further research on AD. Future studies can focus on validating the functional roles of these genes and exploring their therapeutic potential in AD. While these findings will require further verification as achieved with experiments involving in vivo and in vitro models, these results provided some initial insights into dysfunctional inflammatory and immune responses associated with AD. Such information offers the potential to develop novel therapeutic targets for use in preventing and treating AD.

Keywords: atopic dermatitis, bioinformatics, biomarkers, genes

Procedia PDF Downloads 82
7571 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 161
7570 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO

Procedia PDF Downloads 442
7569 Evaluation and Analysis of ZigBee-Based Wireless Sensor Network: Home Monitoring as Case Study

Authors: Omojokun G. Aju, Adedayo O. Sule

Abstract:

ZigBee wireless sensor and control network is one of the most popularly deployed wireless technologies in recent years. This is because ZigBee is an open standard lightweight, low-cost, low-speed, low-power protocol that allows true operability between systems. It is built on existing IEEE 802.15.4 protocol and therefore combines the IEEE 802.15.4 features and newly added features to meet required functionalities thereby finding applications in wide variety of wireless networked systems. ZigBee‘s current focus is on embedded applications of general-purpose, inexpensive, self-organising networks which requires low to medium data rates, high number of nodes and very low power consumption such as home/industrial automation, embedded sensing, medical data collection, smart lighting, safety and security sensor networks, and monitoring systems. Although the ZigBee design specification includes security features to protect data communication confidentiality and integrity, however, when simplicity and low-cost are the goals, security is normally traded-off. A lot of researches have been carried out on ZigBee technology in which emphasis has mainly been placed on ZigBee network performance characteristics such as energy efficiency, throughput, robustness, packet delay and delivery ratio in different scenarios and applications. This paper investigate and analyse the data accuracy, network implementation difficulties and security challenges of ZigBee network applications in star-based and mesh-based topologies with emphases on its home monitoring application using the ZigBee ProBee ZE-10 development boards for the network setup. The paper also expose some factors that need to be considered when designing ZigBee network applications and suggest ways in which ZigBee network can be designed to provide more resilient to network attacks.

Keywords: home monitoring, IEEE 802.14.5, topology, wireless security, wireless sensor network (WSN), ZigBee

Procedia PDF Downloads 383
7568 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory

Authors: Ci Lin, Tet Yeap, Iluju Kiringa

Abstract:

This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.

Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule

Procedia PDF Downloads 117
7567 The Risk and Prevention of Peer-To-Peer Network Lending in China

Authors: Zhizhong Yuan, Lili Wang, Chenya Zheng, Wuqi Yang

Abstract:

How to encourage and support peer-to-peer (P2P) network lending, and effectively monitor the risk of P2P network lending, has become the focus of the Chinese government departments, industrialists, experts and scholars in recent years. The reason is that this convenient online micro-credit service brings a series of credit risks and other issues. Avoiding the risks brought by the P2P network lending model, it can better play a benign role and help China's small and medium-sized private enterprises with vigorous development to solve the capital needs; otherwise, it will bring confusion to the normal financial order. As a form of financial services, P2P network lending has injected new blood into China's non-government finance in the past ten years, and has found a way out for idle funds and made up for the shortage of traditional financial services in China. However, it lacks feasible measures in credit evaluation and government supervision. This paper collects a large amount of data about P2P network lending of China. The data collection comes from the official media of the Chinese government, the public achievements of existing researchers and the analysis and collation of correlation data by the authors. The research content of this paper includes literature review; the current situation of China's P2P network lending development; the risk analysis of P2P network lending in China; the risk prevention strategy of P2P network lending in China. The focus of this paper is to try to find a specific program to strengthen supervision and avoid risks from the perspective of government regulators, operators of P2P network lending platform, investors and users of funds. These main measures include: China needs to develop self-discipline organization of P2P network lending industry and formulate self-discipline norms as soon as possible; establish a regular information disclosure system of P2P network lending platform; establish censorship of credit rating of borrowers; rectify the P2P network lending platform in compliance through the implementation of bank deposition. The results and solutions will benefit all the P2P network lending platforms, creditors, debtors, bankers, independent auditors and government agencies of China and other countries.

Keywords: peer-to-peer(P2P), regulation, risk prevention, supervision

Procedia PDF Downloads 166
7566 Enhancing the Sensitivity of Antigen Based Sandwich ELISA for COVID-19 Diagnosis in Saliva Using Gold Conjugated Nanobodies

Authors: Manal Kamel, Sara Maher

Abstract:

Development of sensitive non-invasive tests for detection of SARS-CoV-2 antigens is imperative to manage the extent of infection throughout the population, yet, it is still challenging. Here, we designed and optimized a sandwich enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2 S1 antigen detection in saliva. Both saliva samples and nasopharyngeal swapswere collected from 170 PCR-confirmed positive and negative cases. Gold nanoparticles (AuNPs) were conjugated with S1protein receptor binding domain (RBD) nanobodies. Recombinant S1 monoclonal antibodies (S1mAb) as primery antibody and gold conjugated nanobodies as secondary antibody were employed in sandwich ELISA. Our developed system were optimized to achieve 87.5 % sensitivity and 100% specificity for saliva samples compared to 89 % and 100% for nasopharyngeal swaps, respectively. This means that saliva could be a suitable replacement for nasopharyngeal swaps No cross reaction was detected with other corona virus antigens. These results revealed that our developed ELISAcould be establishedas a new, reliable, sensitive, and non-invasive test for diagnosis of SARS-CoV-2 infection, using the easily collected saliva samples.

Keywords: COVID 19, diagnosis, ELISA, nanobodies

Procedia PDF Downloads 134
7565 Slice Bispectrogram Analysis-Based Classification of Environmental Sounds Using Convolutional Neural Network

Authors: Katsumi Hirata

Abstract:

Certain systems can function well only if they recognize the sound environment as humans do. In this research, we focus on sound classification by adopting a convolutional neural network and aim to develop a method that automatically classifies various environmental sounds. Although the neural network is a powerful technique, the performance depends on the type of input data. Therefore, we propose an approach via a slice bispectrogram, which is a third-order spectrogram and is a slice version of the amplitude for the short-time bispectrum. This paper explains the slice bispectrogram and discusses the effectiveness of the derived method by evaluating the experimental results using the ESC‑50 sound dataset. As a result, the proposed scheme gives high accuracy and stability. Furthermore, some relationship between the accuracy and non-Gaussianity of sound signals was confirmed.

Keywords: environmental sound, bispectrum, spectrogram, slice bispectrogram, convolutional neural network

Procedia PDF Downloads 126
7564 A Web Service Based Sensor Data Management System

Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh

Abstract:

The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.

Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor

Procedia PDF Downloads 212
7563 The Role of Cyfra 21-1 in Diagnosing Non Small Cell Lung Cancer (NSCLC)

Authors: H. J. T. Kevin Mozes, Dyah Purnamasari

Abstract:

Background: Lung cancer accounted for the fourth most common cancer in Indonesia. 85% of all lung cancer cases are the Non-Small Cell Lung Cancer (NSCLC). The indistinct signs and symptoms of NSCLC sometimes lead to misdiagnosis. The gold standard assessment for the diagnosis of NSCLC is the histopathological biopsy, which is invasive. Cyfra 21-1 is a tumor marker, which can be found in the intermediate protein structure in the epitel. The accuracy of Cyfra 21-1 in diagnosing NSCLC is not yet known, so this report is made to seek the answer for the question above. Methods: Literature searching is done using online databases. Proquest and Pubmed are online databases being used in this report. Then, literature selection is done by excluding and including based on inclusion criterias and exclusion criterias. The selected literature is then being appraised using the criteria of validity, importance, and validity. Results: From six journals appraised, five of them are valid. Sensitivity value acquired from all five literature is ranging from 50-84.5 %, meanwhile the specificity is 87.8 %-94.4 %. Likelihood the ratio of all appraised literature is ranging from 5.09 -10.54, which categorized to Intermediate High. Conclusion: Serum Cyfra 21-1 is a sensitive and very specific tumor marker for diagnosis of non-small cell lung cancer (NSCLC).

Keywords: cyfra 21-1, diagnosis, nonsmall cell lung cancer, NSCLC, tumor marker

Procedia PDF Downloads 232
7562 Communication through Offline and Online Social Network of Thai Football Premier League Supporters

Authors: Krisana Chueachainat

Abstract:

The study is about the identity, typology and symbol using in communication through offline and online social network of each Thai football Premier League supporters. Also, study is about the factors that affected the sport to become the growing business and the communication factors that play the important role in the growth of the sport business. The Thai Premier League communicated with supporters in order to show the identity of each supporter and club in different ways. The expression of the identity was shown through online social network and offline told other people who they were. The study also about the factor that impacted the roles and communication factors that make football become the growing business. The factor that impact to the growth of football to the business, if clubs can action, the sport business would be to higher level and also push Thailand’s football to be effective and equal to other countries.

Keywords: online social network, offline social network, Thai football, supporters

Procedia PDF Downloads 299
7561 Study of Inhibition of the End Effect Based on AR Model Predict of Combined Data Extension and Window Function

Authors: Pan Hongxia, Wang Zhenhua

Abstract:

In this paper, the EMD decomposition in the process of endpoint effect adopted data based on AR model to predict the continuation and window function method of combining the two effective inhibition. Proven by simulation of the simulation signal obtained the ideal effect, then, apply this method to the gearbox test data is also achieved good effect in the process, for the analysis of the subsequent data processing to improve the calculation accuracy. In the end, under various working conditions for the gearbox fault diagnosis laid a good foundation.

Keywords: gearbox, fault diagnosis, ar model, end effect

Procedia PDF Downloads 366
7560 A Multicopy Strategy for Improved Security Wireless Sensor Network

Authors: Tuğçe Yücel

Abstract:

A Wireless Sensor Network(WSN) is a collection of sensor nodes which are deployed randomly in an area for surveillance. Efficient utilization of limited battery energy of sensors for increased network lifetime as well as data security are major design objectives for WSN. Moreover secure transmission of data sensed to a base station for further processing. Producing multiple copies of data packets and sending them on different paths is one of the strategies for this purpose, which leads to redundant energy consumption and hence reduced network lifetime. In this work we develop a restricted multi-copy multipath strategy where data move through ‘frequently’ or ‘heavily’ used sensors is copied by the sensor incident to such central nodes and sent on node-disjoint paths. We develop a mixed integer programing(MIP) model and heuristic approach present some preleminary test results.

Keywords: MIP, sensor, telecommunications, WSN

Procedia PDF Downloads 510
7559 Resting-State Functional Connectivity Analysis Using an Independent Component Approach

Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi

Abstract:

Objective: Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. Methods: 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as independent component analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. Results: The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. Conclusion: This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.

Keywords: ICA, RSN, refractory epilepsy, rsfMRI

Procedia PDF Downloads 76