Search results for: model based clustering
37305 Impact of an Instructional Design Model in a Mathematics Game for Enhancing Students’ Motivation in Developing Countries
Authors: Shafaq Rubab
Abstract:
One of the biggest reasons of dropouts from schools is lack of motivation and interest among the students, particularly in mathematics. Many developing countries are facing this problem and this issue is lowering the literacy rate in these developing countries. The best solution for increasing motivation level and interest among the students is using tablet game-based learning. However, a pedagogically sound game required a well-planned instructional design model to enhance learner’s attention and confidence otherwise effectiveness of the learning games suffers badly. This research aims to evaluate the impact of the pedagogically sound instructional design model on students’ motivation by using tablet game-based learning. This research was conducted among the out-of-school-students having an age range from 7 to 12 years and the sample size of two hundred students was purposively selected without any gender discrimination. Qualitative research was conducted by using a survey tool named Instructional Material Motivational Survey (IMMS) adapted from Keller Arcs model. A comparison of results from both groups’ i.e. experimental group and control group revealed that motivation level of the students taught by the game was higher than the students instructed by using conventional methodologies. Experimental group’s students were more attentive, confident and satisfied as compared to the control group’s students. This research work not only promoted the trend of digital game-based learning in developing countries but also supported that a pedagogically sound instructional design model utilized in an educational game can increase the motivation level of the students and can make the learning process a totally immersive and interactive fun loving activity.Keywords: digital game-based learning, student’s motivation, instructional design model, learning process
Procedia PDF Downloads 43237304 Ophthalmic Hashing Based Supervision of Glaucoma and Corneal Disorders Imposed on Deep Graphical Model
Authors: P. S. Jagadeesh Kumar, Yang Yung, Mingmin Pan, Xianpei Li, Wenli Hu
Abstract:
Glaucoma is impelled by optic nerve mutilation habitually represented as cupping and visual field injury frequently with an arcuate pattern of mid-peripheral loss, subordinate to retinal ganglion cell damage and death. Glaucoma is the second foremost cause of blindness and the chief cause of permanent blindness worldwide. Consequently, all-embracing study into the analysis and empathy of glaucoma is happening to escort deep learning based neural network intrusions to deliberate this substantial optic neuropathy. This paper advances an ophthalmic hashing based supervision of glaucoma and corneal disorders preeminent on deep graphical model. Ophthalmic hashing is a newly proposed method extending the efficacy of visual hash-coding to predict glaucoma corneal disorder matching, which is the faster than the existing methods. Deep graphical model is proficient of learning interior explications of corneal disorders in satisfactory time to solve hard combinatoric incongruities using deep Boltzmann machines.Keywords: corneal disorders, deep Boltzmann machines, deep graphical model, glaucoma, neural networks, ophthalmic hashing
Procedia PDF Downloads 25037303 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets
Authors: Kothuri Sriraman, Mattupalli Komal Teja
Abstract:
In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm
Procedia PDF Downloads 34837302 Genetic Trait Analysis of RIL Barley Genotypes to Sort-out the Top Ranked Elites for Advanced Yield Breeding Across Multi Environments of Tigray, Ethiopia
Authors: Hailekiros Tadesse Tekle, Yemane Tsehaye, Fetien Abay
Abstract:
Barley (Hordeum vulgare L.) is one of the most important cereal crops in the world, grown for the poor farmers in Tigray with low yield production. The purpose of this research was to estimate the performance of 166 barley genotypes against the quantitative traits with detailed analysis of the variance component, heritability, genetic advance, and genetic usefulness parameters. The finding of ANOVA was highly significant variation (p ≤ 0:01) for all the genotypes. We found significant differences in coefficient of variance (CV of 15%) for 5 traits out of the 12 quantitative traits. The topmost broad sense heritability (H2) was recorded for seeds per spike (98.8%), followed by thousand seed weight (96.5%) with 79.16% and 56.25%, respectively, of GAM. The traits with H2 ≥ 60% and GA/GAM ≥ 20% suggested the least influenced by the environment, governed by the additive genes and direct selection for improvement of such beneficial traits for the studied genotypes. Hence, the 20 outstanding recombinant inbred lines (RIL) barley genotypes performing early maturity, high yield, and 1000 seed weight traits simultaneously were the top ranked group barley genotypes out of the 166 genotypes. These are; G5, G25, G33, G118, G36, G123, G28, G34, G14, G10, G3, G13, G11, G32, G8, G39, G23, G30, G37, and G26. They were early in maturity, high TSW and GYP (TSW ≥ 55 g, GYP ≥ 15.22 g/plant, and DTM below 106 days). In general, the 166 genotypes were classified as high (group 1), medium (group 2), and low yield production (group 3) genotypes in terms of yield and yield component trait analysis by clustering; and genotype parameter analysis such as the heritability, genetic advance, and genetic usefulness traits in this investigation.Keywords: barley, clustering, genetic advance, heritability, usefulness, variability, yield
Procedia PDF Downloads 8637301 Algorithms for Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs
Authors: M. K. Benhaoua, A. K. Singh, A. E. Benyamina, P. Boulet
Abstract:
Mapping parallelized tasks of applications onto these MPSoCs can be done either at design time (static) or at run-time (dynamic). Static mapping strategies find the best placement of tasks at design-time, and hence, these are not suitable for dynamic workload and seem incapable of runtime resource management. The number of tasks or applications executing in MPSoC platform can exceed the available resources, requiring efficient run-time mapping strategies to meet these constraints. This paper describes a new Spiral Dynamic Task Mapping heuristic for mapping applications onto NoC-based Heterogeneous MPSoC. This heuristic is based on packing strategy and routing Algorithm proposed also in this paper. Heuristic try to map the tasks of an application in a clustering region to reduce the communication overhead between the communicating tasks. The heuristic proposed in this paper attempts to map the tasks of an application that are most related to each other in a spiral manner and to find the best possible path load that minimizes the communication overhead. In this context, we have realized a simulation environment for experimental evaluations to map applications with varying number of tasks onto an 8x8 NoC-based Heterogeneous MPSoCs platform, we demonstrate that the new mapping heuristics with the new modified dijkstra routing algorithm proposed are capable of reducing the total execution time and energy consumption of applications when compared to state-of-the-art run-time mapping heuristics reported in the literature.Keywords: multiprocessor system on chip, MPSoC, network on chip, NoC, heterogeneous architectures, run-time mapping heuristics, routing algorithm
Procedia PDF Downloads 48937300 A Mathematical Model for Hepatitis B Virus Infection and the Impact of Vaccination on Its Dynamics
Authors: T. G. Kassem, A. K. Adunchezor, J. P. Chollom
Abstract:
This paper describes a mathematical model developed to predict the dynamics of Hepatitis B virus (HBV) infection and to evaluate the potential impact of vaccination and treatment on its dynamics. We used a compartmental model expressed by a set of differential equations based on the characteristic of HBV transmission. With these, we find the threshold quantity R0, then find the local asymptotic stability of disease free equilibrium and endemic equilibrium. Furthermore, we find the global stability of the disease free and endemic equilibrium.Keywords: hepatitis B virus, epidemiology, vaccination, mathematical model
Procedia PDF Downloads 32437299 Mediation Models in Triadic Relationships: Illness Narratives and Medical Education
Authors: Yoko Yamada, Chizumi Yamada
Abstract:
Narrative psychology is based on the dialogical relationship between self and other. The dialogue can consist of divided, competitive, or opposite communication between self and other. We constructed models of coexistent dialogue in which self and other were positioned side by side and communicated sympathetically. We propose new mediation models for narrative relationships. The mediation models are based on triadic relationships that incorporate a medium or a mediator along with self and other. We constructed three types of mediation model. In the first type, called the “Joint Attention Model”, self and other are positioned side by side and share attention with the medium. In the second type, the “Triangle Model”, an agent mediates between self and other. In the third type, the “Caring Model”, a caregiver stands beside the communication between self and other. We apply the three models to the illness narratives of medical professionals and patients. As these groups have different views and experiences of disease or illness, triadic mediation facilitates the ability to see things from the other person’s perspective and to bridge differences in people’s experiences and feelings. These models would be useful for medical education in various situations, such as in considering the relationships between senior and junior doctors and between old and young patients.Keywords: illness narrative, mediation, psychology, model, medical education
Procedia PDF Downloads 40937298 An Experimental Quantitative Case Study of Competency-Based Learning in Online Mathematics Education
Authors: Pascal Roubides
Abstract:
The presentation proposed herein describes a research case study of a hybrid application of the competency-based education model best exemplified by Western Governor’s University, within the general temporal confines of an accelerated (8-week) term of a College Algebra course at the author’s institution. A competency-based model was applied to an accelerated online College Algebra course, built as an Open Educational Resources (OER) course, seeking quantifiable evidence of any differences in the academic achievement of students enrolled in the competency-based course and the academic achievement of the current delivery of the same course. Competency-based learning has been gaining in support in recent times and the author’s institution has also been involved in its own efforts to design and develop courses based on this approach. However, it is unknown whether there had been any research conducted to quantify evidence of the effect of this approach against traditional approaches prior to the author’s case study. The research question sought to answer in this experimental quantitative study was whether the online College Algebra curriculum at the author’s institution delivered via an OER-based competency-based model can produce statistically significant improvement in retention and success rates against the current delivery of the same course. Results obtained in this study showed that there is no statistical difference in the retention rate of the two groups. However, there was a statistically significant difference found between the rates of successful completion of students in the experimental group versus those in the control group.Keywords: competency-based learning, online mathematics, online math education, online courses
Procedia PDF Downloads 12837297 Model Based Design of Fly-by-Wire Flight Controls System of a Fighter Aircraft
Authors: Nauman Idrees
Abstract:
Modeling and simulation during the conceptual design phase are the most effective means of system testing resulting in time and cost savings as compared to the testing of hardware prototypes, which are mostly not available during the conceptual design phase. This paper uses the model-based design (MBD) method in designing the fly-by-wire flight controls system of a fighter aircraft using Simulink. The process begins with system definition and layout where modeling requirements and system components were identified, followed by hierarchical system layout to identify the sequence of operation and interfaces of system with external environment as well as the internal interface between the components. In the second step, each component within the system architecture was modeled along with its physical and functional behavior. Finally, all modeled components were combined to form the fly-by-wire flight controls system of a fighter aircraft as per system architecture developed. The system model developed using this method can be simulated using any simulation software to ensure that desired requirements are met even without the development of a physical prototype resulting in time and cost savings.Keywords: fly-by-wire, flight controls system, model based design, Simulink
Procedia PDF Downloads 11737296 Easymodel: Web-based Bioinformatics Software for Protein Modeling Based on Modeller
Authors: Alireza Dantism
Abstract:
Presently, describing the function of a protein sequence is one of the most common problems in biology. Usually, this problem can be facilitated by studying the three-dimensional structure of proteins. In the absence of a protein structure, comparative modeling often provides a useful three-dimensional model of the protein that is dependent on at least one known protein structure. Comparative modeling predicts the three-dimensional structure of a given protein sequence (target) mainly based on its alignment with one or more proteins of known structure (templates). Comparative modeling consists of four main steps 1. Similarity between the target sequence and at least one known template structure 2. Alignment of target sequence and template(s) 3. Build a model based on alignment with the selected template(s). 4. Prediction of model errors 5. Optimization of the built model There are many computer programs and web servers that automate the comparative modeling process. One of the most important advantages of these servers is that it makes comparative modeling available to both experts and non-experts, and they can easily do their own modeling without the need for programming knowledge, but some other experts prefer using programming knowledge and do their modeling manually because by doing this they can maximize the accuracy of their modeling. In this study, a web-based tool has been designed to predict the tertiary structure of proteins using PHP and Python programming languages. This tool is called EasyModel. EasyModel can receive, according to the user's inputs, the desired unknown sequence (which we know as the target) in this study, the protein sequence file (template), etc., which also has a percentage of similarity with the primary sequence, and its third structure Predict the unknown sequence and present the results in the form of graphs and constructed protein files.Keywords: structural bioinformatics, protein tertiary structure prediction, modeling, comparative modeling, modeller
Procedia PDF Downloads 9737295 A Comparative Study of Approaches in User-Centred Health Information Retrieval
Authors: Harsh Thakkar, Ganesh Iyer
Abstract:
In this paper, we survey various user-centered or context-based biomedical health information retrieval systems. We present and discuss the performance of systems submitted in CLEF eHealth 2014 Task 3 for this purpose. We classify and focus on comparing the two most prevalent retrieval models in biomedical information retrieval namely: Language Model (LM) and Vector Space Model (VSM). We also report on the effectiveness of using external medical resources and ontologies like MeSH, Metamap, UMLS, etc. We observed that the LM based retrieval systems outperform VSM based systems on various fronts. From the results we conclude that the state-of-art system scores for MAP was 0.4146, P@10 was 0.7560 and NDCG@10 was 0.7445, respectively. All of these score were reported by systems built on language modeling approaches.Keywords: clinical document retrieval, concept-based information retrieval, query expansion, language models, vector space models
Procedia PDF Downloads 32037294 Application of an Analytical Model to Obtain Daily Flow Duration Curves for Different Hydrological Regimes in Switzerland
Authors: Ana Clara Santos, Maria Manuela Portela, Bettina Schaefli
Abstract:
This work assesses the performance of an analytical model framework to generate daily flow duration curves, FDCs, based on climatic characteristics of the catchments and on their streamflow recession coefficients. According to the analytical model framework, precipitation is considered to be a stochastic process, modeled as a marked Poisson process, and recession is considered to be deterministic, with parameters that can be computed based on different models. The analytical model framework was tested for three case studies with different hydrological regimes located in Switzerland: pluvial, snow-dominated and glacier. For that purpose, five time intervals were analyzed (the four meteorological seasons and the civil year) and two developments of the model were tested: one considering a linear recession model and the other adopting a nonlinear recession model. Those developments were combined with recession coefficients obtained from two different approaches: forward and inverse estimation. The performance of the analytical framework when considering forward parameter estimation is poor in comparison with the inverse estimation for both, linear and nonlinear models. For the pluvial catchment, the inverse estimation shows exceptional good results, especially for the nonlinear model, clearing suggesting that the model has the ability to describe FDCs. For the snow-dominated and glacier catchments the seasonal results are better than the annual ones suggesting that the model can describe streamflows in those conditions and that future efforts should focus on improving and combining seasonal curves instead of considering single annual ones.Keywords: analytical streamflow distribution, stochastic process, linear and non-linear recession, hydrological modelling, daily discharges
Procedia PDF Downloads 16237293 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.
Authors: Zabeehullah, Fahim Arif, Yawar Abbas
Abstract:
Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.Keywords: SDN, IoT, DL, ML, DRS
Procedia PDF Downloads 11037292 Novel Pyrimidine Based Semicarbazones: Confirmation of Four Binding Site Pharmacophoric Model Hypothesis for Antiepileptic Activity
Authors: Harish Rajak, Swati Singh
Abstract:
A series of novel pyrimidine based semicarbazone were designed and synthesized on the basis of semicarbazone based pharmacophoric model to satisfy the structural prerequisite crucial for antiepileptic activity. The semicarbazones based pharmacophoric model consists of following four essential binding sites: (i) An aryl hydrophobic binding site with halo substituent; (ii) A hydrogen bonding domain; (iii) An electron donor group and (iv) Another hydrophobic-hydrophilic site controlling the pharmacokinetic features of the anticonvulsant. The aryl semicarbazones has been recognized as a structurally novel class of compounds with remarkable anticonvulsant activity. In the present study, all the test semicarbazones were subjected to molecular docking using Glide v5.8. Some of the compounds were found to interact with ARG192, GLU270 and THR353 residues of 1OHV protein, present in GABA-AT receptor. The chemical structures of the synthesized molecules were characterized by elemental and spectral (IR, 1H NMR, 13C NMR and MS) analysis. The anticonvulsant activities of the compounds were investigated using maximal electroshock seizure (MES) and subcutaneous pentylenetrtrazole (scPTZ) models. The neurotoxicity was evaluated in mice by the rotorod test. The attempts were also made to establish structure-activity relationships among synthesized compounds. The results of the present study confirmed that the pharmacophore model with four binding sites is essential for antiepileptic activity.Keywords: pyrimidine, semicarbazones, anticonvulsant activity, neurotoxicity
Procedia PDF Downloads 25337291 The Effectiveness of Computerized Dynamic Listening Assessment Informed by Attribute-Based Mediation Model
Authors: Yaru Meng
Abstract:
The study contributes to the small but growing literature around computerized approaches to dynamic assessment (C-DA), wherein individual items are accompanied by mediating prompts. Mediation in the current computerized dynamic listening assessment (CDLA) was informed by an attribute-based mediation model (AMM) that identified the underlying L2 listening cognitive abilities and associated descriptors. The AMM served to focus mediation during C-DA on particular cognitive abilities with a goal of specifying areas of learner difficulty. 86 low-intermediate L2 English learners from a university in China completed three listening assessments, with an experimental group receiving the CLDA system and a control group a non-dynamic assessment. As an assessment, the use of the AMM in C-DA generated detailed diagnoses for each learner. In addition, both within- and between-group repeated ANOVA found greater gains at the level of specific attributes among C-DA learners over the course of a 5-week study. Directions for future research are discussed.Keywords: computerized dynamic assessment, effectiveness, English as foreign language listening, attribute-based mediation model
Procedia PDF Downloads 22437290 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models
Authors: Rossella Arcucci, Luisa D'Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti
Abstract:
This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.Keywords: data assimilation, GPU architectures, ocean models, parallel algorithm
Procedia PDF Downloads 41237289 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction
Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi
Abstract:
For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy
Procedia PDF Downloads 11237288 R Software for Parameter Estimation of Spatio-Temporal Model
Authors: Budi Nurani Ruchjana, Atje Setiawan Abdullah, I. Gede Nyoman Mindra Jaya, Eddy Hermawan
Abstract:
In this paper, we propose the application package to estimate parameters of spatiotemporal model based on the multivariate time series analysis using the R open-source software. We build packages mainly to estimate the parameters of the Generalized Space Time Autoregressive (GSTAR) model. GSTAR is a combination of time series and spatial models that have parameters vary per location. We use the method of Ordinary Least Squares (OLS) and use the Mean Average Percentage Error (MAPE) to fit the model to spatiotemporal real phenomenon. For case study, we use oil production data from volcanic layer at Jatibarang Indonesia or climate data such as rainfall in Indonesia. Software R is very user-friendly and it is making calculation easier, processing the data is accurate and faster. Limitations R script for the estimation of model parameters spatiotemporal GSTAR built is still limited to a stationary time series model. Therefore, the R program under windows can be developed either for theoretical studies and application.Keywords: GSTAR Model, MAPE, OLS method, oil production, R software
Procedia PDF Downloads 24237287 A Risk Assessment for the Small Hive Beetle Based on Meteorological Standard Measurements
Authors: J. Junk, M. Eickermann
Abstract:
The Small Hive Beetle, Aethina tumida (Coleoptera: Nitidulidae) is a parasite for honey bee colonies, Apis mellifera, and was recently introduced to the European continent, accidentally. Based on the literature, a model was developed by using regional meteorological variables (daily values of minimum, maximum and mean air temperature as well as mean soil temperature at 50 mm depth) to calculate the time-point of hive invasion by A. tumida in springtime, the development duration of pupae as well as the number of generations of A. tumida per year. Luxembourg was used as a test region for our model for 2005 to 2013. The model output indicates a successful surviving of the Small Hive Beetle in Luxembourg with two up to three generations per year. Additionally, based on our meteorological data sets a first migration of SHB to apiaries can be expected from mid of March up to April. Our approach can be transferred easily to other countries to estimate the risk potential for a successful introduction and spreading of A. tumida in Western Europe.Keywords: Aethina tumida, air temperature, larval development, soil temperature
Procedia PDF Downloads 11637286 Continuous Improvement Model for Creative Industries Development
Authors: Rolandas Strazdas, Jurate Cerneviciute
Abstract:
Creative industries are defined as those industries which produce tangible or intangible artistic and creative output and have a potential for income generation by exploitingcultural assets and producing knowledge-based goods and services (both traditional and contemporary). With the emergence of an entire sector of creative industriestriggered by the development of creative products managingcreativity-based business processes becomes a critical issue. Diverse managerial practices and models on effective management of creativity have beenexamined in scholarly literature. Even thoughthese studies suggest how creativity in organisations can be nourished, they do not sufficiently relate the proposed practices to the underlying business processes. The article analyses a range of business process improvement methods such as PDCA, DMAIC, DMADV and TOC. The strengths and weaknesses of these methods aimed to improvethe innovation development process are identified. Based on the analysis of the existing improvement methods, a continuous improvement model was developed and presented in the article.Keywords: continuous improvement, creative industries, improvement model, process mapping
Procedia PDF Downloads 46837285 A Frictional-Collisional Closure Model for the Saturated Granular Flow: Experimental Evidence and Two Phase Modelling
Authors: Yunhui Sun, Qingquan Liu, Xiaoliang Wang
Abstract:
Dense granular flows widely exist in geological flows such as debris flow, landslide, or sheet flow, where both the interparticle and solid-liquid interactions are important to modify the flow. So, a two-phase approach with both phases correctly modelled is important for a better investigation of the saturated granular flows. However, a proper closure model covering a wide range of flowing states for the solid phase is still lacking. This study first employs a chute flow experiment based on the refractive index matching method, which makes it possible to obtain internal flow information such as velocity, shear rate, granular fluctuation, and volume fraction. The granular stress is obtained based on a steady assumption. The kinetic theory is found to describe the stress dependence on the flow state well. More importantly, the granular rheology is found to be frictionally dominated under weak shear and collisionally dominated under strong shear. The results presented thus provide direct experimental evidence on a possible frictional-collisional closure model for the granular phase. The data indicates that both frictional stresses exist over a wide range of the volume fraction, though traditional theory believes it vanishes below a critical volume fraction. Based on the findings, a two-phase model is used to simulate the chute flow. Both phases are modelled as continuum media, and the inter-phase interactions, such as drag force and pressure gradient force, are considered. The frictional-collisional model is used for the closure of the solid phase stress. The profiles of the kinematic properties agree well with the experiments. This model is further used to simulate immersed granular collapse, which is unsteady in nature, to study the applicability of this model, which is derived from steady flow.Keywords: closure model, collision, friction, granular flow, two-phase model
Procedia PDF Downloads 5937284 Fuzzy Logic Based Fault Tolerant Model Predictive MLI Topology
Authors: Abhimanyu Kumar, Chirag Gupta
Abstract:
This work presents a comprehensive study on the employment of Model Predictive Control (MPC) for a three-phase voltage-source inverter to regulate the output voltage efficiently. The inverter is modeled via the Clarke Transformation, considering a scenario where the load is unknown. An LC filter model is developed, demonstrating its efficacy in Total Harmonic Distortion (THD) reduction. The system, when implemented with fault-tolerant multilevel inverter topologies, ensures reliable operation even under fault conditions, a requirement that is paramount with the increasing dependence on renewable energy sources. The research also integrates a Fuzzy Logic based fault tolerance system which identifies and manages faults, ensuring consistent inverter performance. The efficacy of the proposed methodology is substantiated through rigorous simulations and comparative results, shedding light on the voltage prediction efficiency and the robustness of the model even under fault conditions.Keywords: total harmonic distortion, fuzzy logic, renewable energy sources, MLI
Procedia PDF Downloads 13037283 Port Governance Model by International Freight Forwarders’ Point of View: A Study at Port of Santos - Brazil
Authors: Guilherme B. B. Vieira, Rafael M. da Silva, Eliana T. P. Senna, Luiz A. S. Senna, Francisco J. Kliemann Neto
Abstract:
Due to the importance of ports to trade and economic development of the regions in which they are inserted, in recent decades the number of studies devoted to this subject has increased. Part of these studies consider the ports as business agglomerations and focuses on port governance. This is an important approach since the port performance is the result of activities performed by actors belonging to the port-logistics chain, which need to be properly coordinated. This coordination takes place through a port governance model. Given this context, this study aims to analyze the governance model of the port of Santos from the perspective of port customers. To do this, a closed-ended questionnaire based on a conceptual model that considers the key dimensions associated with port governance was applied to the international freight forwarders that operate in the port. The results show the applicability of the considered model and highlight improvement opportunities to be implemented at the port of Santos.Keywords: port governance, model, Port of Santos, customers’ perception
Procedia PDF Downloads 45237282 An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models
Authors: Christopher Godwin Udomboso, Angela Unna Chukwu, Isaac Kwame Dontwi
Abstract:
In selecting a Statistical Neural Network model, the Network Information Criterion (NIC) has been observed to be sample biased, because it does not account for sample sizes. The selection of a model from a set of fitted candidate models requires objective data-driven criteria. In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC), based on Kullback’s symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The analyses show that on a general note, the ANIC improves model selection in more sample sizes than does the NIC.Keywords: statistical neural network, network information criterion, adjusted network, information criterion, transfer function
Procedia PDF Downloads 56637281 Object-Based Flow Physics for Aerodynamic Modelling in Real-Time Environments
Authors: William J. Crowther, Conor Marsh
Abstract:
Object-based flow simulation allows fast computation of arbitrarily complex aerodynamic models made up of simple objects with limited flow interactions. The proposed approach is universally applicable to objects made from arbitrarily scaled ellipsoid primitives at arbitrary aerodynamic attitude and angular rate. The use of a component-based aerodynamic modelling approach increases efficiency by allowing selective inclusion of different physics models at run-time and allows extensibility through the development of new models. Insight into the numerical stability of the model under first order fixed-time step integration schemes is provided by stability analysis of the drag component. The compute cost of model components and functions is evaluated and compared against numerical benchmarks. Model static outputs are verified against theoretical expectations and dynamic behaviour using falling plate data from the literature. The model is applied to a range of case studies to demonstrate the efficacy of its application in extensibility, ease of use, and low computational cost. Dynamically complex multi-body systems can be implemented in a transparent and efficient manner, and we successfully demonstrate large scenes with hundreds of objects interacting with diverse flow fields.Keywords: aerodynamics, real-time simulation, low-order model, flight dynamics
Procedia PDF Downloads 10237280 A GIS Based Approach in District Peshawar, Pakistan for Groundwater Vulnerability Assessment Using DRASTIC Model
Authors: Syed Adnan, Javed Iqbal
Abstract:
In urban and rural areas groundwater is the most economic natural source of drinking. Groundwater resources of Pakistan are degraded due to high population growth and increased industrial development. A study was conducted in district Peshawar to assess groundwater vulnerable zones using GIS based DRASTIC model. Six input parameters (groundwater depth, groundwater recharge, aquifer material, soil type, slope and hydraulic conductivity) were used in the DRASTIC model to generate the groundwater vulnerable zones. Each parameter was divided into different ranges or media types and a subjective rating from 1-10 was assigned to each factor where 1 represented very low impact on pollution potential and 10 represented very high impact. Weight multiplier from 1-5 was used to balance and enhance the importance of each factor. The DRASTIC model scores obtained varied from 47 to 147. Using quantile classification scheme these values were reclassified into three zones i.e. low, moderate and high vulnerable zones. The areas of these zones were calculated. The final result indicated that about 400 km2, 506 km2, and 375 km2 were classified as low, moderate, and high vulnerable areas, respectively. It is recommended that the most vulnerable zones should be treated on first priority to facilitate the inhabitants for drinking purposes.Keywords: DRASTIC model, groundwater vulnerability, GIS in groundwater, drinking sources
Procedia PDF Downloads 45137279 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning
Authors: Melody Yin
Abstract:
Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time
Procedia PDF Downloads 16837278 A Mathematical Optimization Model for Locating and Fortifying Capacitated Warehouses under Risk of Failure
Authors: Tareq Oshan
Abstract:
Facility location and size decisions are important to any company because they affect profitability and success. However, warehouses are exposed to various risks of failure that affect their activity. This paper presents a mixed-integer non-linear mathematical model that can be used to determine optimal warehouse locations and sizes, which warehouses to fortify, and which branches should be assigned to specific warehouses when there is a risk of warehouse failure. Every branch is assigned to a fortified primary warehouse or a nonfortified primary warehouse and a fortified backup warehouse. The standard method and an introduced method, based on the average probabilities, for linearizing this mathematical model were used. A Canadian case study was used to demonstrate the developed mathematical model, followed by some sensitivity analysis.Keywords: supply chain network design, fortified warehouse, mixed-integer mathematical model, warehouse failure risk
Procedia PDF Downloads 24337277 Generating Music with More Refined Emotions
Authors: Shao-Di Feng, Von-Wun Soo
Abstract:
To generate symbolic music with specific emotions is a challenging task due to symbolic music datasets that have emotion labels are scarce and incomplete. This research aims to generate more refined emotions based on the training datasets that are only labeled with four quadrants in Russel’s 2D emotion model. We focus on the theory of Music Fadernet and map arousal and valence to the low-level attributes, and build a symbolic music generation model by combining transformer and GM-VAE. We adopt an in-attention mechanism for the model and improve it by allowing modulation by conditional information. And we show the music generation model could control the generation of music according to the emotions specified by users in terms of high-level linguistic expression and by manipulating their corresponding low-level musical attributes. Finally, we evaluate the model performance using a pre-trained emotion classifier against a pop piano midi dataset called EMOPIA, and by subjective listening evaluation, we demonstrate that the model could generate music with more refined emotions correctly.Keywords: music generation, music emotion controlling, deep learning, semi-supervised learning
Procedia PDF Downloads 8937276 Active Flutter Suppression of Sports Aircraft Tailplane by Supplementary Control Surface
Authors: Aleš Kratochvíl, Svatomír Slavík
Abstract:
The paper presents an aircraft flutter suppression by active damping of supplementary control surface at trailing edge. The mathematical model of thin oscillation airfoil with control surface driven by pilot is developed. The supplementary control surface driven by control law is added. Active damping of flutter by several control law is present. The structural model of tailplane with an aerodynamic strip theory based on the airfoil model is developed by a finite element method. The optimization process of stiffens parameters is carried out to match the structural model with results from a ground vibration test of a small sport airplane. The implementation of supplementary control surface driven by control law is present. The active damping of tailplane model is shown.Keywords: active damping, finite element method, flutter, tailplane model
Procedia PDF Downloads 292