Search results for: machine resistance training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9511

Search results for: machine resistance training

8791 Effects of High Intensity Interval vs. Low Intensity Continuous Training on LXRβ, ABCG5 and ABCG8 Genes Expression in Male Wistar Rats

Authors: Sdiqeh Jalali, M. R. Khazdair

Abstract:

Liver X receptors (LXR) have an essential role in the regulation of cholesterol metabolism, and their activation increase ABCG5 and ABCG8 genes expression for the improvement of cholesterol excretion from the body during reverse cholesterol transport (RCT). The aim of this study was to investigate the effects of high-intensity interval (HIT) and low intensity continuous (LIT) trainings on gene expression of these substances after a high-fat diet in Wistar rats. Materials and Methods: Fifteen male Wistar rats were divided into 3 groups: control group (n = 5), HIT exercise group (n = 5) and LIT exercise group (n = 5). All groups used a high-fat diet for 13 weeks, and the HIT and LIT groups performed the specific training program. The expression of LXRβ, ABCG5, and ABCG8 genes was measured after the training period. Findings: Data analysis showed significantly higher levels of LXRβ, ABCG5, and ABCG8 gene expression in HIT and LIT groups compared to the control group (P ≤ 0.05). Conclusion: HIT and LIT trainings after a high-fat diet have beneficial effects on RCT that prevent heart attack. Also, HIT training may have a greater effect on cholesterol excretion during the reverse cholesterol transport mechanism than LIT.

Keywords: liver X receptor, atherosclerosis, interval training, endurance training

Procedia PDF Downloads 117
8790 Improving Trainings of Mineral Processing Operators Through Gamification and Modelling and Simulation

Authors: Pedro A. S. Bergamo, Emilia S. Streng, Jan Rosenkranz, Yousef Ghorbani

Abstract:

Within the often-hazardous mineral industry, simulation training has speedily gained appreciation as an important method of increasing site safety and productivity through enhanced operator skill and knowledge. Performance calculations related to froth flotation, one of the most important concentration methods, is probably the hardest topic taught during the training of plant operators. Currently, most training teach those skills by traditional methods like slide presentations and hand-written exercises with a heavy focus on memorization. To optimize certain aspects of these pieces of training, we developed “MinFloat”, which teaches the operation formulas of the froth flotation process with the help of gamification. The simulation core based on a first-principles flotation model was implemented in Unity3D and an instructor tutoring system was developed, which presents didactic content and reviews the selected answers. The game was tested by 25 professionals with extensive experience in the mining industry based on a questionnaire formulated for training evaluations. According to their feedback, the game scored well in terms of quality, didactic efficacy and inspiring character. The feedback of the testers on the main target audience and the outlook of the mentioned solution is presented. This paper aims to provide technical background on the construction of educational games for the mining industry besides showing how feedback from experts can more efficiently be gathered thanks to new technologies such as online forms.

Keywords: training evaluation, simulation based training, modelling, and simulation, froth flotation

Procedia PDF Downloads 113
8789 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
8788 The Pedagogical Integration of Digital Technologies in Initial Teacher Training

Authors: Vânia Graça, Paula Quadros-Flores, Altina Ramos

Abstract:

The use of Digital Technologies in teaching and learning processes is currently a reality, namely in initial teacher training. This study aims at knowing the digital reality of students in initial teacher training in order to improve training in the educational use of ICT and to promote digital technology integration strategies in an educational context. It is part of the IFITIC Project "Innovate with ICT in Initial Teacher Training to Promote Methodological Renewal in Pre-school Education and in the 1st and 2nd Basic Education Cycle" which involves the School of Education, Polytechnic of Porto and Institute of Education, University of Minho. The Project aims at rethinking educational practice with ICT in the initial training of future teachers in order to promote methodological innovation in Pre-school Education and in the 1st and 2nd Cycles of Basic Education. A qualitative methodology was used, in which a questionnaire survey was applied to teachers in initial training. For data analysis, the techniques of content analysis with the support of NVivo software were used. The results point to the following aspects: a) future teachers recognize that they have more technical knowledge about ICT than pedagogical knowledge. This result makes sense if we consider the objective of Basic Education, so that the gaps can be filled in the Master's Course by students who wish to follow the teaching; b) the respondents are aware that the integration of digital resources contributes positively to students' learning and to the life of children and young people, which also promotes preparation in life; c) to be a teacher in the digital age there is a need for the development of digital literacy, lifelong learning and the adoption of new ways of teaching how to learn. Thus, this study aims to contribute to a reflection on the teaching profession in the digital age.

Keywords: digital technologies, initial teacher training, pedagogical use of ICT, skills

Procedia PDF Downloads 122
8787 Early Installation Effect on the Machines’ Generated Vibration

Authors: Maitham Al-Safwani

Abstract:

Motor vibration issues were analyzed by several studies. It is generally accepted that vibration issues result from poor equipment installation. We had a water injection pump tested in the factory and exceeded the pump the vibration limit. Once the pump was brought to the site, its half-size shim plates were replaced with full-size shims plates that drastically reduced the vibration. In this study, vibration data was recorded for several similar motors run at the same and different speeds. The vibration values were recorded -for two and a half hours- and the vibration readings were analyzed to determine when the readings became consistent. This was as well supported by recording the audio noises produced by some machines seeking a relationship between changes in machine noises and machine abnormalities, such as vibration.

Keywords: vibration, noise, installation, machine

Procedia PDF Downloads 183
8786 Fake News Detection for Korean News Using Machine Learning Techniques

Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Keywords: fake news detection, Korean news, machine learning, text mining

Procedia PDF Downloads 275
8785 A Study for Turkish Underwater Sports Federation Athletes: Evaluation of the Street Foods Consumption

Authors: Su Tezel

Abstract:

The paper deals with licensed athletes affiliated with the Turkish Underwater Sports Federation to assess the consumption status of street food. The aim of the paper is the frequency of training during competition preparatory training or season periods, the athletes' economic situation, social life, work-life or education situations are the directs them to street food? Also to evaluate the importance that athletes attach to their nutritional status. Data were collected with survey method. 141 underwater sports athletes participated in the survey. Empirical findings on 141 respondents are related to athletes' demographic information, which underwater sports branch they doing (underwater hockey, underwater rugby and free diving), with whom they live, training hours and frequency, street food consumption frequency and preferences, which type drinks they prefer drink with or without street foods and other similar things. Most of the athletes were male (64.5%), female (35.5%) and the most athletes from the sports branches included in the survey belong to underwater hockey (95.7%). 93.7% of athletes have a training time between 08:00 pm to 00:00 am and the frequency of consuming street food after training is 88%. As a remarkable result, 48% of the reasons for consuming street food easy access to street foods after training. Statistical analyzes were made with the data obtained and the status of street food consumption of athletes, whether they were suitable for professional athlete nutrition and their attitudes were evaluated.

Keywords: nutrition, street foods, underwater hockey, underwater sport

Procedia PDF Downloads 150
8784 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 105
8783 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: classification, machine learning, time representation, stock prediction

Procedia PDF Downloads 147
8782 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process

Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade

Abstract:

The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.

Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model

Procedia PDF Downloads 454
8781 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites

Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias

Abstract:

Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.

Keywords: auxetic fabrics, high performance, composites, energy absorption, impact resistance

Procedia PDF Downloads 254
8780 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services

Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme

Abstract:

Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.

Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing

Procedia PDF Downloads 111
8779 A Program of Data Analysis on the Possible State of the Antibiotic Resistance in Bangladesh Environment in 2019

Authors: S. D. Kadir

Abstract:

Background: Antibiotics have always been at the centrum of the revolution of modern microbiology. Micro-organisms and its pathogenicity, resistant organisms, inappropriate or over usage of various types of antibiotic agents are fuelled multidrug-resistant pathogenic organisms. Our present time review report mainly focuses on the therapeutic condition of antibiotic resistance and the possible roots behind the development of antibiotic resistance in Bangladesh in 2019. Methodology: The systemic review has progressed through a series of research analyses on various manuscripts published on Google Scholar, PubMed, Research Gate, and collected relevant information from established popular healthcare and diagnostic center and its subdivisions all over Bangladesh. Our research analysis on the possible assurance of antibiotic resistance been ensured by the selective medical reports and on random assay on the extent of individual antibiotic in 2019. Results: 5 research articles, 50 medical report summary, and around 5 patients have been interviewed while going through the estimation process. We have prioritized research articles where the research analysis been performed by the appropriate use of the Kirby-Bauer method. Kirby-Bauer technique is preferred as it provides greater efficiency, ensures lower performance expenditure, and supplies greater convenience and simplification in the application. In most of the reviews, clinical and laboratory standards institute guidelines were strictly followed. Most of our reports indicate significant resistance shown by the Beta-lactam drugs. Specifically by the derivatives of Penicillin's, Cephalosporin's (rare use of the first generation Cephalosporin and overuse of the second and third generation of Cephalosporin and misuse of the fourth generation of Cephalosporin), which are responsible for almost 67 percent of the bacterial resistance. Moreover, approximately 20 percent of the resistance was due to the fact of drug pumping from the bacterial cell by tetracycline and sulphonamides and their derivatives. Conclusion: 90 percent of the approximate antibiotic resistance is due to the usage of relative and true broad-spectrum antibiotics. The environment has been created by the following circumstances where; the excessive usage of broad-spectrum antibiotics had led to a condition where the disruption of native bacteria and a series of anti-microbial resistance causing a disturbance of the surrounding environments in medium, leading to a state of super-infection.

Keywords: antibiotics, antibiotic resistance, Kirby Bauer method, microbiology

Procedia PDF Downloads 120
8778 A Project-Orientated Training Concept to Prepare Students for Systems Engineering Activities

Authors: Elke Mackensen

Abstract:

Systems Engineering plays a key role during industrial product development of complex technical systems. The need for systems engineers in industry is growing. However, there is a gap between the industrial need and the academic education. Normally the academic education is focused on the domain specific design, implementation and testing of technical systems. Necessary systems engineering expertise like knowledge about requirements analysis, product cost estimation, management or social skills are poorly taught. Thus, there is the need of new academic concepts for teaching systems engineering skills. This paper presents a project-orientated training concept to prepare students from different technical degree programs for systems engineering activities. The training concept has been initially implemented and applied in the industrial engineering master program of the University of Applied Sciences Offenburg.

Keywords: educational systems engineering training, requirements analysis, system modelling, SysML

Procedia PDF Downloads 346
8777 Influence of Titanium Addition on Wear Properties of AM60 Magnesium Alloy

Authors: H. Zengin, M. E. Turan, Y. Turen, H. Ahlatci, Y. Sun

Abstract:

This study aimed for improving wear resistance of AM60 magnesium alloy by Ti addition (0, 0.2, 0.5, 1wt%Ti). An electric resistance furnace was used to produce alloys. Pure Mg together with Al, Al-Ti and Al-Mn were melted at 750 0C in a stainless steel crucible under controlled Ar gas atmosphere and then poured into a metal mould preheated at 250 0C. Microstructure characterizations were performed by light optical (LOM) and scanning electron microscope (SEM) after the wear test. Wear rates and friction coefficients were measured with a pin-on-disk type UTS-10 Tribometer test device under a load of 20N. The results showed that Ti addition altered the morphology and the amount of b-Mg17Al12 phase in the microstructure of AM60 alloy. b-Mg17Al12 phases on the grain boundaries were refined with increasing amount of Ti. An improvement in wear resistance of AM60 alloy was observed due to the alteration in the microstructure by Ti addition.

Keywords: magnesium alloy, titanium, SEM, wear

Procedia PDF Downloads 334
8776 The Effect of Durability and Pathogen Strains on the Wheat Induced Resistance against Zymoseptoria tritici as a Response to Paenibacillus sp. Strain B2

Authors: E. Samain, T. Aussenac, D. van Tuinen, S. Selim

Abstract:

Plant growth promoting rhizobacteria are known as potential biofertilizers and plant resistance inducers. The present work aims to study the durability of the resistance induced as a response to wheat seeds inoculation with PB2 and its influence by Z. tritici strains. The internal and external roots colonization have been determined in vitro, seven days post inoculation, by measuring the colony forming unit (CFU). In planta experimentations were done under controlled conditions included four wheat cultivars with different levels of resistance against Septoria Leaf Blotch (SLB) and four Z. tritici strains with high aggressiveness and resistance levels to fungicides. Plantlets were inoculated with PB2 at sowing and infected with Z. tritici at 3 leaves or tillering growth stages. The infection level with SLB was evaluated at 17 days post inoculation using real-time quantitative polymerase chain reaction (PCR). Results showed that PB2 has a high potential of wheat root external colonization (> 10⁶ CFU/g of root). However, the internal colonization seems to be cultivar dependent. Indeed, PB2 has not been observed as endophytic for one cultivar but has a high level of internal colonization with more than 104 CFU/g of root concerning the three others. Two wheat cultivars (susceptible and moderated resistant) were used to investigate PB2-induced resistance (PB2-IR). After the first infection with Z. tritici, results showed that PB2-IR has conferred a high protection efficiency (40-90%) against SLB in the two tested cultivars. Whereas the PB2-IR was effective against all tested strains with the moderate resistant cultivar, it was higher with the susceptible cultivar (> 64%) but against three of the four tested strains. Concerning the durability of the PB2-IR, after the second infection timing, it has been observed a significant decrease (10-59%) depending strains in the moderate resistant cultivar. Contrarily, the susceptible cultivar showed a stable and high protection level (76-84%) but against three of the four tested strains and interestingly, the strain that overcame PB2-IR was not the same as that of the first infection timing. To conclude, PB2 induces a high and durable resistance against Z. tritici. The PB2-IR is pathogen strain, plant growth stage and genotype dependent. These results may explain the loss of the induced resistance effectiveness under field conditions.

Keywords: induced resistance, Paenibacillus sp. strain B2, wheat genotypes, Zymoseptoria tritici

Procedia PDF Downloads 149
8775 A Predictive Machine Learning Model of the Survival of Female-led and Co-Led Small and Medium Enterprises in the UK

Authors: Mais Khader, Xingjie Wei

Abstract:

This research sheds light on female entrepreneurs by providing new insights on the survival predictions of companies led by females in the UK. This study aims to build a predictive machine learning model of the survival of female-led & co-led small & medium enterprises (SMEs) in the UK over the period 2000-2020. The predictive model built utilised a combination of financial and non-financial features related to both companies and their directors to predict SMEs' survival. These features were studied in terms of their contribution to the resultant predictive model. Five machine learning models are used in the modelling: Decision tree, AdaBoost, Naïve Bayes, Logistic regression and SVM. The AdaBoost model had the highest performance of the five models, with an accuracy of 73% and an AUC of 80%. The results show high feature importance in predicting companies' survival for company size, management experience, financial performance, industry, region, and females' percentage in management.

Keywords: company survival, entrepreneurship, females, machine learning, SMEs

Procedia PDF Downloads 101
8774 Self-Determination among Individuals with Intellectual Disability: An Experiment

Authors: Wasim Ahmad, Bir Singh Chavan, Nazli Ahmad

Abstract:

Objectives: The present investigation is an attempt to find out the efficacy of training the special educators on promoting self-determination among individuals with intellectual disability. Methods: The study equipped the special educators with necessary skills and knowledge to train individuals with the intellectual disability for practicing self-determination. Subjects: Special educators (N=25) were selected for training on self-determination among individuals with intellectual disability. After receiving the training, (N=50) individuals with an intellectual disability were selected and intervened by the trained special educators. Tool: Self-Determination Scale for Adults with Mild Mental Retardation (SDSAMR) developed by Keshwal and Thressiakutty (2010) has been used. It’s a reliable and valid tool used by many researchers. It has 36 items distributed in five domains namely: personal management, community participation, recreation and leisure time, choice making and problem solving. Analysis: The collected data was analyzed using the statistical techniques such as t-test, ANCOVA, and Posthoc Tuckey test. Results: The findings of the study reveal that there is a significant difference at 1% level in the pre and post tests mean scores (t-15.56) of self-determination concepts among the special educators. This indicates that the training enhanced the performance of special educators on the concept of self-determination among individuals with intellectual disability. The study also reveals that the training received on transition planning by the special educators found to be effective because they were able to practice the concept by imparting and training the individuals with intellectual disability to if determined. The results show that there was a significant difference at 1% level in the pre and post tests mean scores (t-16.61) of self-determination among individuals with intellectual disability. Conclusion: To conclude it can be said that the training has a remarkable impact on the performance of the individuals with intellectual disability on self-determination.

Keywords: experiment, individuals with intellectual disability, self-determination, special educators

Procedia PDF Downloads 334
8773 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification

Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang

Abstract:

Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.

Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification

Procedia PDF Downloads 133
8772 To Present and Explain Effective Methods in Teaching Social Science

Authors: Sulmaz Mozaffari, Zahra Mozaffari, Saman Mozaffari

Abstract:

Training is a counting and orderly process which purpose is to grow all as peals of the students to get the human knowledge and have the social norms. Also to help them grow their talents. Social science as in educational and training science at the sometime is very important for schools and universities. Unfortunately the method which is mostly used for teaching and training at present is student- teacher method and because of its ease the other methods are ignored. This research is to consider the most efficient methods in social science and analyse them. The Results show that the best methods in which the students are present during the teaching procedure.

Keywords: social science, methodology, student base methodology, technology

Procedia PDF Downloads 436
8771 Change Management as a Critical Success Factor In E-Government initiatives

Authors: Mohammed Alassim

Abstract:

In 2014, a UN survey stated that: "The greatest challenge to the adoption of whole-of government, which fundamentally rests on increased collaboration, is resistance to change among government actors". Change management has experienced both theoretically and practically many transformation over the years. When organizations have to implement radical changes, they have to encounter a plethora of issues which leads to ineffective or inefficient implementation of change in most cases. 70% of change projects fail because of human issues. It has been cited that” most studies still show a 60-70% failure rate for organizational change projects — a statistic that has stayed constant from the 1970’s to the present.”. E-government involves not just technical change but cultural, policy, social and organizational evolution. Managing change and overcoming resistance to change is seen as crucial in the success of E-government projects. Resistance can be from different levels in the organization (top management, middle management or employees at operational levels). There can be many reasons for resistance including fear of change and insecurity, lack of knowledge and absence of commitment from management to implement the change. The purpose of this study is to conduct in-depth research to understand the process of change and to identify the critical factors that have led to resistance from employees at different levels (top management, Middle management and operational employees) during e-government initiatives in the public sector in Saudi Arabia. The study is based on qualitative and empirical research methods conducted in the public sector in the Kingdom of Saudi Arabia. This research will use triangulation in data method (interview, group discussion and document review). This research will contribute significantly to knowledge in this field and will identify the measures that can be taken to reduce resistance to change, Upon analysis recommendations or model will be offered which can enable decision makers in public sector in Saudi Arabia how to plan, implement and evaluate change in e-government initiatives via change management strategy.

Keywords: change management, e-government, managing change, resistance to change

Procedia PDF Downloads 315
8770 Comparison of Entropy Coefficient and Internal Resistance of Two (Used and Fresh) Cylindrical Commercial Lithium-Ion Battery (NCR18650) with Different Capacities

Authors: Sara Kamalisiahroudi, Zhang Jianbo, Bin Wu, Jun Huang, Laisuo Su

Abstract:

The temperature rising within a battery cell depends on the level of heat generation, the thermal properties and the heat transfer around the cell. The rising of temperature is a serious problem of Lithium-Ion batteries and the internal resistance of battery is the main reason for this heating up, so the heat generation rate of the batteries is an important investigating factor in battery pack design. The delivered power of a battery is directly related to its capacity, decreases in the battery capacity means the growth of the Solid Electrolyte Interface (SEI) layer which is because of the deposits of lithium from the electrolyte to form SEI layer that increases the internal resistance of the battery. In this study two identical cylindrical Lithium-Ion (NCR18650)batteries from the same company with noticeable different in capacity (a fresh and a used battery) were compared for more focusing on their heat generation parameters (entropy coefficient and internal resistance) according to Brandi model, by utilizing potentiometric method for entropy coefficient and EIS method for internal resistance measurement. The results clarify the effect of capacity difference on cell electrical (R) and thermal (dU/dT) parameters. It can be very noticeable in battery pack design for its Safety.

Keywords: heat generation, Solid Electrolyte Interface (SEI), potentiometric method, entropy coefficient

Procedia PDF Downloads 473
8769 Predictive Analytics of Student Performance Determinants

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: student performance, supervised machine learning, classification, cross-validation, prediction

Procedia PDF Downloads 126
8768 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 73
8767 The Effectiveness of Self-Compassion Training: A Field Trial Study

Authors: Esmaeil Sarikhani

Abstract:

Objectives: Considering the importance of introducing new methods of improving self-compassion and compassion to the others in nursing students, this study intends to evaluate the effect of self-compassion training on nursing students. Methods: This is a field trial study in which 52 nursing interns from Isfahan University of Medical Sciences were selected using convenience sampling method and divided in two experimental and control groups. The sampling was done during two phases: before and after the intervention. The intervention consisted of eight sessions over eight weeks of self-compassion training. The data were collected using the self-compassion standard questionnaire with 26 questions before and after the intervention. Data were then analyzed by the SPSS18 software and independent and paired T-tests, and also Chi-square and Mann-Whitney tests. Results: The results obtained from the independent t-test showed that the mean score of self-compassion and its components in the experimental group was significantly increased compared to the control group (p < 0.001). Comparing the groups, the mean overall score difference of self-compassion and its components had also a statistically significant change after the intervention (p < 0.001). Conclusion: Self-compassion training program, leads to improving nursing students' self-compassion. As it seems, this method can be used as an important training course in order to improve compassion of nursing students to themselves and the others.

Keywords: self-compassion, student, nursing students, field trial

Procedia PDF Downloads 284
8766 The Use of Simulation-Based Training to Improve Team Dynamics during Code in Critical Care Units

Authors: Akram Rasheed

Abstract:

Background: Simulation in the health care field has been increasingly used over the last years in the training of resuscitation and life support practices. It has shown the advantage of improving the decision-making and technical skills through deliberate practice and return demonstration. Local Problem: This article reports on the integration of simulation-based training (SBT) in the training program about proper team dynamics and leadership skills during cardiopulmonary resuscitation (CPR) in the intensive care unit (ICU). Method and Intervention: Training of 180 critical care nurses was conducted using SBT between 1st January and 30th 2020. We had conducted 15 workshops, with the integration of SBT using high fidelity manikins and using demonstration and return-demonstration approach to train the nursing staff about proper team dynamics and leadership skills during CPR. Results: After completing the SBT session, all 180 nurses completed the evaluation form. The majority of evaluation items were rated over 95% for the effectiveness of the education; four items were less than 95% (88–94%). Lower rated items considered training and practice time, improved competency, and commitment to apply to learn. The team dynamics SBT was evaluated as an effective means to improve team dynamics and leadership skills during CPR in the intensive care unit (ICU). Conclusion: The use of simulation-based training to improve team dynamics and leadership skills is an effective method for better patient management during CPR. Besides skills competency, closed-loop communication, clear messages, clear roles, and assignments, knowing one’s limitations, knowledge sharing, constructive interventions, re-evaluating and summarizing, and mutual respect are all important concepts that should be considered during team dynamics training. However, participants reported the need for a repeated practice opportunity to build competency.

Keywords: cardiopulmonary resuscitation, high fidelity manikins, simulation-based training, team dynamics

Procedia PDF Downloads 142
8765 Identification of Training Topics for the Improvement of the Relevant Cognitive Skills of Technical Operators in the Railway Domain

Authors: Giulio Nisoli, Jonas Brüngger, Karin Hostettler, Nicole Stoller, Katrin Fischer

Abstract:

Technical operators in the railway domain are experts responsible for the supervisory control of the railway power grid as well as of the railway tunnels. The technical systems used to master these demanding tasks are constantly increasing in their degree of automation. It becomes therefore difficult for technical operators to maintain the control over the technical systems and the processes of their job. In particular, the operators must have the necessary experience and knowledge in dealing with a malfunction situation or unexpected event. For this reason, it is of growing importance that the skills relevant for the execution of the job are maintained and further developed beyond the basic training they receive, where they are educated in respect of technical knowledge and the work with guidelines. Training methods aimed at improving the cognitive skills needed by technical operators are still missing and must be developed. Goals of the present study were to identify which are the relevant cognitive skills of technical operators in the railway domain and to define which topics should be addressed by the training of these skills. Observational interviews were conducted in order to identify the main tasks and the organization of the work of technical operators as well as the technical systems used for the execution of their job. Based on this analysis, the most demanding tasks of technical operators could be identified and described. The cognitive skills involved in the execution of these tasks are those, which need to be trained. In order to identify and analyze these cognitive skills a cognitive task analysis (CTA) was developed. CTA specifically aims at identifying the cognitive skills that employees implement when performing their own tasks. The identified cognitive skills of technical operators were summarized and grouped in training topics. For every training topic, specific goals were defined. The goals regard the three main categories; knowledge, skills and attitude to be trained in every training topic. Based on the results of this study, it is possible to develop specific training methods to train the relevant cognitive skills of the technical operators.

Keywords: cognitive skills, cognitive task analysis, technical operators in the railway domain, training topics

Procedia PDF Downloads 153
8764 Crop Recommendation System Using Machine Learning

Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar

Abstract:

With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.

Keywords: crop recommendation, precision agriculture, crop, machine learning

Procedia PDF Downloads 14
8763 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: gravitational resistance, neural network, non-linear, pattern recognition

Procedia PDF Downloads 212
8762 H-Infinity Controller Design for the Switched Reluctance Machine

Authors: Siwar Fadhel, Imen Bahri, Man Zhang

Abstract:

The switched reluctance machine (SRM) has undeniable qualities in terms of low cost and mechanical robustness. However, its highly nonlinear character and its uncertain parameters justify the development of complicated controls. In this paper, authors present the design of a robust H-infinity current controller for an 8/6 SRM with taking into account the nonlinearity of the SRM and with rejection of disturbances. The electromagnetic torque is indirectly regulated through the current controller. To show the performances of this control, a robustness analysis is performed by comparing the H-infinity and PI controller simulation results. This comparison demonstrates better performances for the presented controller. The effectiveness and robustness of the presented controller are also demonstrated by experimental tests.

Keywords: current regulation, experimentation, robust H-infinity control, switched reluctance machine

Procedia PDF Downloads 310