Search results for: latent variables
3777 The Relationship of Fast Food Consumption Preference with Macro and Micro Nutrient Adequacy Students of SMP Negeri 5 Padang
Authors: Widari
Abstract:
This study aims to determine the relationship of fast food consumption preferences with macro and micro nutrient adequacy students of SMP Negeri 5 Padang. This study used a cross sectional study conducted on 100 students of SMP Negeri 5 Padang. The variables studied were fast food preferences, nutrition adequacy macronutrients (carbohydrate, protein, fat, fiber) and micro nutrients (sodium, calcium, iron). Confounding factor in this study was the physical activity level because it was considered quite affecting food consumption of students. Data collected by using a questionnaire food recall as many as 2 x 24 hours to see the history of the respondents eat at school day and on holidays. Then, data processed using software Nutrisurvey and Microsoft Excel 2010. The analysis was performed on samples that have low and medium category on physical activity. The physical activity was not analyzed with another variable to see the strength of the relationship between independent and dependent variables. So that, do restrictions on physical activity variables in an attempt to get rid of confounding in design. Univariate and bivariate analyzes performed using SPSS 16.0 for Windows with Kolmogrov-Smirnov statistical tests, confidence level = 95% (α = 0,05). Results of univariate analysis showed that more than 70% of respondents liked fast food. On average, respondents were malnourished macro; malnourished fiber (100%), carbohydrates (72%), and protein (56%), whereas for fat, excess intake of the respondents (41%). Furthermor, many respondents who have micronutrient deficiencies; 98% for sodium, 96% for iron, and 91% for calcium. The results of the bivariate analysis showed no significant association between fast food consumption preferences with macro and micro nutrient adequacy (p > 0,05). This happens because in the fact not all students who have a preference for fast food actually eat them. To study better in the future, it is expected sampling really like and eat fast food in order to obtain better analysis results.Keywords: fast food, nutritional adequacy, preferences, students
Procedia PDF Downloads 3743776 The Sustained Utility of Japan's Human Security Policy
Authors: Maria Thaemar Tana
Abstract:
The paper examines the policy and practice of Japan’s human security. Specifically, it asks the question: How does Japan’s shift towards a more proactive defence posture affect the place of human security in its foreign policy agenda? Corollary to this, how is Japan sustaining its human security policy? The objective of this research is to understand how Japan, chiefly through the Ministry of Foreign Affairs (MOFA) and JICA (Japan International Cooperation Agency), sustains the concept of human security as a policy framework. In addition, the paper also aims to show how and why Japan continues to include the concept in its overall foreign policy agenda. In light of the recent developments in Japan’s security policy, which essentially result from the changing security environment, human security appears to be gradually losing relevance. The paper, however, argues that despite the strategic challenges Japan faced and is facing, as well as the apparent decline of its economic diplomacy, human security remains to be an area of critical importance for Japanese foreign policy. In fact, as Japan becomes more proactive in its international affairs, the strategic value of human security also increases. Human security was initially envisioned to help Japan compensate for its weaknesses in the areas of traditional security, but as Japan moves closer to a more activist foreign policy, the soft policy of human security complements its hard security policies. Using the framework of neoclassical realism (NCR), the paper recognizes that policy-making is essentially a convergence of incentives and constraints at the international and domestic levels. The theory posits that there is no perfect 'transmission belt' linking material power on the one hand, and actual foreign policy on the other. State behavior is influenced by both international- and domestic-level variables, but while systemic pressures and incentives determine the general direction of foreign policy, they are not strong enough to affect the exact details of state conduct. Internal factors such as leaders’ perceptions, domestic institutions, and domestic norms, serve as intervening variables between the international system and foreign policy. Thus, applied to this study, Japan’s sustained utilization of human security as a foreign policy instrument (dependent variable) is essentially a result of systemic pressures (indirectly) (independent variables) and domestic processes (directly) (intervening variables). Two cases of Japan’s human security practice in two regions are examined in two time periods: Iraq in the Middle East (2001-2010) and South Sudan in Africa (2011-2017). The cases show that despite the different motives behind Japan’s decision to participate in these international peacekeepings ad peace-building operations, human security continues to be incorporated in both rhetoric and practice, thus demonstrating that it was and remains to be an important diplomatic tool. Different variables at the international and domestic levels will be examined to understand how the interaction among them results in changes and continuities in Japan’s human security policy.Keywords: human security, foreign policy, neoclassical realism, peace-building
Procedia PDF Downloads 1353775 Testing for Endogeneity of Foreign Direct Investment: Implications for Economic Policy
Authors: Liwiusz Wojciechowski
Abstract:
Research background: The current knowledge does not give a clear answer to the question of the impact of FDI on productivity. Results of the empirical studies are still inconclusive, no matter how extensive and diverse in terms of research approaches or groups of countries analyzed they are. It should also take into account the possibility that FDI and productivity are linked and that there is a bidirectional relationship between them. This issue is particularly important because on one hand FDI can contribute to changes in productivity in the host country, but on the other hand its level and dynamics may imply that FDI should be undertaken in a given country. As already mentioned, a two-way relationship between the presence of foreign capital and productivity in the host country should be assumed, taking into consideration the endogenous nature of FDI. Purpose of the article: The overall objective of this study is to determine the causality between foreign direct investment and total factor productivity in host county in terms of different relative absorptive capacity across countries. In the classic sense causality among variables is not always obvious and requires for testing, which would facilitate proper specification of FDI models. The aim of this article is to study endogeneity of selected macroeconomic variables commonly being used in FDI models in case of Visegrad countries: main recipients of FDI in CEE. The findings may be helpful in determining the structure of the actual relationship between variables, in appropriate models estimation and in forecasting as well as economic policymaking. Methodology/methods: Panel and time-series data techniques including GMM estimator, VEC models and causality tests were utilized in this study. Findings & Value added: The obtained results allow to confirm the hypothesis states the bi-directional causality between FDI and total factor productivity. Although results differ from among countries and data level of aggregation implications may be useful for policymakers in case of providing foreign capital attracting policy.Keywords: endogeneity, foreign direct investment, multi-equation models, total factor productivity
Procedia PDF Downloads 1993774 Barriers towards Effective Participation in Physically Oriented Leisure Time Activities: A Case Study of Federal College of Education, Pankshin Plateau State, Nigeria
Authors: Mulak Moses Yokdi
Abstract:
Correct use of leisure time has suffered neglect in our society and the people ignorantly think that the trend does not matter. The researcher felt concerned about the issue and went on to find out why using FCE, Pankshin workers as a case study. Four hypotheses were used, considering such variables as leadership, traditional activities, stress due to work pressure and time constraint. The participants selected for the study were one hundred and ten members of FCE, Pankshin staff. A self-developed questionnaire was the instrument used. Chi-square (x2) was employed to test the hypotheses at P = 0.005; df = 3. The statistics of percentages was also used to describe the situation as implicated by the data. The results showed that all hypotheses were significant (P = 0.05). It was concluded that the four variables were impediments to effective participation in physically oriented leisure time activities among the FCE, Staff. Based on the findings, it was recommended that the FCE should get good leadership, create good awareness for people to understand why they should be effectively involved in physically oriented leisure time activities.Keywords: barriers, effective participation, leisure time, physically oriented, work pressure, time constraint
Procedia PDF Downloads 3703773 Human Resources and Business Result: An Empirical Approach Based on RBV Theory
Authors: Xhevrie Mamaqi
Abstract:
Organization capacity learning is a process referring to the sum total of individual and collective learning through training programs, experience and experimentation, among others. Today, in-business ongoing training is one of the most important strategies for human capital development and it is crucial to sustain and improve workers’ knowledge and skills. Many organizations, firms and business are adopting a strategy of continuous learning, encouraging employees to learn new skills continually to be innovative and to try new processes and work in order to achieve a competitive advantage and superior business results. This paper uses the Resource Based View and Capacities (RBV) approach to construct a hypothetical relationships model between training and business results. The test of the model is applied on transversal data. A sample of 266 business of Spanish sector service has been selected. A Structural Equation Model (SEM) is used to estimate the relationship between ongoing training, represented by two latent dimension denominated Human and Social Capital resources and economic business results. The coefficients estimated have shown the efficient of some training aspects explaining the variation in business results.Keywords: business results, human and social capital resources, training, RBV theory, SEM
Procedia PDF Downloads 3003772 The Use of Multivariate Statistical and GIS for Characterization Groundwater Quality in Laghouat Region, Algeria
Authors: Rouighi Mustapha, Bouzid Laghaa Souad, Rouighi Tahar
Abstract:
Due to rain Shortage and the increase of population in the last years, wells excavation and groundwater use for different purposes had been increased without any planning. This is a great challenge for our country. Moreover, this scarcity of water resources in this region is unfortunately combined with rapid fresh water resources quality deterioration, due to salinity and contamination processes. Therefore, it is necessary to conduct the studies about groundwater quality in Algeria. In this work consists in the identification of the factors which influence the water quality parameters in Laghouat region by using statistical analysis Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) and geographic information system (GIS) in an attempt to discriminate the sources of the variation of water quality variations. The results of PCA technique indicate that variables responsible for water quality composition are mainly related to soluble salts variables; natural processes and the nature of the rock which modifies significantly the water chemistry. Inferred from the positive correlation between K+ and NO3-, NO3- is believed to be human induced rather than naturally originated. In this study, the multivariate statistical analysis and GIS allows the hydrogeologist to have supplementary tools in the characterization and evaluating of aquifers.Keywords: cluster, analysis, GIS, groundwater, laghouat, quality
Procedia PDF Downloads 3253771 Improved Dynamic Bayesian Networks Applied to Arabic On Line Characters Recognition
Authors: Redouane Tlemsani, Abdelkader Benyettou
Abstract:
Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology. This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data. Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables. In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization. The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, computer vision
Procedia PDF Downloads 4293770 Diversity and Structure of Trichoptera Communities and Water Quality Variables in Streams, Northern Thailand
Authors: T. Prommi, P. Thamsenanupap
Abstract:
The influence of physicochemical water quality parameters on the abundance and diversity of caddisfly larvae was studied in seven sampling stations in Mae Tao and Mae Ku watersheds, Mae Sot District, Tak Province, northern Thailand. The streams: MK2 and MK8 as reference site, and impacted streams (MT1-MT5) were sampled bi-monthly during July 2011 to May 2012. A total of 4,584 individual of caddisfly larvae belonging to 10 family and 17 genera were found. The larvae of family Hydropsychidae were the most abundance, followed by Philopotamidae, Odontoceridae, and Leptoceridae, respectively. The genus Cheumatopsyche, Hydropsyche, and Chimarra were the most abundance genera in this study. Results of CCA ordination showed the total dissolved solids, sulfate, water temperature, dissolved oxygen and pH were the most important physicochemical factors to affect distribution of caddisflies communities. Changes in the caddisfly fauna may indicate changes in physicochemical factors owing to agricultural pollution, urbanization, or other human activities. Results revealed that the order Trichoptera, identified to species or genus, can be potentially used to assess environmental water quality status in freshwater ecosystems.Keywords: Caddisfly larvae, environmental variables, diversity, streams
Procedia PDF Downloads 3003769 Using Arellano-Bover/Blundell-Bond Estimator in Dynamic Panel Data Analysis – Case of Finnish Housing Price Dynamics
Authors: Janne Engblom, Elias Oikarinen
Abstract:
A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models are dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Arellano-Bover/Blundell-Bond Generalized method of moments (GMM) estimator which is an extension of the Arellano-Bond model where past values and different transformations of past values of the potentially problematic independent variable are used as instruments together with other instrumental variables. The Arellano–Bover/Blundell–Bond estimator augments Arellano–Bond by making an additional assumption that first differences of instrument variables are uncorrelated with the fixed effects. This allows the introduction of more instruments and can dramatically improve efficiency. It builds a system of two equations—the original equation and the transformed one—and is also known as system GMM. In this study, Finnish housing price dynamics were examined empirically by using the Arellano–Bover/Blundell–Bond estimation technique together with ordinary OLS. The aim of the analysis was to provide a comparison between conventional fixed-effects panel data models and dynamic panel data models. The Arellano–Bover/Blundell–Bond estimator is suitable for this analysis for a number of reasons: It is a general estimator designed for situations with 1) a linear functional relationship; 2) one left-hand-side variable that is dynamic, depending on its own past realizations; 3) independent variables that are not strictly exogenous, meaning they are correlated with past and possibly current realizations of the error; 4) fixed individual effects; and 5) heteroskedasticity and autocorrelation within individuals but not across them. Based on data of 14 Finnish cities over 1988-2012 differences of short-run housing price dynamics estimates were considerable when different models and instrumenting were used. Especially, the use of different instrumental variables caused variation of model estimates together with their statistical significance. This was particularly clear when comparing estimates of OLS with different dynamic panel data models. Estimates provided by dynamic panel data models were more in line with theory of housing price dynamics.Keywords: dynamic model, fixed effects, panel data, price dynamics
Procedia PDF Downloads 15103768 Investigation on Perception, Awareness and Health Impact of Air Pollution in Rural and Urban Area in Mymensingh Regions of Bangladesh
Authors: M. Azharul Islam, M. Russel Sarker, M. Shahadat Hossen
Abstract:
Air pollution is one of the major environmental problems that have gained importance in all over the world. Air pollution is a problem for all of us. The present study was conducted to explore the people’s perception level and awareness of air pollution in selected areas of Mymensingh in Bangladesh. Health impacts of air pollution also studied through personal interview and structured questionnaire. The relationship of independent variables (age, educational qualification, family size, residence and communication exposure) with the respondent’s perception level and awareness of air pollution (dependent variable) was studied to achieve the objectives of the study. About 600 respondents were selected randomly from six sites for collecting data during the period of July 2016 to June 2017. Pearson’s product-moment correlation coefficients were computed to examine the relationship between the concerned variables. The results revealed that about half (46.67%) of the respondents had a medium level of perception and awareness about air pollution in their areas where 31.67 percent had low, and 21.67 percent had a high level. In rural areas of the study sites, 43.33 percent respondents had low, 50 percent had medium, and only 6.67 percent had high perception and awareness on air pollution. In case of urban areas, 20 percent respondents had low, 43.33 percent had medium, and 36.67 percent had a high level of awareness and perception on air pollution. The majority of the respondents (93.33 percent) were lacking of proper awareness about air pollution in rural areas while 63.33 percent in urban areas. Out of five independent variables, three variables such as- educational qualification, residence status and communication exposure had positive and significant relationship. Age of respondents had negative and significant relationship with their awareness of air pollution where family size of the respondents had no significant relationship with their perception and awareness of air pollution. Thousands of people live in urban areas where urban smog, particle pollution, and toxic pollutants pose serious health concerns. But most of the respondents of the urban sites are not familiarize about the real causes of air pollution. Respondents exposed higher level of experience for air pollutants, such as- irritation of the eyes, coughing, tightness of chest and many health difficulties. But respondents of both rural and urban area hugely suffered such health problems and the tendency of certain difficulties increased day by day. In this study, most of the respondents had lack of knowledge on the causes of such health difficulties due to their lower perception level. Proper attempts should be taken to raise literacy level, communication exposure to increase the perception and awareness of air pollution among the respondents of the study areas. Extra care with above concerned fields should be taken to increase perception and awareness of air pollution in rural areas.Keywords: air pollution, awareness, health impacts, perception of people
Procedia PDF Downloads 2343767 Quantification of Aerodynamic Variables Using Analytical Technique and Computational Fluid Dynamics
Authors: Adil Loya, Kamran Maqsood, Muhammad Duraid
Abstract:
Aerodynamic stability coefficients are necessary to be known before any unmanned aircraft flight is performed. This requires expertise on aerodynamics and stability control of the aircraft. To enable efficacious performance of aircraft requires that a well-defined flight path and aerodynamics should be defined beforehand. This paper presents a study on the aerodynamics of an unmanned aero vehicle (UAV) during flight conditions. Current research holds comparative studies of different parameters for flight aerodynamic, measured using two different open source analytical software programs. These software packages are DATCOM and XLRF5, which help in depicting the flight aerodynamic variables. Computational fluid dynamics (CFD) was also used to perform aerodynamic analysis for which Star CCM+ was used. Output trends of the study demonstrate high accuracies between the two software programs with that of CFD. It can be seen that the Coefficient of Lift (CL) obtained from DATCOM and XFLR is similar to CL of CFD simulation. In the similar manner, other potential aerodynamic stability parameters obtained from analytical software are in good agreement with CFD.Keywords: XFLR5, DATCOM, computational fluid dynamic, unmanned aero vehicle
Procedia PDF Downloads 2983766 Comparison of Carcass Weight of Pure and Mixed Races Namebar 30-Day Squabs
Authors: Sepehr Moradi, Mehdi Asadi Rad
Abstract:
The aim of this study is to evaluate and compare carcass weight of pure and mixed races Namebar 30-day pigeons to investigate about their sex, race, and some auxiliary variables. In this paper, 68 pieces of pigeons as 34 male and female pairs with equal age are studied randomly. A natural incubation was done from each pair. All produced chickens were slaughtered at 30 days age after 12 hours hunger. Then their carcasses were weighted by a scale with one gram precision. A covariance analysis was used since there were many auxiliary variables and unequal observations. SAS software was used for statistical analysis. Mean weight of carcass in pure race (Namebar-Namebar) with 8 records, 219.5±61.3 gr and mixed races of Kabood-Namebar, Parvazy-Namebar, Tizpar-Namebar, Namebar-Kabood, Namebar-Tizpar, and Namebar-Parvazy with 8, 10, 8, 12, 12, and 10 records were 369.9±54.6, 338.3±52.7, 224.5±73.6, 142.3±67.8, 155.6±56.2, and 170.2±55 gr, respectively.. Difference carcass weight of 30-day of Namebar-Namebar race with Namebar-Kabood, Namebar-Parvazy, Namebar-Tizpar, Parvazy-Namebar and Tizpar-Namebar mixed races was not significant, and was significant in level 5% with Kabood- Namebar (P < 0.05). Effect of sex and age were also significant in 1% level (P < 0.01), but mutual effect of sex and race was not significant. The results showed that most and least weights of carcass belonged to Kabood-Namebar and Namebar-Kabood.Keywords: squab, Namebar race, 30-day carcass weight, pigeons
Procedia PDF Downloads 1803765 Machine Learning-Based Workflow for the Analysis of Project Portfolio
Authors: Jean Marie Tshimula, Atsushi Togashi
Abstract:
We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.Keywords: machine learning, topic modeling, natural language processing, big data
Procedia PDF Downloads 1683764 Nonlinear Relationship between Globalization and Control of Corruption along with Economic Growth
Authors: Elnaz Entezar, Reza Ezzati
Abstract:
In recent decades, trade flows, capital, workforce, technology and information have increased between international borders and the globalization has turned to an undeniable process in international economics. Meanwhile, despite the positive aspects of globalization, the critics of globalization opine that the risks and costs of globalization for developing vulnerable economies and the world's impoverished people are high and significant. In this regard, this study by using the data of KOF Economic Institute and the World Bank for 113 different countries during the period 2002-2012, by taking advantage of panel smooth transition regression, and by taking the gross domestic product as transmission variables discuss the nonlinear relationship between research variables. The results have revealed that globalization in low regime (countries with low GDP) has negative impact whereas in high regime (countries with high GDP) has a positive impact. In spite of the fact that in the early stages of growth, control of corruption has a positive impact on economic growth, after a threshold has a negative impact on economic growth.Keywords: globalization, corruption, panel smooth transition model, economic growth, threshold, economic convergence
Procedia PDF Downloads 2913763 Capital Accumulation, Technology Diffusion and Economic Growth: An Empirical Application to Tunisian Case
Authors: Ahmed Bellakhdhar
Abstract:
This paper aims to test the impact of various variables-namely, investment in physical capital, investment in human capital, openness to trade and foreign direct investments, and distance from the technology frontier-on economic growth in the Tunisian context during the period 1976-2010. Empirical results identify that the impact of human capital is significantly positive. This finding confirms the hypothesis that human capital is a main driver of economic performance through its role of improving the internal productive capacity and the absorption of foreign technology especially via foreign direct investments. The effect of FDI is significantly positive in all alternative regressions and the coefficient associated to physical capital variable is positive, but not significant overall. Concerning the import of technologically advanced equipments, our estimates show the absence of a significant direct impact on economic growth in Tunisia. Our empirical results also support the assumption of a non linear relationship between tax and growth and demonstrate the existence of an inverted-U curve between the two variables, in the spirit of the “Laffer curve”.Keywords: Endogenous growth, Human capital, Technology transfer, Absorptive capacity
Procedia PDF Downloads 1333762 Statistical Optimization of Distribution Coefficient for Reactive Extraction of Lactic Acid Using Tri-n-octyl Amine in Oleyl Alcohol and n-Hexane
Authors: Avinash Thakur, Parmjit S. Panesar, Manohar Singh
Abstract:
The distribution coefficient, KD for the reactive extraction of lactic acid from aqueous solutions of lactic acid using 10-30% (v/v) tri-n-octyl amine (extractant) dissolved in n-hexane (inert diluent) and 20% (v/v) oleyl alcohol (modifier) was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined interactive effect of seven independent variables, viz lactic acid concentration (cl), pH, TOA concentration in organic phase (ψ), treat ratio (φ), temperature (T), agitation speed (ω) and batch agitation time (τ) on distribution coefficient of lactic acid. The regression analysis recommended that the quadratic model is significant (R2 and adjusted R2 are 98.72 % and 98.69 % respectively) for analysis. A numerical optimization had resulted in maximum lactic acid distribution coefficient (KD) of 3.16 at the optimized values for test variables, cl, pH, ψ, φ, T, ω and τ as 0.15 [M], 3.0, 22.75% (v/v), 1.0 (v/v), 26°C, 145 rpm and 23 min respectively. A good agreement between the predicted and experimentally obtained values for distribution coefficient using the optimized conditions was exhibited.Keywords: Distribution coefficient, tri-n-octylamine, lactic acid, response surface methodology
Procedia PDF Downloads 4583761 A Comparison of Transdiagnostic Components in Generalized Anxiety Disorder, Unipolar Mood Disorder and Nonclinical Population
Authors: Imaneh Abbasi, Ladan Fata, Majid Sadeghi, Sara Banihashemi, Abolfazl Mohammadee
Abstract:
Background: Dimensional and transdiagnostic approaches as a result of high comorbidity among mental disorders have captured researchers and clinicians interests for exploring the latent factors of development and maintenance of some psychological disorders. The goal of present study is to compare some of these common factors between generalized anxiety disorder and unipolar mood disorder. Methods: 27 patients with generalized anxiety disorder, 29 patients with depression disorder were recruited using SCID-I and 69 non-clinical population were selected using GHQ cut off point. MANCOVA was used for analyzing data. Results: The results show that worry, rumination, intolerance of uncertainty, maladaptive metacognitive beliefs, and experiential avoidance were all significantly different between GAD and unipolar mood disorder groups. However, there were not any significant differences in difficulties in emotion regulation and neuroticism between GAD and unipolar mood disorder groups. Discussion: Results indicate that although there are some transdiagnostic and common factors in GAD and unipolar mood disorder, there may be some specific vulnerability factors for each disorder. Further study is needed for answering these questions.Keywords: transdiagnostic, depression, generalized anxiety disorder, emotion regulation
Procedia PDF Downloads 5003760 Nonparametric Path Analysis with Truncated Spline Approach in Modeling Rural Poverty in Indonesia
Authors: Usriatur Rohma, Adji Achmad Rinaldo Fernandes
Abstract:
Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best nonparametric truncated spline path function between linear and quadratic polynomial degrees with 1, 2, and 3-knot points and to determine the significance of estimating the best nonparametric truncated spline path function in the model of the effect of population migration and agricultural economic growth on rural poverty through the variable unemployment rate using the t-test statistic at the jackknife resampling stage. The data used in this study are secondary data obtained from statistical publications. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3-knot points. In addition, the significance of the best-truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.Keywords: nonparametric path analysis, truncated spline, linear, quadratic, rural poverty, jackknife resampling
Procedia PDF Downloads 493759 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada
Authors: Bilel Chalghaf, Mathieu Varin
Abstract:
Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR
Procedia PDF Downloads 1363758 Investigate the Current Performance of Burger King Ho Chi Minh City in Terms of the Controllable Variables of the Overall Retail Strategy
Authors: Nhi Ngoc Thien
Abstract:
Franchising is a popular trend in Vietnam retail industry, especially in fast food industry. Several famous foreign fast food brands such as KFC, Lotteria, Jollibee or Pizza Hut invested on this potential market since the 1990s. Following this trend, in 2011, Burger King - the second largest fast food hamburger chain all over the world - entered Vietnam with its first store located in Tan Son Nhat International Airport, with the expectation to become the leading brand in the country. However, the business performance of Burger King was not going well in the first few years making it questioned about its strategy. The given assumption was that its business performance was affected negatively by its store location selection strategy. This research aims to investigate the current performance of Burger King Vietnam in terms of the controllable variables like store location as well as to explore the key factors influencing customer decision to choose Burger King. Therefore, a case study research method was conducted to approach deeply on the opinions and evaluations of 10 Burger King’s customers, Burger King's staffs and other fast food experts on Burger King’s performance through in-depth interview, direct observation and documentary analysis. Findings show that there are 8 determinants affecting the decision-making of Burger King’s customers, which are store location, quality of food, service quality, store atmosphere, price, promotion, menu and brand reputation. Moreover, findings present that Burger King’s staffs and fast food experts also mentioned the main problems of Burger King, which are about store location and food quality. As a result, there are some recommendations for Burger King Vietnam to improve its performance in the market and attract more Vietnamese target customers by giving suitable promotional activities among its customers and being differentiated itself from other fast food brands.Keywords: overall retail strategy, controllable variables, store location, quality of food
Procedia PDF Downloads 3453757 Relation between Organizational Climate and Personnel Performance Assessment in a Tourist Service Company
Authors: Daniel A. Montoya, Marta L. Tostes
Abstract:
This investigation aims at analyzing and determining the relation between two very important variables in the human resource management: The organizational climate and the performance assessment. This study aims at contributing with knowledge in the search of the relation between the mentioned variables because the literature still does not provide solid evidence to this respect and the cases revised are incipient to reach conclusions enabling a typology about this relation.To this regard, a correlational and cross-sectional perspective was adopted in which quantitative and qualitative techniques were chosen with the total of the workers of the tourist service company PTS Peru. In order to measure the organizational climate, the OCQ (Organization Climate Questionnaire) from was used; it has 50 items and measures 9 dimensions of the Organizational Climate. Also, to assess performance, a questionnaire with 21 items and 6 dimensions was designed. As a means of assessment, a focus group was prepared and was applied to a worker in every area of the company. Additionally, interviews to human resources experts were conducted. The results of the investigation show a clear relation between the organizational climate and the personnel performance assessment as well as a relation between the nine dimensions of the organizational climate and the work performance in general and with some of its dimensions.Keywords: job performance, job satisfaction, organization climate, performance assessment
Procedia PDF Downloads 3833756 A Deep Learning Based Method for Faster 3D Structural Topology Optimization
Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury
Abstract:
Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder
Procedia PDF Downloads 1753755 Impact of Audit Committee on Earning Quality of Listed Consumer Goods Companies in Nigeria
Authors: Usman Yakubu, Muktar Haruna
Abstract:
The paper examines the impact of the audit committee on the earning quality of the listed consumer goods sector in Nigeria. The study used data collected from annual reports and accounts of the 13 sampled companies for the periods 2007 to 2018. Data were analyzed by means of descriptive statistics to provide summary statistics for the variables; also, correlation analysis was carried out using the Pearson correlation technique for the correlation between the dependent and independent variables. Regression was employed using the Generalized Least Square technique since the data has both time series and cross sectional attributes (panel data). It was found out that the audit committee had a positive and significant influence on the earning quality in the listed consumer goods companies in Nigeria. Thus, the study recommends that competency and personal integrity should be the worthwhile attributes to be considered while constituting the committee; this could enhance the quality of accounting information. In addition to that majority of the committee members should be independent directors in order to allow a high level of independency to be exercised.Keywords: earning quality, corporate governance, audit committee, financial reporting
Procedia PDF Downloads 1763754 Analysis of the Diffusion Behavior of an Information and Communication Technology Platform for City Logistics
Authors: Giulio Mangano, Alberto De Marco, Giovanni Zenezini
Abstract:
The concept of City Logistics (CL) has emerged to improve the impacts of last mile freight distribution in urban areas. In this paper, a System Dynamics (SD) model exploring the dynamics of the diffusion of a ICT platform for CL management across different populations is proposed. For the development of the model two sources have been used. On the one hand, the major diffusion variables and feedback loops are derived from a literature review of existing diffusion models. On the other hand, the parameters are represented by the value propositions delivered by the platform as a response to some of the users’ needs. To extract the most important value propositions the Business Model Canvas approach has been used. Such approach in fact focuses on understanding how a company can create value for her target customers. These variables and parameters are thus translated into a SD diffusion model with three different populations namely municipalities, logistics service providers, and own account carriers. Results show that, the three populations under analysis fully adopt the platform within the simulation time frame, highlighting a strong demand by different stakeholders for CL projects aiming at carrying out more efficient urban logistics operations.Keywords: city logistics, simulation, system dynamics, business model
Procedia PDF Downloads 2673753 A Probabilistic Study on Time to Cover Cracking Due to Corrosion
Authors: Chun-Qing Li, Hassan Baji, Wei Yang
Abstract:
Corrosion of steel in reinforced concrete structures is a major problem worldwide. The volume expansion of corrosion products causes concrete cover cracking, which could lead to delamination of concrete cover. The time to cover cracking plays a key role to the assessment of serviceability of reinforced concrete structures subjected to corrosion. Many analytical, numerical, and empirical models have been developed to predict the time to cracking initiation due to corrosion. In this study, a numerical model based on finite element modeling of corrosion-induced cracking process is used. In order to predict the service life based on time to cover initiation, the numerical approach is coupled with a probabilistic procedure. In this procedure, all the influential factors affecting time to cover cracking are modeled as random variables. The results show that the time to cover cracking is highly variables. It is also shown that rust product expansion ratio and the size of more porous concrete zone around the rebar are the most influential factors in predicting service life of corrosion-affected structures.Keywords: corrosion, crack width, probabilistic, service life
Procedia PDF Downloads 2073752 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 1963751 A Qualitative Study Investigating the Relationship Between External Context and the Mechanism of Change for the Implementation of Goal-oriented Primary Care
Authors: Ine Huybrechts, Anja Declercq, Emily Verté, Peter Raeymaeckers, Sibyl Anthierens
Abstract:
Goal-oriented care is a concept gaining increased interest as an approach to go towards more coordinated and integrated primary care. It places patients’ personal life goals at the core of health care support, hereby shifting the focus from “what’s the matter with this patient” to “what matters to this patient.” In Flanders/Belgium, various primary care providers, health and social care organizations and governmental bodies have picked up this concept and have initiated actions to facilitate this approach. The implementation of goal-oriented care not only happens on the micro-level, but it also requires efforts on the meso- and macro-level. Within implementation research, there is a growing recognition that the context in which an intervention takes place strongly relates to its implementation outcomes. However, when investigating contextual variables, the external context and its impact on implementation processes is often overlooked. This study aims to explore how we can better identify and understand the external context and how it relates to the mechanism of change within the implementation process of goal-oriented care in Flanders/Belgium. Results can be used to support and guide initiatives to introduce innovative approaches such as goal-oriented care inside an organization or in the broader primary care landscape. We have conducted qualitative research, performing in-depth interviews with n=23 respondents who have affinity with the implementation of goal-oriented care within their professional function. This lead to in-depth insights from a wide range of actors, with meso-level and/or macro-level perspectives on the implementation of goal-oriented care. This means that we have interviewed actors that are not only involved with initiatives to implement goal-oriented care, but also actors that actively give form to the external context in which goal-oriented care is implemented. Data were collected using a semi-structured interview guide, audio recorded, and analyzed first inductively and then deductively using various theories and concepts that derive from organizational research. Our preliminary findings suggest t Our findings can contribute to further define actions needed for sustainable implementation of goal-oriented primary care. It gives insights in the dynamics between contextual variables and implementation efforts, hereby indicating towards those contextual variables that can be further shaped to facilitate the implementation of an innovation such as goal-oriented care. hat organizational theories can help understand the mechanism of change of implementation processes with a macro-level perspective. Institutional theories, contingency theories, resources dependency theories and others can expose the mechanism of change for an innovation such as goal-oriented care. Our findings can contribute to further define actions needed for sustainable implementation of goal-oriented primary care. It gives insights in the dynamics between contextual variables and implementation efforts, hereby indicating towards those contextual variables that can be further shaped to facilitate the implementation of an innovation such as goal-oriented care.Keywords: goal-oriented care, implementation processes, organizational theories, person-centered care, implementation research
Procedia PDF Downloads 823750 Design of Labview Based DAQ System
Authors: Omar A. A. Shaebi, Matouk M. Elamari, Salaheddin Allid
Abstract:
The Information Computing System of Monitoring (ICSM) for the Research Reactor of Tajoura Nuclear Research Centre (TNRC) stopped working since early 1991. According to the regulations, the computer is necessary to operate the reactor up to its maximum power (10 MW). The fund is secured via IAEA to develop a modern computer based data acquisition system to replace the old computer. This paper presents the development of the Labview based data acquisition system to allow automated measurements using National Instruments Hardware and its labview software. The developed system consists of SCXI 1001 chassis, the chassis house four SCXI 1100 modules each can maintain 32 variables. The chassis is interfaced with the PC using NI PCI-6023 DAQ Card. Labview, developed by National Instruments, is used to run and operate the DAQ System. Labview is graphical programming environment suited for high level design. It allows integrating different signal processing components or subsystems within a graphical framework. The results showed system capabilities in monitoring variables, acquiring and saving data. Plus the capability of the labview to control the DAQ.Keywords: data acquisition, labview, signal conditioning, national instruments
Procedia PDF Downloads 4963749 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm
Procedia PDF Downloads 1423748 Air Pollution on Stroke in Shenzhen, China: A Time-Stratified Case Crossover Study Modified by Meteorological Variables
Authors: Lei Li, Ping Yin, Haneen Khreis
Abstract:
Stroke is the second leading cause of death and a third leading cause of death and disability worldwide in 2019. Given the significant role of environmental factors in stroke development and progression, it is essential to investigate the effect of air pollution on stroke occurrence while considering the modifying effects of meteorological variables. This study aimed to evaluate the association between short-term exposure to air pollution and the incidence of stroke subtypes in Shenzhen, China, and to explore the potential interactions of meteorological factors with air pollutants. The study analyzed data from January 1, 2006, to December 31, 2014, including 88,214 cases of ischemic stroke and 30,433 cases of hemorrhagic stroke among residents of Shenzhen. Using a time-stratified case–crossover design with conditional quasi-Poisson regression, the study estimated the percentage changes in stroke morbidity associated with short-term exposure to nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulate matter less than 10 mm in aerodynamic diameter (PM10), carbon monoxide (CO), and ozone (O₃). A five-day moving average of air pollution was applied to capture the cumulative effects of air pollution. The estimates were further stratified by sex, age, education level, and season. The additive and multiplicative interaction between air pollutants and meteorologic variables were assessed by the relative excess risk due to interaction (RERI) and adding the interactive term into the main model, respectively. The study found that NO₂ was positively associated with ischemic stroke occurrence throughout the year and in the cold season (November through April), with a stronger effect observed among men. Each 10 μg/m³ increment in the five-day moving average of NO₂ was associated with a 2.38% (95% confidence interval was 1.36% to 3.41%) increase in the risk of ischemic stroke over the whole year and a 3.36% (2.04% to 4.69%) increase in the cold season. The harmful effect of CO on ischemic stroke was observed only in the cold season, with each 1 mg/m³ increment in the five-day moving average of CO increasing the risk by 12.34% (3.85% to 21.51%). There was no statistically significant additive interaction between individual air pollutants and temperature or relative humidity, as demonstrated by the RERI. The interaction term in the model showed a multiplicative antagonistic effect between NO₂ and temperature (p-value=0.0268). For hemorrhagic stroke, no evidence of the effects of any individual air pollutants was found in the whole population. However, the RERI indicated a statistically additive and multiplicative interaction of temperature on the effects of PM10 and O₃ on hemorrhagic stroke onset. Therefore, the insignificant conclusion should be interpreted with caution. The study suggests that environmental NO₂ and CO might increase the morbidity of ischemic stroke, particularly during the cold season. These findings could help inform policy decisions aimed at reducing air pollution levels to prevent stroke and other health conditions. Additionally, the study provides valuable insights into the interaction between air pollution and meteorological variables, which underscores the need for further research into the complex relationship between environmental factors and health.Keywords: air pollution, meteorological variables, interactive effect, seasonal pattern, stroke
Procedia PDF Downloads 89