Search results for: heterogeneous massive data
25262 Application of Artificial Neural Network Technique for Diagnosing Asthma
Authors: Azadeh Bashiri
Abstract:
Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.Keywords: asthma, data mining, Artificial Neural Network, intelligent system
Procedia PDF Downloads 27325261 Problems Arising in Visual Perception: A Philosophical and Epistemological Analysis
Authors: K. A.Tharanga, K. H. H. Damayanthi
Abstract:
Perception is an epistemological concept discussed in Philosophy. Perception, in other word, vision, is one of the ways that human beings get empirical knowledge after five senses. However, we face innumerable problems when achieving knowledge from perception, and therefore the knowledge gained through perception is uncertain. what we see in the external world is not real. These are the major issues that we face when receiving knowledge through perception. Sometimes there is no physical existence of what we really see. In such cases, the perception is relative. The following frames will be taken into consideration when perception is analyzed illusions and delusions, the figure of a physical object, appearance and the reality of a physical object, time factor, and colour of a physical object. seeing and knowing become vary according to the above conceptual frames. We cannot come to a proper conclusion of what we see in the empirical world. Because the things that we see are not really there. Hence the scientific knowledge which is gained from observation is doubtful. All the factors discussed in science remain in the physical world. There is a leap from ones existence to the existence of a world outside his/her mind. Indeed, one can suppose that what he/she takes to be real is just a massive deception. However, depending on the above facts, if someone begins to doubt about the whole world, it is unavoidable to become his/her view a scepticism or nihilism. This is a certain reality.Keywords: empirical, perception, sceptisism, nihilism
Procedia PDF Downloads 14225260 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course
Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu
Abstract:
This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN
Procedia PDF Downloads 4425259 Examples from a Traditional Sismo-Resistant Architecture
Authors: Amira Zatir, Abderahmane Mokhtari, Amina Foufa, Sara Zatir
Abstract:
It exists in several regions in the world, of numerous historic monuments, buildings and housing environment, built in traditional ways which survive for earthquakes, even in zones where the seismic risk is particularly raised. These constructions, stemming from vernacular architecture, allow, through their resistances in the time earthquakes, to identify the various sismo-resistant "local" techniques. Through the examples and the experiences presented, the remark which can be made, is that in the traditional built, two major principles in a way opposite, govern the constructions in earthquake-resistant. It is about the very big flexibility, whom answer very light constructions, like the Japanese wooden constructions, Turkish and even Chinese; that of the very big rigidity to which correspond constructions in masonry in particular stone, more or less heavy and massive, which we meet in particular in the Mediterranean Basin, and in the historic sanctuary of Machu Pacchu. In it sensible and well-reflected techniques of construction are added, of which the use of the humble materials such as the earth and the adobe. The ancient communities were able to face the seismic risks, thanks to them know-how reflected in their intelligently designed constructions, testifying of a local seismic culture.Keywords: earthquake, architecture, traditional, construction, resistance
Procedia PDF Downloads 42025258 Data Access, AI Intensity, and Scale Advantages
Authors: Chuping Lo
Abstract:
This paper presents a simple model demonstrating that ceteris paribus countries with lower barriers to accessing global data tend to earn higher incomes than other countries. Therefore, large countries that inherently have greater data resources tend to have higher incomes than smaller countries, such that the former may be more hesitant than the latter to liberalize cross-border data flows to maintain this advantage. Furthermore, countries with higher artificial intelligence (AI) intensity in production technologies tend to benefit more from economies of scale in data aggregation, leading to higher income and more trade as they are better able to utilize global data.Keywords: digital intensity, digital divide, international trade, scale of economics
Procedia PDF Downloads 6825257 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data
Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju
Abstract:
Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding
Procedia PDF Downloads 41225256 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).Keywords: biometrics, genetic data, identity verification, k nearest neighbor
Procedia PDF Downloads 25825255 A Review on Intelligent Systems for Geoscience
Authors: R Palson Kennedy, P.Kiran Sai
Abstract:
This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science
Procedia PDF Downloads 13525254 Damage Micromechanisms of Coconut Fibers and Chopped Strand Mats of Coconut Fibers
Authors: Rios A. S., Hild F., Deus E. P., Aimedieu P., Benallal A.
Abstract:
The damage micromechanisms of chopped strand mats manufactured by compression of Brazilian coconut fiber and coconut fibers in different external conditions (chemical treatment) were used in this study. Mechanical analysis testing uniaxial traction were used with Digital Image Correlation (DIC). The images captured during the tensile test in the coconut fibers and coconut fiber mats showed an uncertainty of measurement in order centipixels. The initial modulus (modulus of elasticity) and tensile strength decreased with increasing diameter for the four conditions of coconut fibers. The DIC showed heterogeneous deformation fields for coconut fibers and mats and the displacement fields showed the rupture process of coconut fiber. The determination of poisson’s ratio of the mat was performed through of transverse and longitudinal deformations found in the elastic region.Keywords: coconut fiber, mechanical behavior, digital image correlation, micromechanism
Procedia PDF Downloads 45925253 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh
Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila
Abstract:
Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.Keywords: data culture, data-driven organization, data mesh, data quality for business success
Procedia PDF Downloads 13525252 Highly Selective Phosgene Free Synthesis of Methylphenylcarbamate from Aniline and Dimethyl Carbonate over Heterogeneous Catalyst
Authors: Nayana T. Nivangune, Vivek V. Ranade, Ashutosh A. Kelkar
Abstract:
Organic carbamates are versatile compounds widely employed as pesticides, fungicides, herbicides, dyes, pharmaceuticals, cosmetics and in the synthesis of polyurethanes. Carbamates can be easily transformed into isocyanates by thermal cracking. Isocyantes are used as precursors for manufacturing agrochemicals, adhesives and polyurethane elastomers. Manufacture of polyurethane foams is a major application of aromatic ioscyanates and in 2007 the global consumption of polyurethane was about 12 million metric tons/year and the average annual growth rate was about 5%. Presently Isocyanates/carbamates are manufactured by phosgene based process. However, because of high toxicity of phoegene and formation of waste products in large quantity; there is a need to develop alternative and safer process for the synthesis of isocyanates/carbamates. Recently many alternative processes have been investigated and carbamate synthesis by methoxycarbonylation of aromatic amines using dimethyl carbonate (DMC) as a green reagent has emerged as promising alternative route. In this reaction methanol is formed as a by-product, which can be converted to DMC either by oxidative carbonylation of methanol or by reacting with urea. Thus, the route based on DMC has a potential to provide atom efficient and safer route for the synthesis of carbamates from DMC and amines. Lot of work is being carried out on the development of catalysts for this reaction and homogeneous zinc salts were found to be good catalysts for the reaction. However, catalyst/product separation is challenging with these catalysts. There are few reports on the use of supported Zn catalysts; however, deactivation of the catalyst is the major problem with these catalysts. We wish to report here methoxycarbonylation of aniline to methylphenylcarbamate (MPC) using amino acid complexes of Zn as highly active and selective catalysts. The catalysts were characterized by XRD, IR, solid state NMR and XPS analysis. Methoxycarbonylation of aniline was carried out at 170 °C using 2.5 wt% of the catalyst to achieve >98% conversion of aniline with 97-99% selectivity to MPC as the product. Formation of N-methylated products in small quantity (1-2%) was also observed. Optimization of the reaction conditions was carried out using zinc-proline complex as the catalyst. Selectivity was strongly dependent on the temperature and aniline:DMC ratio used. At lower aniline:DMC ratio and at higher temperature, selectivity to MPC decreased (85-89% respectively) with the formation of N-methylaniline (NMA), N-methyl methylphenylcarbamate (MMPC) and N,N-dimethyl aniline (NNDMA) as by-products. Best results (98% aniline conversion with 99% selectivity to MPC in 4 h) were observed at 170oC and aniline:DMC ratio of 1:20. Catalyst stability was verified by carrying out recycle experiment. Methoxycarbonylation preceded smoothly with various amine derivatives indicating versatility of the catalyst. The catalyst is inexpensive and can be easily prepared from zinc salt and naturally occurring amino acids. The results are important and provide environmentally benign route for MPC synthesis with high activity and selectivity.Keywords: aniline, heterogeneous catalyst, methoxycarbonylation, methylphenyl carbamate
Procedia PDF Downloads 27425251 Awakeness, Awareness and Learning Mathematics for Arab Students: A Pilot Study
Authors: S. Rawashdi, D. Bshouty
Abstract:
This paper aimed at discussing how to urge middle and high school Arab students in Israel to be aware of the importance of and investing in learning mathematics. In the first phase of the study, three questionnaires were passed to two nine-grade classes, one on Awareness, one on Awakeness and one on Learning. One of the two classes was an outstanding class from a public school (PUBS) of 31 students, and the other a heterogeneous class from a private school (PRIS) with 31 students. The Learning questionnaire which was administrated to the Awareness and Awareness topics was passed to PRIS and the Awareness and Awareness Questionnaires were passed to the PUBS class After two months we passed the post-questionnaire to both classes to validate the long-term impact of the study. The findings of the study show that awakeness and awareness processes have an effect on the math learning process, on its context in students' daily lives and their growing interest in learning math.Keywords: awakeness, awareness, learning mathematics, pupils
Procedia PDF Downloads 13825250 Understanding the Cause(S) of Social, Emotional and Behavioural Difficulties of Adolescents with ADHD and Its Implications for the Successful Implementation of Intervention(S)
Authors: Elisavet Kechagia
Abstract:
Due to the interplay of different genetic and environmental risk factors and its heterogeneous nature, the concept of attention deficit hyperactivity disorder (ADHD) has shaped controversy and conflicts, which have been, in turn, reflected in the controversial arguments about its treatment. Taking into account recent well evidence-based researches suggesting that ADHD is a condition, in which biopsychosocial factors are all weaved together, the current paper explores the multiple risk-factors that are likely to influence ADHD, with a particular focus on adolescents with ADHD who might experience comorbid social, emotional and behavioural disorders (SEBD). In the first section of this paper, the primary objective was to investigate the conflicting ideas regarding the definition, diagnosis and treatment of ADHD at an international level as well as to critically examine and identify the limitations of the two most prevailing sets of diagnostic criteria that inform current diagnosis, the American Psychiatric Association’s (APA) diagnostic scheme, DSM-V, and the World Health Organisation’s (WHO) classification of diseases, ICD-10. Taking into consideration the findings of current longitudinal studies on ADHD association with high rates of comorbid conditions and social dysfunction, in the second section the author moves towards an investigation of the transitional points −physical, psychological and social ones− that students with ADHD might experience during early adolescence, as informed by neuroscience and developmental contextualism theory. The third section is an exploration of the different perspectives of ADHD as reflected in individuals’ with ADHD self-reports and the KENT project’s findings on school staff’s attitudes and practices. In the last section, given the high rates of SEBDs in adolescents with ADHD, it is examined how cognitive behavioural therapy (CBT), coupled with other interventions, could be effective in ameliorating anti-social behaviours and/or other emotional and behavioral difficulties of students with ADHD. The findings of a range of randomised control studies indicate that CBT might have positive outcomes in adolescents with multiple behavioural problems, hence it is suggested to be considered both in schools and other community settings. Finally, taking into account the heterogeneous nature of ADHD, the different biopsychosocial and environmental risk factors that take place during adolescence and the discourse and practices concerning ADHD and SEBD, it is suggested how it might be possible to make sense of and meaningful improvements to the education of adolescents with ADHD within a multi-modal and multi-disciplinary whole-school approach that addresses the multiple problems that not only students with ADHD but also their peers might experience. Further research that would be based on more large-scale controls and would investigate the effectiveness of various interventions, as well as the profiles of those students who have benefited from particular approaches and those who have not, will generate further evidence concerning the psychoeducation of adolescents with ADHD allowing for generalised conclusions to be drawn.Keywords: adolescence, attention deficit hyperctivity disorder, cognitive behavioural theory, comorbid social emotional behavioural disorders, treatment
Procedia PDF Downloads 31925249 Big Data Analysis with RHadoop
Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim
Abstract:
It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop
Procedia PDF Downloads 43725248 Implementation of Research Papers and Industry Related Experiments by Undergraduate Students in the Field of Automation
Authors: Veena N. Hegde, S. R. Desai
Abstract:
Motivating a heterogeneous group of students towards engagement in research related activities is a challenging task in engineering education. An effort is being made at the Department of Electronics and Instrumentation Engineering, where two courses are taken up on a pilot basis to kindle research interests in students at the undergraduate level. The courses, namely algorithm and system design (ASD) and automation in process control (APC), are selected for experimentation purposes. The task is being accomplished by providing scope for implementation of research papers and proposing solutions for the current industrial problems by the student teams. The course instructors have proposed an alternative assessment tool to evaluate the undergraduate students that involve activities beyond the curriculum. The method was tested for the aforementioned two courses in a particular academic year, and as per the observations, there is a considerable improvement in the number of student engagement towards research in the subsequent years of their undergraduate course. The student groups from the third-year engineering were made to read, implement the research papers, and they were also instructed to develop simulation modules for certain processes aiming towards automation. The target audience being students, were common for both the courses and the students' strength was 30. Around 50% of successful students were given the continued tasks in the subsequent two semesters, and out of 15 students who continued from sixth semesters were able to follow the research methodology well in the seventh and eighth semesters. Further, around 30% of the students out of 15 ended up carrying out project work with a research component involved and were successful in producing four conference papers. The methodology adopted is justified using a sample data set, and the outcomes are highlighted. The quantitative and qualitative results obtained through this study prove that such practices will enhance learning experiences substantially at the undergraduate level.Keywords: industrial problems, learning experiences, research related activities, student engagement
Procedia PDF Downloads 16525247 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 9425246 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator
Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong
Abstract:
Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce
Procedia PDF Downloads 3325245 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network
Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan
Abstract:
Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.Keywords: aggregation point, data communication, data aggregation, wireless sensor network
Procedia PDF Downloads 15825244 Spatial Econometric Approaches for Count Data: An Overview and New Directions
Authors: Paula Simões, Isabel Natário
Abstract:
This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data
Procedia PDF Downloads 59425243 Federal Character Principle and the Challenges of National Integration in Nigeria: A Comparative Analysis of Some Federal Appointments under Jonathan and Buhari Administrations
Authors: Simon O. Obadahun, Samuel Otohinoyi
Abstract:
The Nigerian state is heterogeneous both in character and content. Efforts to manage this diversity has so far not yielded the desired result. This paper examines the Federal Character Principle as one of the instruments intended to manage our obvious diversity such that no part of the country is marginalized or feels marginalized or sidelined. The paper observed that the Federal Character Principle have not achieved its set objectives, which is national unity and loyalty. It draws from secondary sources and discovered that there are factors that make an equitable distribution of public appointments difficult which is beyond the powers of the federal character commission. The major argument of this paper is that if the Federal Character Commission as an organization expected to enforce this principle is not restructured and given more power to sanction individuals and organizations that are found of circumventing the relevant guidelines in this regards, the hope of national unity and loyalty will continue to be a mirage.Keywords: appointments, federalism, federal character, national integration
Procedia PDF Downloads 33225242 A NoSQL Based Approach for Real-Time Managing of Robotics's Data
Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir
Abstract:
This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.Keywords: NoSQL databases, database management systems, robotics, big data
Procedia PDF Downloads 35525241 Tales of Two Cities: 'Motor City' Detroit and 'King Cotton' Manchester: Transatlantic Transmissions and Transformations, Flows of Communications, Commercial and Cultural Connections
Authors: Dominic Sagar
Abstract:
Manchester ‘King Cotton’, the first truly industrial city of the nineteenth century, passing on the baton to Detroit ‘Motor City’, is the first truly modern city. We are exploring the tales of the two cities, their rise and fall and subsequent post-industrial decline, their transitions and transformations, whilst alongside paralleling their corresponding, commercial, cultural, industrial and even agricultural, artistic and musical transactions and connections. The paper will briefly contextualize how technologies of the industrial age and modern age have been instrumental in the development of these cities and other similar cities including New York. However, the main focus of the study will be the present and more importantly the future, how globalisation and the advancements of digital technologies and industries have shaped the cities developments from AlanTuring and the making of the first programmable computer to the effect of digitalisation and digital initiatives. Manchester now has a thriving creative digital infrastructure of Digilabs, FabLabs, MadLabs and hubs, the study will reference the Smart Project and the Manchester Digital Development Association whilst paralleling similar digital and creative industrial initiatives now starting to happen in Detroit. The paper will explore other topics including the need to allow for zones of experimentation, areas to play, think and create in order develop and instigate new initiatives and ideas of production, carrying on the tradition of influential inventions throughout the history of these key cities. Other topics will be briefly touched on, such as urban farming, citing the Biospheric foundation in Manchester and other similar projects in Detroit. However, the main thread will focus on the music industries and how they are contributing to the regeneration of cities. Musically and artistically, Manchester and Detroit have been closely connected by the flow and transmission of information and transfer of ideas via ‘cars and trains and boats and planes’ through to the new ‘super highway’. From Detroit to Manchester often via New York and Liverpool and back again, these musical and artistic connections and flows have greatly affected and influenced both cities and the advancement of technology are still connecting the cities. In summary two hugely important industrial cities, subsequently both experienced massive decline in fortunes, having had their large industrial hearts ripped out, ravaged leaving dying industrial carcasses and car crashes of despair, dereliction, desolation and post-industrial wastelands vacated by a massive exodus of the cities’ inhabitants. To examine the affinity, similarity and differences between Manchester & Detroit, from their industrial importance to their post-industrial decline and their current transmutations, transformations, transient transgressions, cities in transition; contrasting how they have dealt with these problems and how they can learn from each other. With a view to framing these topics with regard to how various communities have shaped these cities and the creative industries and design [the new cotton/car manufacturing industries] are reinventing post-industrial cities, to speculate on future development of these themes in relation to Globalisation, digitalisation and how cities can function to develop solutions to communal living in cities of the future.Keywords: cultural capital, digital developments, musical initiatives, zones of experimentation
Procedia PDF Downloads 19425240 A Parallel Poromechanics Finite Element Method (FEM) Model for Reservoir Analyses
Authors: Henrique C. C. Andrade, Ana Beatriz C. G. Silva, Fernando Luiz B. Ribeiro, Samir Maghous, Jose Claudio F. Telles, Eduardo M. R. Fairbairn
Abstract:
The present paper aims at developing a parallel computational model for numerical simulation of poromechanics analyses of heterogeneous reservoirs. In the context of macroscopic poroelastoplasticity, the hydromechanical coupling between the skeleton deformation and the fluid pressure is addressed by means of two constitutive equations. The first state equation relates the stress to skeleton strain and pore pressure, while the second state equation relates the Lagrangian porosity change to skeleton volume strain and pore pressure. A specific algorithm for local plastic integration using a tangent operator is devised. A modified Cam-clay type yield surface with associated plastic flow rule is adopted to account for both contractive and dilative behavior.Keywords: finite element method, poromechanics, poroplasticity, reservoir analysis
Procedia PDF Downloads 39125239 Improving Binding Selectivity in Molecularly Imprinted Polymers from Templates of Higher Biomolecular Weight: An Application in Cancer Targeting and Drug Delivery
Authors: Ben Otange, Wolfgang Parak, Florian Schulz, Michael Alexander Rubhausen
Abstract:
The feasibility of extending the usage of molecular imprinting technique in complex biomolecules is demonstrated in this research. This technique is promising in diverse applications in areas such as drug delivery, diagnosis of diseases, catalysts, and impurities detection as well as treatment of various complications. While molecularly imprinted polymers MIP remain robust in the synthesis of molecules with remarkable binding sites that have high affinities to specific molecules of interest, extending the usage to complex biomolecules remains futile. This work reports on the successful synthesis of MIP from complex proteins: BSA, Transferrin, and MUC1. We show in this research that despite the heterogeneous binding sites and higher conformational flexibility of the chosen proteins, relying on their respective epitopes and motifs rather than the whole template produces highly sensitive and selective MIPs for specific molecular binding. Introduction: Proteins are vital in most biological processes, ranging from cell structure and structural integrity to complex functions such as transport and immunity in biological systems. Unlike other imprinting templates, proteins have heterogeneous binding sites in their complex long-chain structure, which makes their imprinting to be marred by challenges. In addressing this challenge, our attention is inclined toward the targeted delivery, which will use molecular imprinting on the particle surface so that these particles may recognize overexpressed proteins on the target cells. Our goal is thus to make surfaces of nanoparticles that specifically bind to the target cells. Results and Discussions: Using epitopes of BSA and MUC1 proteins and motifs with conserved receptors of transferrin as the respective templates for MIPs, significant improvement in the MIP sensitivity to the binding of complex protein templates was noted. Through the Fluorescence Correlation Spectroscopy FCS measurements on the size of protein corona after incubation of the synthesized nanoparticles with proteins, we noted a high affinity of MIPs to the binding of their respective complex proteins. In addition, quantitative analysis of hard corona using SDS-PAGE showed that only a specific protein was strongly bound on the respective MIPs when incubated with similar concentrations of the protein mixture. Conclusion: Our findings have shown that the merits of MIPs can be extended to complex molecules of higher biomolecular mass. As such, the unique merits of the technique, including high sensitivity and selectivity, relative ease of synthesis, production of materials with higher physical robustness, and higher stability, can be extended to more templates that were previously not suitable candidates despite their abundance and usage within the body.Keywords: molecularly imprinted polymers, specific binding, drug delivery, high biomolecular mass-templates
Procedia PDF Downloads 5525238 Urban Refugees and Education in Developing Countries
Authors: Sheraz Akhtar
Abstract:
In recent years, a massive influx of refugees into developing countries has placed significant constraints on the host government’s capacities to provide social services, including education, to all. As a result, the refugee communities often find themselves deprived of their rights to education in these host countries, particularly for those who to live outside camps in urban locations. While previous research has examined the educational experiences of refugees who have resettled in developed nations, there remains a dearth of research on the educational experiences of urban refugees in developing nations. This study examines this issue through a case study of Pakistani Christian refugees living in urban settings in Thailand. Using a combination of observations within community learning centres set up by international non-government organisations (INGOs) working with these communities, and interviews with young Pakistani Christian refugees and their families, the research aims to give greater voice to the Pakistani Christian refugee community living in Thailand, and better understand their educational aspirations.Keywords: Education, Developing Countries , INGOs, Urban Refugees
Procedia PDF Downloads 12525237 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data
Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim
Abstract:
Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.Keywords: activity pattern, data fusion, smart-card, XGboost
Procedia PDF Downloads 24625236 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 14325235 DNA-Polycation Condensation by Coarse-Grained Molecular Dynamics
Authors: Titus A. Beu
Abstract:
Many modern gene-delivery protocols rely on condensed complexes of DNA with polycations to introduce the genetic payload into cells by endocytosis. In particular, polyethyleneimine (PEI) stands out by a high buffering capacity (enabling the efficient condensation of DNA) and relatively simple fabrication. Realistic computational studies can offer essential insights into the formation process of DNA-PEI polyplexes, providing hints on efficient designs and engineering routes. We present comprehensive computational investigations of solvated PEI and DNA-PEI polyplexes involving calculations at three levels: ab initio, all-atom (AA), and coarse-grained (CG) molecular mechanics. In the first stage, we developed a rigorous AA CHARMM (Chemistry at Harvard Macromolecular Mechanics) force field (FF) for PEI on the basis of accurate ab initio calculations on protonated model pentamers. We validated this atomistic FF by matching the results of extensive molecular dynamics (MD) simulations of structural and dynamical properties of PEI with experimental data. In a second stage, we developed a CG MARTINI FF for PEI by Boltzmann inversion techniques from bead-based probability distributions obtained from AA simulations and ensuring an optimal match between the AA and CG structural and dynamical properties. In a third stage, we combined the developed CG FF for PEI with the standard MARTINI FF for DNA and performed comprehensive CG simulations of DNA-PEI complex formation and condensation. Various technical aspects which are crucial for the realistic modeling of DNA-PEI polyplexes, such as options of treating electrostatics and the relevance of polarizable water models, are discussed in detail. Massive CG simulations (with up to 500 000 beads) shed light on the mechanism and provide time scales for DNA polyplex formation independence of PEI chain size and protonation pattern. The DNA-PEI condensation mechanism is shown to primarily rely on the formation of DNA bundles, rather than by changes of the DNA-strand curvature. The gained insights are expected to be of significant help for designing effective gene-delivery applications.Keywords: DNA condensation, gene-delivery, polyethylene-imine, molecular dynamics.
Procedia PDF Downloads 12025234 Feature Extraction Based on Contourlet Transform and Log Gabor Filter for Detection of Ulcers in Wireless Capsule Endoscopy
Authors: Nimisha Elsa Koshy, Varun P. Gopi, V. I. Thajudin Ahamed
Abstract:
The entire visualization of GastroIntestinal (GI) tract is not possible with conventional endoscopic exams. Wireless Capsule Endoscopy (WCE) is a low risk, painless, noninvasive procedure for diagnosing diseases such as bleeding, polyps, ulcers, and Crohns disease within the human digestive tract, especially the small intestine that was unreachable using the traditional endoscopic methods. However, analysis of massive images of WCE detection is tedious and time consuming to physicians. Hence, researchers have developed software methods to detect these diseases automatically. Thus, the effectiveness of WCE can be improved. In this paper, a novel textural feature extraction method is proposed based on Contourlet transform and Log Gabor filter to distinguish ulcer regions from normal regions. The results show that the proposed method performs well with a high accuracy rate of 94.16% using Support Vector Machine (SVM) classifier in HSV colour space.Keywords: contourlet transform, log gabor filter, ulcer, wireless capsule endoscopy
Procedia PDF Downloads 54025233 Entrepreneurship Education as a 21st Century Strategy for Economic Growth and Sustainable Development
Authors: M. Fems Kurotimi, Agada Franklin, Godsave Aladei, Opigo Helen
Abstract:
Within the last 30 years, entrepreneurship education (EE) has continued to gain massive interest both in the field of research and among policy makers. This surge in interest can be attributed to the perceived importance EE plays in the equipping of potential entrepreneurs and as a 21st century strategy to foster economic growth and development. This paper sets out to ascertain the correlation between EE and economic growth and development. A desk research approach was adopted where a multiplicity of literatures in the field were studied intensely. The findings reveal that indeed EE has a positive effect on entrepreneurship engagement thereby fostering economic growth and development. However, some research studies reported the contrary. That although EE may be able to equip potential entrepreneurs with requisite entrepreneurial skills and competencies, it will only be successful in producing entrepreneurs if they are internally driven to become entrepreneurs, because we cannot make people what they are not. The findings also reveal that countries that adopted EE early have more innovations inspired by entrepreneurs and are more developed than those that only recently adopted EE as a viable tool for entrepreneurship and economic development.Keywords: entrepreneurship, entrepreneurship education, economic development, economic growth, sustainable development
Procedia PDF Downloads 337