Search results for: changing dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4835

Search results for: changing dynamics

4115 Efficiency of Grover’s Search Algorithm Implemented on Open Quantum System in the Presence of Drive-Induced Dissipation

Authors: Nilanjana Chanda, Rangeet Bhattacharyya

Abstract:

Grover’s search algorithm is the fastest possible quantum mechanical algorithm to search a certain element from an unstructured set of data of N items. The algorithm can determine the desired result in only O(√N) steps. It has been demonstrated theoretically and experimentally on two-qubit systems long ago. In this work, we investigate the fidelity of Grover’s search algorithm by implementing it on an open quantum system. In particular, we study with what accuracy one can estimate that the algorithm would deliver the searched state. In reality, every system has some influence on its environment. We include the environmental effects on the system dynamics by using a recently reported fluctuation-regulated quantum master equation (FRQME). We consider that the environment experiences thermal fluctuations, which leave its signature in the second-order term of the master equation through its appearance as a regulator. The FRQME indicates that in addition to the regular relaxation due to system-environment coupling, the applied drive also causes dissipation in the system dynamics. As a result, the fidelity is found to depend on both the drive-induced dissipative terms and the relaxation terms, and we find that there exists a competition between them, leading to an optimum drive amplitude for which the fidelity becomes maximum. For efficient implementation of the search algorithm, precise knowledge of this optimum drive amplitude is essential.

Keywords: dissipation, fidelity, quantum master equation, relaxation, system-environment coupling

Procedia PDF Downloads 87
4114 The Direct Deconvolution Model for the Large Eddy Simulation of Turbulence

Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang

Abstract:

Large eddy simulation (LES) has been extensively used in the investigation of turbulence. LES calculates the grid-resolved large-scale motions and leaves small scales modeled by sub lfilterscale (SFS) models. Among the existing SFS models, the deconvolution model has been used successfully in the LES of the engineering flows and geophysical flows. Despite the wide application of deconvolution models, the effects of subfilter scale dynamics and filter anisotropy on the accuracy of SFS modeling have not been investigated in depth. The results of LES are highly sensitive to the selection of fi lters and the anisotropy of the grid, which has been overlooked in previous research. In the current study, two critical aspects of LES are investigated. Firstly, we analyze the influence of sub-fi lter scale (SFS) dynamics on the accuracy of direct deconvolution models (DDM) at varying fi lter-to-grid ratios (FGR) in isotropic turbulence. An array of invertible filters are employed, encompassing Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The signi ficance of FGR becomes evident, as it acts as a pivotal factor in error control for precise SFS stress prediction. When FGR is set to 1, the DDM models cannot accurately reconstruct the SFS stress due to the insufficient resolution of SFS dynamics. Notably, prediction capabilities are enhanced at an FGR of 2, resulting in accurate SFS stress reconstruction, except for cases involving Helmholtz I and II fi lters. A remarkable precision close to 100% is achieved at an FGR of 4 for all DDM models. Additionally, the further exploration extends to the fi lter anisotropy to address its impact on the SFS dynamics and LES accuracy. By employing dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with the anisotropic fi lter, aspect ratios (AR) ranging from 1 to 16 in LES fi lters are evaluated. The findings highlight the DDM's pro ficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. High correlation coefficients exceeding 90% are observed in the a priori study for the DDM's reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as lter anisotropy increases. In the a posteriori studies, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, encompassing velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strain-rate tensors, and SFS stress. It is observed that as fi lter anisotropy intensify , the results of DSM and DMM become worse, while the DDM continues to deliver satisfactory results across all fi lter-anisotropy scenarios. The fi ndings emphasize the DDM framework's potential as a valuable tool for advancing the development of sophisticated SFS models for LES of turbulence.

Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence

Procedia PDF Downloads 59
4113 Atomistic Insight into the System of Trapped Oil Droplet/ Nanofluid System in Nanochannels

Authors: Yuanhao Chang, Senbo Xiao, Zhiliang Zhang, Jianying He

Abstract:

The role of nanoparticles (NPs) in enhanced oil recovery (EOR) is being increasingly emphasized. In this study, the motion of NPs and local stress distribution of tapped oil droplet/nanofluid in nanochannels are studied with coarse-grained modeling and molecular dynamic simulations. The results illustrate three motion patterns for NPs: hydrophilic NPs are more likely to adsorb on the channel and stay near the three-phase contact areas, hydrophobic NPs move inside the oil droplet as clusters and more mixed NPs are trapped at the oil-water interface. NPs in each pattern affect the flow of fluid and the interfacial thickness to various degrees. Based on the calculation of atomistic stress, the characteristic that the higher value of stress occurs at the place where NPs aggregate can be obtained. Different occurrence patterns correspond to specific local stress distribution. Significantly, in the three-phase contact area for hydrophilic NPs, the local stress distribution close to the pattern of structural disjoining pressure is observed, which proves the existence of structural disjoining pressure in molecular dynamics simulation for the first time. Our results guide the design and screen of NPs for EOR and provide a basic understanding of nanofluid applications.

Keywords: local stress distribution, nanoparticles, enhanced oil recovery, molecular dynamics simulation, trapped oil droplet, structural disjoining pressure

Procedia PDF Downloads 119
4112 Variability of the Speaker's Verbal and Non-Verbal Behaviour in the Process of Changing Social Roles in the English Marketing Discourse

Authors: Yuliia Skrynnik

Abstract:

This research focuses on the interaction of verbal, non-verbal, and super-verbal communicative components used by the speaker changing social roles in the marketing discourse. The changing/performing of social roles is implemented through communicative strategies and tactics, the structural, semantic, and linguo-pragmatic means of which are characterized by specific features and differ for the performance of either a role of a supplier or a customer. Communication within the marketing discourse is characterized by symmetrical roles’ relation between communicative opponents. The strategy of a supplier’s social role realization and the strategy of a customer’s role realization influence the discursive personality's linguistic repertoire in the marketing discourse. This study takes into account that one person can be both a supplier and a customer under different circumstances, thus, exploring the one individual who can be both a supplier and a customer. Cooperative and non-cooperative tactics are the instruments for the implementation of these strategies. In the marketing discourse, verbal and non-verbal behaviour of the speaker performing a customer’s social role is highly informative for speakers who perform the role of a supplier. The research methods include discourse, context-situational, pragmalinguistic, pragmasemantic analyses, the method of non-verbal components analysis. The methodology of the study includes 5 steps: 1) defining the configurations of speakers’ social roles on the selected material; 2) establishing the type of the discourse (marketing discourse); 3) describing the specific features of a discursive personality as a subject of the communication in the process of social roles realization; 4) selecting the strategies and tactics which direct the interaction in different roles configurations; 5) characterizing the structural, semantic and pragmatic features of the strategies and tactics realization, including the analysis of interaction between verbal and non-verbal components of communication. In the marketing discourse, non-verbal behaviour is usually spontaneous but not purposeful. Thus, the adequate decoding of a partner’s non-verbal behavior provides more opportunities both for the supplier and the customer. Super-verbal characteristics in the marketing discourse are crucial in defining the opponent's social status and social role at the initial stage of interaction. The research provides the scenario of stereotypical situations of the play of a supplier and a customer. The performed analysis has perspectives for further research connected with the study of discursive variativity of speakers' verbal and non-verbal behaviour considering the intercultural factor influencing the process of performing the social roles in the marketing discourse; and the formation of the methods for the scenario construction of non-stereotypical situations of social roles realization/change in the marketing discourse.

Keywords: discursive personality, marketing discourse, non-verbal component of communication, social role, strategy, super-verbal component of communication, tactic, verbal component of communication

Procedia PDF Downloads 107
4111 Ice Breakers: A Tool for Esl Learners

Authors: Nazia Shehzad

Abstract:

An icebreaker is a facilitation exercise intended to help a group to begin the process of forming themselves into a team. Icebreakers are commonly presented as a game to ‘warm up’ the group by helping the members to get to know each other. They often focus on sharing personal information such as names, hobbies, etc. Challenging icebreakers also have the ability to allow a group to be better prepared to complete its assigned tasks. For example, if the team's objective is to redesign a business process such as Accounts Payable, the icebreaker activity might take the team through a process analysis. The analysis could include the identification of failure points, challenging assumptions, and development of new solutions — all in a simpler and ‘safer’ setting where the team can practice the group dynamics which they will use to solve the assigned problem. Icebreakers help establish a positive environment and provide an opportunity for students to get to know one another and the instructor. Both are critical to the retention and success of students. There are a number of benefits of using ice-breakers activities in the classroom. It reduces both student and instructor anxiety prior to introducing the course, fosters in a powerful way both student-student and faculty-student interactions. It creates an environment where the learner is expected to participate and the instructor is willing to listen, actively engage students from the onset. It conveys the message that the instructor cares about getting to know the students and makes it easier for students to form relationships early in the semester so they can work together both in and out of class.

Keywords: actively engages students, facilitation exercise, faculty- student interactions, group dynamics, warm up

Procedia PDF Downloads 328
4110 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters

Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran

Abstract:

The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.

Keywords: electric propulsion, mass gauging, propellant, PVT, xenon

Procedia PDF Downloads 329
4109 EEG Analysis of Brain Dynamics in Children with Language Disorders

Authors: Hamed Alizadeh Dashagholi, Hossein Yousefi-Banaem, Mina Naeimi

Abstract:

Current study established for EEG signal analysis in patients with language disorder. Language disorder can be defined as meaningful delay in the use or understanding of spoken or written language. The disorder can include the content or meaning of language, its form, or its use. Here we applied Z-score, power spectrum, and coherence methods to discriminate the language disorder data from healthy ones. Power spectrum of each channel in alpha, beta, gamma, delta, and theta frequency bands was measured. In addition, intra hemispheric Z-score obtained by scoring algorithm. Obtained results showed high Z-score and power spectrum in posterior regions. Therefore, we can conclude that peoples with language disorder have high brain activity in frontal region of brain in comparison with healthy peoples. Results showed that high coherence correlates with irregularities in the ERP and is often found during complex task, whereas low coherence is often found in pathological conditions. The results of the Z-score analysis of the brain dynamics showed higher Z-score peak frequency in delta, theta and beta sub bands of Language Disorder patients. In this analysis there were activity signs in both hemispheres and the left-dominant hemisphere was more active than the right.

Keywords: EEG, electroencephalography, coherence methods, language disorder, power spectrum, z-score

Procedia PDF Downloads 410
4108 The Mainspring of Controlling of Low Pressure Steam Drum at Lower Pressure than Its Design for Adjusting the Urea Synthesis Pressure

Authors: Reza Behtash, Enayat Enayati

Abstract:

The pool condenser is in principal a horizontal reactor, containing a bundle of U-tubes for heat exchange, coupling to low pressure steam drum. Condensation of gas takes place in a condensed pool around the tubes of the condenser. The heat of condensation is removed by the generation of low pressure steam on the inner tube side of the bundle. A circulation pump transfers ample boiler feed water to these tubes. The pressure of the steam generated influenced the heat flux. Changing the steam pressure means changing the steam condensate temperature and therefore the temperature difference between the tube side and the shell side. 2NH3 + CO2 ↔ NH2COONH4 + Heat. This reaction is exothermic and according to Le Chatelier's Principle if the heat is not removed enough, it will come back to left side and generate of the gas and so the Urea synthesis pressure will rise. The most principal reasons for high Urea synthesis pressure are non proportional of Ammonia/Dioxide Carbon ratio and too high a pressure in low pressure steam drum. Proportional of Ammonia/Dioxide Carbon ratio is 3.0 and normal pressure for low pressure steam drum is 4.5 bar. As regards these conditions were proportional but we could not control the synthesis pressure the plant endangered, therefore we had to control the steam drum pressure at about 3.5 bar. While we opened the pool condenser, we found the partition plate used to divide inlet and outlet boiler feed water to tubes, was broken partially and so amount of boiler feed water bypass the tubes and the heat was not removed totally and it resulted in the generation of gases and high pressure in synthesis.

Keywords: boiler, pressure, pool condenser, partition plate

Procedia PDF Downloads 369
4107 Health Reforms in Central and Eastern European Countries: Results, Dynamics, and Outcomes Measure

Authors: Piotr Romaniuk, Krzysztof Kaczmarek, Adam Szromek

Abstract:

Background: A number of approaches to assess the performance of health system have been proposed so far. Nonetheless, they lack a consensus regarding the key components of assessment procedure and criteria of evaluation. The WHO and OECD have developed methods of assessing health system to counteract the underlying issues, but they are not free of controversies and did not manage to produce a commonly accepted consensus. The aim of the study: On the basis of WHO and OECD approaches we decided to develop own methodology to assess the performance of health systems in Central and Eastern European countries. We have applied the method to compare the effects of health systems reforms in 20 countries of the region, in order to evaluate the dynamic of changes in terms of health system outcomes.Methods: Data was collected from a 25-year time period after the fall of communism, subsetted into different post-reform stages. Datasets collected from individual countries underwent one-, two- or multi-dimensional statistical analyses, and the Synthetic Measure of health system Outcomes (SMO) was calculated, on the basis of the method of zeroed unitarization. A map of dynamics of changes over time across the region was constructed. Results: When making a comparative analysis of the tested group in terms of the average SMO value throughout the analyzed period, we noticed some differences, although the gaps between individual countries were small. The countries with the highest SMO were the Czech Republic, Estonia, Poland, Hungary and Slovenia, while the lowest was in Ukraine, Russia, Moldova, Georgia, Albania, and Armenia. Countries differ in terms of the range of SMO value changes throughout the analyzed period. The dynamics of change is high in the case of Estonia and Latvia, moderate in the case of Poland, Hungary, Czech Republic, Croatia, Russia and Moldova, and small when it comes to Belarus, Ukraine, Macedonia, Lithuania, and Georgia. This information reveals fluctuation dynamics of the measured value in time, yet it does not necessarily mean that in such a dynamic range an improvement appears in a given country. In reality, some of the countries moved from on the scale with different effects. Albania decreased the level of health system outcomes while Armenia and Georgia made progress, but lost distance to leaders in the region. On the other hand, Latvia and Estonia showed the most dynamic progress in improving the outcomes. Conclusions: Countries that have decided to implement comprehensive health reform have achieved a positive result in terms of further improvements in health system efficiency levels. Besides, a higher level of efficiency during the initial transition period generally positively determined the subsequent value of the efficiency index value, but not the dynamics of change. The paths of health system outcomes improvement are highly diverse between different countries. The instrument we propose constitutes a useful tool to evaluate the effectiveness of reform processes in post-communist countries, but more studies are needed to identify factors that may determine results obtained by individual countries, as well as to eliminate the limitations of methodology we applied.

Keywords: health system outcomes, health reforms, health system assessment, health system evaluation

Procedia PDF Downloads 271
4106 Emerging Dimensions of Intrinsic Motivation for Effective Performance

Authors: Prachi Bhatt

Abstract:

Motivated workforce is an important asset of an organisation. Intrinsic motivation is one of the key aspects of people operations and performance. Researches have emphasized the significance of internal factors in individuals’ motivation. In the changing business scenario, it is a challenge for the organizations’ leaders to inspire and motivate their workforce. The present study deals with the intrinsic motivation potential of an individual which govern the innate capability of an individual driving him or her to behave or perform in the changing work environment, tasks, teams. Differences at individual level significantly influence differences in levels of motivation. In the above context, the present research attempts to explore behavioral trait dimensions which influence motivational potential of an individual. The present research emphasizes the significance of intrinsic motivational potential and the significance of exploring the differences in the intrinsic motivational potential levels of individuals at work places. Thus, this paper empirically tests the framework of behavioral traits which affects motivational potential of an individual. With the help of two studies i.e., Study 1 and Study 2, exploratory factor analysis and confirmatory factor analysis, respectively, indicated a reliable measure assessing intrinsic motivational potential of an individual. Given the variety of challenges of motivating contemporary workforce, and with increasing importance of intrinsic motivation, the paper discusses the relevance of the findings and of the measure assessing intrinsic motivational potential. Assessment of such behavioral traits would assist in the effective realization of intrinsic motivational potential of individuals. Additionally, the paper discusses the practical implications and furnishes scope for future research.

Keywords: behavioral traits, individual differences, intrinsic motivational potential, intrinsic motivation, motivation, workplace motivation

Procedia PDF Downloads 182
4105 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor

Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir

Abstract:

This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.

Keywords: centrifugal compressor, contra-rotating, interaction rotor, vacuum

Procedia PDF Downloads 120
4104 A Three-Dimensional Investigation of Stabilized Turbulent Diffusion Flames Using Different Type of Fuel

Authors: Moataz Medhat, Essam E. Khalil, Hatem Haridy

Abstract:

In the present study, a numerical simulation study is used to 3-D model the steady-state combustion of a staged natural gas flame in a 300 kW swirl-stabilized burner, using ANSYS solver to find the highest combustion efficiency by changing the inlet air swirl number and burner quarl angle in a furnace and showing the effect of flue gas recirculation, type of fuel and staging. The combustion chamber of the gas turbine is a cylinder of diameter 1006.8 mm, and a height of 1651mm ending with a hood until the exhaust cylinder has been reached, where the exit of combustion products which have a diameter of 300 mm, with a height of 751mm. The model was studied by 15 degree of the circumference due to axisymmetric of the geometry and divided into a mesh of about 1.1 million cells. The numerical simulations were performed by solving the governing equations in a three-dimensional model using realizable K-epsilon equations to express the turbulence and non-premixed flamelet combustion model taking into consideration radiation effect. The validation of the results was done by comparing it with other experimental data to ensure the agreement of the results. The study showed two zones of recirculation. The primary one is at the center of the furnace, and the location of the secondary one varies by changing the quarl angle of the burner. It is found that the increase in temperature in the external recirculation zone is a result of increasing the swirl number of the inlet air stream. Also it was found that recirculating part of the combustion products back to the combustion zone decreases pollutants formation especially nitrogen monoxide.

Keywords: burner selection, natural gas, analysis, recirculation

Procedia PDF Downloads 148
4103 Decay Analysis of 118Xe* Nucleus Formed in 28Si Induced Reaction

Authors: Manoj K. Sharma, Neha Grover

Abstract:

Dynamical cluster decay model (DCM) is applied to study the decay mechanism of 118Xe* nucleus in reference to recent data on 28Si + 90Zr → 118Xe* reaction, as an extension of our previous work on the dynamics of 112Xe* nucleus. It is relevant to mention here that DCM is based on collective clusterization approach, where emission probability of different decay paths such as evaporation residue (ER), intermediate mass fragments (IMF) and fission etc. is worked out on parallel scale. Calculations have been done over a wide range of center of mass energies with Ec.m. = 65 - 92 MeV. The evaporation residue (ER) cross-sections of 118Xe* compound nucleus are fitted in reference to available data, using spherical and quadrupole (β2) deformed choice of decaying fragments within the optimum orientations approach. It may be noted that our calculated cross-sections find decent agreement with experimental data and hence provide an opportunity to analyze the exclusive role of deformations in view of fragmentation behavior of 118Xe* nucleus. The possible contribution of IMF fragments is worked out and an extensive effort is being made to analyze the role of excitation energy, angular momentum, diffuseness parameter and level density parameter to have better understanding of the decay patterns governed in the dynamics of 28Si + 90Zr → 118Xe* reaction.

Keywords: cross-sections, deformations, fragmentation, angular momentum

Procedia PDF Downloads 300
4102 Prediction of Finned Projectile Aerodynamics Using a Lattice-Boltzmann Method CFD Solution

Authors: Zaki Abiza, Miguel Chavez, David M. Holman, Ruddy Brionnaud

Abstract:

In this paper, the prediction of the aerodynamic behavior of the flow around a Finned Projectile will be validated using a Computational Fluid Dynamics (CFD) solution, XFlow, based on the Lattice-Boltzmann Method (LBM). XFlow is an innovative CFD software developed by Next Limit Dynamics. It is based on a state-of-the-art Lattice-Boltzmann Method which uses a proprietary particle-based kinetic solver and a LES turbulent model coupled with the generalized law of the wall (WMLES). The Lattice-Boltzmann method discretizes the continuous Boltzmann equation, a transport equation for the particle probability distribution function. From the Boltzmann transport equation, and by means of the Chapman-Enskog expansion, the compressible Navier-Stokes equations can be recovered. However to simulate compressible flows, this method has a Mach number limitation because of the lattice discretization. Thanks to this flexible particle-based approach the traditional meshing process is avoided, the discretization stage is strongly accelerated reducing engineering costs, and computations on complex geometries are affordable in a straightforward way. The projectile that will be used in this work is the Army-Navy Basic Finned Missile (ANF) with a caliber of 0.03 m. The analysis will consist in varying the Mach number from M=0.5 comparing the axial force coefficient, normal force slope coefficient and the pitch moment slope coefficient of the Finned Projectile obtained by XFlow with the experimental data. The slope coefficients will be obtained using finite difference techniques in the linear range of the polar curve. The aim of such an analysis is to find out the limiting Mach number value starting from which the effects of high fluid compressibility (related to transonic flow regime) lead the XFlow simulations to differ from the experimental results. This will allow identifying the critical Mach number which limits the validity of the isothermal formulation of XFlow and beyond which a fully compressible solver implementing a coupled momentum-energy equations would be required.

Keywords: CFD, computational fluid dynamics, drag, finned projectile, lattice-boltzmann method, LBM, lift, mach, pitch

Procedia PDF Downloads 400
4101 Analysis of Reduced Mechanisms for Premixed Combustion of Methane/Hydrogen/Propane/Air Flames in Geometrically Modified Combustor and Its Effects on Flame Properties

Authors: E. Salem

Abstract:

Combustion has been used for a long time as a means of energy extraction. However, in recent years, there has been a further increase in air pollution, through pollutants such as nitrogen oxides, acid etc. In order to solve this problem, there is a need to reduce carbon and nitrogen oxides through learn burning modifying combustors and fuel dilution. A numerical investigation has been done to investigate the effectiveness of several reduced mechanisms in terms of computational time and accuracy, for the combustion of the hydrocarbons/air or diluted with hydrogen in a micro combustor. The simulations were carried out using the ANSYS Fluent 19.1. To validate the results “PREMIX and CHEMKIN” codes were used to calculate 1D premixed flame based on the temperature, composition of burned and unburned gas mixtures. Numerical calculations were carried for several hydrocarbons by changing the equivalence ratios and adding small amounts of hydrogen into the fuel blends then analyzing the flammable limit, the reduction in NOx and CO emissions, then comparing it to experimental data. By solving the conservations equations, several global reduced mechanisms (2-9-12) were obtained. These reduced mechanisms were simulated on a 2D cylindrical tube with dimensions of 40 cm in length and 2.5 cm diameter. The mesh of the model included a proper fine quad mesh, within the first 7 cm of the tube and around the walls. By developing a proper boundary layer, several simulations were performed on hydrocarbon/air blends to visualize the flame characteristics than were compared with experimental data. Once the results were within acceptable range, the geometry of the combustor was modified through changing the length, diameter, adding hydrogen by volume, and changing the equivalence ratios from lean to rich in the fuel blends, the results on flame temperature, shape, velocity and concentrations of radicals and emissions were observed. It was determined that the reduced mechanisms provided results within an acceptable range. The variation of the inlet velocity and geometry of the tube lead to an increase of the temperature and CO2 emissions, highest temperatures were obtained in lean conditions (0.5-0.9) equivalence ratio. Addition of hydrogen blends into combustor fuel blends resulted in; reduction in CO and NOx emissions, expansion of the flammable limit, under the condition of having same laminar flow, and varying equivalence ratio with hydrogen additions. The production of NO is reduced because the combustion happens in a leaner state and helps in solving environmental problems.

Keywords: combustor, equivalence-ratio, hydrogenation, premixed flames

Procedia PDF Downloads 105
4100 Milling Process of Rigid Flex Printed Circuit Board to Which Polyimide Covers the Whole Surface

Authors: Daniela Evtimovska, Ivana Srbinovska, Padraig O’Rourke

Abstract:

Kostal Macedonia has the challenge to mill a rigid-flex printed circuit board (PCB). The PCB elaborated in this paper is made of FR4 material covered with polyimide through the whole surface on the one side, including the tabs where PCBs need to be separated. After milling only 1.44 meters, the updraft routing tool isn’t effective and causes polyimide debris on all PCB cuts if it continues to mill with the same tool. Updraft routing tool is used for all another product in Kostal Macedonia, and it is changing after milling 60 meters. Changing the tool adds 80 seconds to the cycle time. One solution is using a laser-cut machine. Buying a laser-cut machine for cutting only one product doesn’t make financial sense. The focus is given to find an internal solution among the options under review to solve the issue with polyimide debris. In the paper, the design of the rigid-flex panel is described deeply. It is evaluated downdraft routing tool as a possible solution which could be used for the flex rigid panel as a specific product. It is done a comparison between updraft and down draft routing tools from a technical and financial aspect of view, taking into consideration the customer requirements for the rigid-flex PCB. The results show that using the downdraft routing tool is the best solution in this case. This tool is more expensive for 0.62 euros per piece than updraft. The downdraft routing tool needs to be changed after milling 43.44 meters in comparison with the updraft tool, which needs to be changed after milling only 1.44 meters. It is done analysis which actions should be taken in order further improvements and the possibility of maximum serving of downdraft routing tool.

Keywords: Kostal Macedonia, rigid flex PCB, polyimide, debris, milling process, up/down draft routing tool

Procedia PDF Downloads 170
4099 Downhole Logging and Dynamics Data Resolving Lithology-Related Drilling Behavior

Authors: Christopher Viens, Steve Krase

Abstract:

Terms such as “riding a hard streak”, “formation push”, and “fighting formation” are commonly used in the directional drilling world to explain BHA behavior that causes unwanted trajectory change. Theories about downhole directional tendencies are commonly speculated from various personal experiences with little merit due to the lack of hard data to reveal the actual mechanisms behind the phenomenon, leaving interpretation of the root cause up to personal perception. Understanding and identifying in real time the lithological factors that influence the BHA to change or hold direction adds tremendous value in terms reducing sliding time and targeting zones for optimal ROP. Utilizing surface drilling parameters and employing downhole measurements of azimuthal gamma, continuous inclination, and bending moment, a direct measure of the rock related directional phenomenon have been captured and quantified. Furthermore, identifying continuous zones of like lithology with consistent bit to rock interaction has value from a reservoir characterization and completions standpoint. The paper will show specific examples of lithology related directional tendencies from the Spraberry and Wolfcamp in the Delaware Basin.

Keywords: Azimuthal gamma imaging, bending moment, continuous inclination, downhole dynamics measurements, high frequency data

Procedia PDF Downloads 273
4098 The Effect of Internal Electrical Ion Mobility on Molten Salts through Atomistic Simulations

Authors: Carlos F. Sanz-Navarro, Sonia Fereres

Abstract:

Binary and ternary mixtures of molten salts are excellent thermal energy storage systems and have been widely used in commercial tanks both in nuclear and solar thermal applications. However, the energy density of the commercially used mixtures is still insufficient, and therefore, new systems based on latent heat storage (or phase change materials, PCM) are currently being investigated. In order to shed some light on the macroscopic physical properties of the molten salt phases, knowledge of the microscopic structure and dynamics is required. Several molecular dynamics (MD) simulations have been performed to model the thermal behavior of (Li,K)2CO3 mixtures. Up to this date, this particular molten salt mixture has not been extensively studied but it is of fundamental interest for understanding the behavior of other commercial salts. Molten salt diffusivities, the internal electrical ion mobility, and the physical properties of the solid-liquid phase transition have been calculated and compared to available data from literature. The effect of anion polarization and the application of a strong external electric field have also been investigated. The influence of electrical ion mobility on local composition is explained through the Chemla effect, well known in electrochemistry. These results open a new way to design optimal high temperature energy storage materials.

Keywords: atomistic simulations, thermal storage, latent heat, molten salt, ion mobility

Procedia PDF Downloads 310
4097 Flexible Furniture in Urban Open Spaces: A Tool to Achieve Social Sustainability

Authors: Mahsa Ghafouri, Guita Farivarsadri

Abstract:

In urban open spaces, furniture plays a crucial role in meeting various needs of the users over time. Furniture consists of elements that not only can facilitate physical needs individually but also fulfill social, psychological, and cultural demands on an urban scale. Creating adjustable urban spaces and using flexible furniture can provide the possibility of using urban spaces for a wide range of uses and activities and allow the engagement of users with distinct abilities and limitations in these activities. Flexibility in urban furniture can be seen as designing a number of modular components that are movable, expandable, adjustable, and changeable to accommodate various functions. Although there is a great amount of research related to flexibility and its distinct insights into achieving spaces that can cope with changing demands, this fundamental issue is often neglected in the design of urban furniture. However, in the long term, to address changing public needs over time, it can be logical to bring this quality into the design process to make spaces that can be sustained for a long time. This study aims to first introduce diverse kinds of flexible furniture that can be designed for urban public spaces and then to realize how this flexible furniture can improve the quality of public open spaces and social interaction and make them more adaptable over time and, as a result, achieve social sustainability. This research is descriptive and is mainly based on an extensive literature review and the analysis and classification of existing examples around the world. This research tends to illustrate various kinds of approaches that can help designers create flexible furniture to enhance the sustainability and quality of urban open spaces and, in this way, act as a guide for urban designers in this respect.

Keywords: flexible furniture, flexible design, urban open spaces, adaptability, moveability, social sustainability

Procedia PDF Downloads 39
4096 Strategic Management Education: A Driver of Architectural Career Development in a Changing Environment

Authors: Rigved Chandrashekhar Nimkhedkar, Rajat Agrawal, Vinay Sharma

Abstract:

Architects need help with a demand for an expanded skill set to effectively navigate a landscape of evolving opportunities and challenges in the dynamic realm of the architectural profession. This literature and survey-based study investigates the reasons behind architects’ choices of careers, as well as the effects of the evolving architectural scenario. The traditional role of architects in construction projects evolves as they explore diverse career motivations, face financial constraints due to an oversupply of professionals, and experience specialisation and upskilling trends. Architects inherently derive numerous value chains as more and more disciplines have been introduced into the design-construction-operation supply chain. This insight emphasizes the importance of integrating management and entrepreneurial education into architectural education rather than keeping them separate entities. The study reveals the complex nature of the entrepreneurially challenging architectural profession, including cash flow management, market competition, environmental sustainability, and innovation opportunities. Loyal to their professional identity, architects express dissatisfaction while envisioning a future in which they play a more significant role in shaping reputable brands and contributing to education. The study emphasizes the importance of dovetailing management and entrepreneurial education in architecture education in preparing graduates for the industry’s changing nature, emphasising the need for real-world skills. This research contributes insights into the architectural profession’s transformative trajectory, emphasising adaptability, upskilling, and educational enhancements as critical success factors.

Keywords: architects, career path, education, management, specialisation

Procedia PDF Downloads 46
4095 The Pitfalls of Empowerment Initiatives in India: Overcoming Male Resistance to Women Empowerment Through Community Outreach, TVET, and Improved Sanitation

Authors: Christopher Coley, Srividya Sheshadri, Rao R. Bhavani

Abstract:

Empowering marginalized populations, especially women, with greater economic, social, and other leadership roles has been shown to have a profound effect on entire communities. There are discernible links between sustainable development, poverty reduction, and skill training for empowerment; however, one of the major challenges with implementing empowerment programs is to establish an understanding within the community that investing in women’s education carries the potential of high return for everyone. Effective strategies that can both empower women, and overcome the complex social issues normally faced, need to be developed and shared across stakeholders. Amrita University’s AMMACHI Labs, a research lab engaged in women empowerment through Technical Vocational Education and Training (TVET), has launched a new initiative, WE: Sanitation, a project aiming to train women to build their own toilets and promote healthy sanitation practices in rural villages across India. While in some cases, the community has come together and toilets are being built, there has been resistance by the community, especially men, in many places. This paper will explore the experiences of field workers and the initial results of the WE: Sanitation project, including observations on the trends of community dynamics, raise important questions for the direction of development work in general, and especially for sanitation projects in rural India.

Keywords: community-based development, gender dynamics, Indian sanitation, women empowerment, TVET

Procedia PDF Downloads 366
4094 Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network

Authors: Nishant Parashar, Sawan S. Sinha, Balaji Srinivasan

Abstract:

We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors.

Keywords: compressible turbulence, neural network, velocity gradient tensor, direct numerical simulation

Procedia PDF Downloads 152
4093 Porous Bluff-Body Disc on Improving the Gas-Mixing Efficiency

Authors: Shun-Chang Yen, You-Lun Peng, Kuo-Ching San

Abstract:

A numerical study on a bluff-body structure with multiple holes was conducted using ANSYS Fluent computational fluid dynamics analysis. The effects of the hole number and jet inclination angles were considered under a fixed gas flow rate and nonreactive gas. The bluff body with multiple holes can transform the axial momentum into a radial and tangential momentum as well as increase the swirl number (S). The concentration distribution in the mixing of a central carbon dioxide (CO2) jet and an annular air jet was utilized to analyze the mixing efficiency. Three bluff bodies with differing hole numbers (H = 3, 6, and 12) and three jet inclination angles (θ = 45°, 60°, and 90°) were designed for analysis. The Reynolds normal stress increases with the inclination angle. The Reynolds shear stress, average turbulence intensity, and average swirl number decrease with the inclination angle. For an unsymmetrical hole configuration (i.e., H = 3), the streamline patterns exhibited an unsymmetrical flow field. The highest mixing efficiency (i.e., the lowest integral gas fraction of CO2) occurred at H = 3. Furthermore, the highest swirl number coincided with the strongest effect on the mass fraction of CO2. Therefore, an unsymmetrical hole arrangement induced a high swirl flow behind the porous disc.

Keywords: bluff body with multiple holes, computational fluid dynamics, swirl-jet flow, mixing efficiency

Procedia PDF Downloads 340
4092 Fault Tolerant Control System Using a Multiple Time Scale SMC Technique and a Geometric Approach

Authors: Ghodbane Azeddine, Saad Maarouf, Boland Jean-Francois, Thibeault Claude

Abstract:

This paper proposes a new design of an active fault-tolerant flight control system against abrupt actuator faults. This overall system combines a multiple time scale sliding mode controller for fault compensation and a geometric approach for fault detection and diagnosis. The proposed control system is able to accommodate several kinds of partial and total actuator failures, by using available healthy redundancy actuators. The overall system first estimates the correct fault information using the geometric approach. Then, and based on that, a new reconfigurable control law is designed based on the multiple time scale sliding mode technique for on-line compensating the effect of such faults. This approach takes advantages of the fact that there are significant difference between the time scales of aircraft states that have a slow dynamics and those that have a fast dynamics. The closed-loop stability of the overall system is proved using Lyapunov technique. A case study of the non-linear model of the F16 fighter, subject to the rudder total loss of control confirms the effectiveness of the proposed approach.

Keywords: actuator faults, fault detection and diagnosis, fault tolerant flight control, sliding mode control, multiple time scale approximation, geometric approach for fault reconstruction, lyapunov stability

Procedia PDF Downloads 359
4091 The Sustainable Development for Coastal Tourist Building

Authors: D. Avila

Abstract:

The tourism industry is a phenomenon that has become a growing presence in international socio-economic dynamics, which in most cases exceeds the control parameters in the various environmental regulations and sustainability of existing resources. Because of this, the effects on the natural environment at the regional and national levels represent a challenge, for which a number of strategies are necessary to minimize the environmental impact generated by the occupation of the territory. The hotel tourist building and sustainable development in the coastal zone, have an important impact on the environment and on the physical and psychological health of the inhabitants. Environmental quality associated with the comfort of humans to the sustainable development of natural resources; applied to the hotel architecture this concept involves the incorporation of new demands on all of the constructive process of a building, changing customs of developers and users. The methodology developed provides an initial analysis to determine and rank the different tourist buildings, with the above it will be feasible to establish methods of study and environmental impact assessment. Finally, it is necessary to establish an overview regarding the best way to implement tourism development on the coast, containing guidelines to improve and protect the natural environment. This paper analyzes the parameters and strategies to reduce environmental impacts derived from deployments tourism on the coast, through a series of recommendations towards sustainability, in the context of the Bahia de Banderas, Puerto Vallarta, Jalisco. The environmental impact caused by the implementation of tourism development, perceived in a coastal environment, forcing a series of processes, ranging from the identification of impacts, prediction and evaluation of them. For this purpose are described below, different techniques and valuation procedures: Identification of impacts. Methods for the identification of damage caused to the environment pursue general purpose to obtain a group of negative indicators that are subsequently used in the study of environmental impact. There are several systematic methods to identify the impacts caused by human activities. In the present work, develops a procedure based and adapted from the Ministry of works public urban reference in studies of environmental impacts, the representative methods are: list of contrast, arrays, and networks, method of transparencies and superposition of maps.

Keywords: environmental impact, physical health, sustainability, tourist building

Procedia PDF Downloads 311
4090 Effective Stiffness, Permeability, and Reduced Wall Shear Stress of Highly Porous Tissue Engineering Scaffolds

Authors: Hassan Mohammadi Khujin

Abstract:

Tissue engineering is the science of tissues and complex organs creation using scaffolds, cells and biologically active components. Most cells require scaffolds to grow and proliferate. These temporary support structures for tissue regeneration are later replaced with extracellular matrix produced inside the body. Recent advances in additive manufacturing methods allow production of highly porous, complex three dimensional scaffolds suitable for cell growth and proliferation. The current paper investigates the mechanical properties, including elastic modulus and compressive strength, as well as fluid flow dynamics, including permeability and flow-induced shear stress of scaffolds with four triply periodic minimal surface (TPMS) configurations, namely the Schwarz primitive, the Schwarz diamond, the gyroid, and the Neovius structures. Higher porosity in all scaffold types resulted in lower mechanical properties. The permeability of the scaffolds was determined using Darcy's law with reference to geometrical parameters and the pressure drop derived from the computational fluid dynamics (CFD) analysis. Higher porosity enhanced permeability and reduced wall shear stress in all scaffold designs.

Keywords: highly porous scaffolds, tissue engineering, finite elements analysis, CFD analysis

Procedia PDF Downloads 62
4089 A Nonlinear Stochastic Differential Equation Model for Financial Bubbles and Crashes with Finite-Time Singularities

Authors: Haowen Xi

Abstract:

We propose and solve exactly a class of non-linear generalization of the Black-Scholes process of stochastic differential equations describing price bubble and crashes dynamics. As a result of nonlinear positive feedback, the faster-than-exponential price positive growth (bubble forming) and negative price growth (crash forming) are found to be the power-law finite-time singularity in which bubbles and crashes price formation ending at finite critical time tc. While most literature on the market bubble and crash process focuses on the nonlinear positive feedback mechanism aspect, very few studies concern the noise level on the same process. The present work adds to the market bubble and crashes literature by studying the external sources noise influence on the critical time tc of the bubble forming and crashes forming. Two main results will be discussed: (1) the analytical expression of expected value of the critical time is found and unexpected critical slowing down due to the coupling external noise is predicted; (2) numerical simulations of the nonlinear stochastic equation is presented, and the probability distribution of Prob(tc) is found to be the inverse gamma function.

Keywords: bubble, crash, finite-time-singular, numerical simulation, price dynamics, stochastic differential equations

Procedia PDF Downloads 115
4088 Application of Computational Flow Dynamics (CFD) Analysis for Surge Inception and Propagation for Low Head Hydropower Projects

Authors: M. Mohsin Munir, Taimoor Ahmad, Javed Munir, Usman Rashid

Abstract:

Determination of maximum elevation of a flowing fluid due to sudden rejection of load in a hydropower facility is of great interest to hydraulic engineers to ensure safety of the hydraulic structures. Several mathematical models exist that employ one-dimensional modeling for the determination of surge but none of these perfectly simulate real-time circumstances. The paper envisages investigation of surge inception and propagation for a Low Head Hydropower project using Computational Fluid Dynamics (CFD) analysis on FLOW-3D software package. The fluid dynamic model utilizes its analysis for surge by employing Reynolds’ Averaged Navier-Stokes Equations (RANSE). The CFD model is designed for a case study at Taunsa hydropower Project in Pakistan. Various scenarios have run through the model keeping in view upstream boundary conditions. The prototype results were then compared with the results of physical model testing for the same scenarios. The results of the numerical model proved quite accurate coherence with the physical model testing and offers insight into phenomenon which are not apparent in physical model and shall be adopted in future for the similar low head projects limiting delays and cost incurred in the physical model testing.

Keywords: surge, FLOW-3D, numerical model, Taunsa, RANSE

Procedia PDF Downloads 344
4087 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study

Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi

Abstract:

The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.

Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations

Procedia PDF Downloads 155
4086 Numerical Analysis of a Pilot Solar Chimney Power Plant

Authors: Ehsan Gholamalizadeh, Jae Dong Chung

Abstract:

Solar chimney power plant is a feasible solar thermal system which produces electricity from the Sun. The objective of this study is to investigate buoyancy-driven flow and heat transfer through a built pilot solar chimney system called 'Kerman Project'. The system has a chimney with the height and diameter of 60 m and 3 m, respectively, and the average radius of its solar collector is about 20 m, and also its average collector height is about 2 m. A three-dimensional simulation was conducted to analyze the system, using computational fluid dynamics (CFD). In this model, radiative transfer equation was solved using the discrete ordinates (DO) radiation model taking into account a non-gray radiation behavior. In order to modelling solar irradiation from the sun’s rays, the solar ray tracing algorithm was coupled to the computation via a source term in the energy equation. The model was validated with comparing to the experimental data of the Manzanares prototype and also the performance of the built pilot system. Then, based on the numerical simulations, velocity and temperature distributions through the system, the temperature profile of the ground surface and the system performance were presented. The analysis accurately shows the flow and heat transfer characteristics through the pilot system and predicts its performance.

Keywords: buoyancy-driven flow, computational fluid dynamics, heat transfer, renewable energy, solar chimney power plant

Procedia PDF Downloads 241