Search results for: biological data mining
26585 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling
Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi
Abstract:
The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.Keywords: desert soil, climatic changes, bacteria, vegetation, artificial neural networks
Procedia PDF Downloads 39526584 Girls' Underperformance in Science: From Biological Determinism and Feminist Perspectives
Authors: Raza Ullah, Hazir Ullah
Abstract:
There is ample evidence that reveals the outstanding performance of girls in a different range of subjects. However, it is pertinent to mention here that boys have historically dominated girls, particularly in math, physics, and technological subjects across the globe with the exception of few developed countries. This article examines the reasons why girls are underdog in STEM subjects. The article critically analyzes two main approaches towards gender and education: biological determinist and feminist. This article highlights that social factors influencing girls performance in STEM subjects have not analyzed critically, and girls underachieving in science has linked with biological and sex differences. The article concludes that the underperformance of girls in a STEM subject is the direct response of socio-cultural factors. Thus, socio-cultural factors are responsible for the dearth of girls in STEM subjects.Keywords: gender, underperformance, STEM, education, sex
Procedia PDF Downloads 16226583 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks
Authors: Adrian Ionita, Ana-Maria Ghimes
Abstract:
The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling
Procedia PDF Downloads 16326582 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures
Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat
Abstract:
In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.Keywords: association rules, clustering, similarity measure, statistical approaches
Procedia PDF Downloads 32026581 Generation of Medical Waste in Hospitals in Interior of São Paulo, Brazil
Authors: Silvia Carla Da Silva André, Angela Maria Magosso Takayanagui
Abstract:
Introduction: The Medical Waste (MW) are responsible per 2% of total waste generated for a city and has merited attention due the risks that offers to the public health and environment, representing an important aspect in waste management. In Brazil, the Resolution 306/04 of the National Health Surveillance Agency classifies the MW into 5 groups as follows: Group A (GA) biological, Group B (GB) chemical, Group C (GC) radioactive waste, Group D (GD) common, and Group E (GE) sharps. Objective: This study aimed to determine the amount of waste generated in hospitals of Ribeirão Preto, São Paulo, Brazil. Material and Methods: This is a field research, exploratory, using quantitative variables. The survey was conducted in 11 hospitals in Ribeirão Preto, located in the State of São Paulo, Brazil. It is noted that the study sample included general hospitals, skilled, university, maternity, and psychiatric; public, private, and philanthropic; and large, medium, and small. To quantify the MW, the weighing of the waste was held for six days, following methodology adapted from PAHO. Data were analyzed using descriptive statistics, determining the average global generation of MW and for each group. This research was carried out after approval by the Ethics in Research of the University of São Paulo. Thus, in order to comply with the ethical principles of research, to present the results hospitals were numbered from 1 to 11. Results: The data revealed a greater generation of biological waste among teaching hospitals, which can be justified by the use of materials for the realization of techniques.Keywords: environmental health, management of medical waste, medical waste, public health
Procedia PDF Downloads 36926580 Native Plants Marketing by Entrepreneurs in the Landscaping Industry in Japan
Authors: Yuki Hara
Abstract:
Entrepreneurs are welcomed to the landscaping industry, conserving practically and theoretically biological diversity in landscaping construction, although there are limited reports on corporative trials making a market with a new logistics system of native plants (NP) between landscaping companies and nurserymen. This paper explores the entrepreneurial process of a landscaping company, “5byMidori” for NP marketing. This paper employs a case study design. Data are collected in interviews with the manager and designer of 5byMidori, 2 scientists, 1 organization, and 18 nurserymen, fieldworks at two nurseries, observations of marketing activities in three years, and texts from published documents about the business concept and marketing strategy with NP. These data are analyzed by qualitative methods. The results show that NP is suitable for the vision of 5byMidori improving urban desertified environment with closer urban-rural linkage. Professional landscaping team changes a forestry organization into NP producers conserving a large nursery of a mountain. Multifaceted PR based on the entrepreneurial context and personal background of a landscaping venture can foster team members' businesses and help customers and users to understand the biodiversity value of the product. Wider partnerships with existing nurserymen at other sites in many regions need socio-economic incentives and environmental reliability. In conclusion, the entrepreneurial marketing of a landscaping company needs to add more meanings and a variety of merits in terms of ecosystem services, as NP tends to be in academic definition and independent from the cultures like nurseryman and forestry.Keywords: biological diversity, landscaping industry, marketing, native plants
Procedia PDF Downloads 12026579 Aviation versus Aerospace: A Differential Analysis of Workforce Jobs via Text Mining
Authors: Sarah Werner, Michael J. Pritchard
Abstract:
From pilots to engineers, the skills development within the aerospace industry is exceptionally broad. Employers often struggle with finding the right mixture of qualified skills to fill their organizational demands. This effort to find qualified talent is further complicated by the industrial delineation between two key areas: aviation and aerospace. In a broad sense, the aerospace industry overlaps with the aviation industry. In turn, the aviation industry is a smaller sector segment within the context of the broader definition of the aerospace industry. Furthermore, it could be conceptually argued that -in practice- there is little distinction between these two sectors (i.e., aviation and aerospace). However, through our unstructured text analysis of over 6,000 job listings captured, our team found a clear delineation between aviation-related jobs and aerospace-related jobs. Using techniques in natural language processing, our research identifies an integrated workforce skill pattern that clearly breaks between these two sectors. While the aviation sector has largely maintained its need for pilots, mechanics, and associated support personnel, the staffing needs of the aerospace industry are being progressively driven by integrative engineering needs. Increasingly, this is leading many aerospace-based organizations towards the acquisition of 'system level' staffing requirements. This research helps to better align higher educational institutions with the current industrial staffing complexities within the broader aerospace sector.Keywords: aerospace industry, job demand, text mining, workforce development
Procedia PDF Downloads 27226578 A Schema of Building an Efficient Quality Gate throughout the Software Development with Tools
Authors: Le Chen
Abstract:
This paper presents an efficient tool platform scheme to ensure quality protection throughout the software development process. The main principle is to manage the information of requirements, design, development, testing, operation and maintenance process with proper tools, and to set up the quality standards of each process. Through the tools’ display and summary of quality standards, the quality standards can be visualizad and ready for policy decision, which is called Quality Gate in this paper. In addition, the tools are also integrated to achieve the exchange and relation of information which highly improving operational efficiency. In this paper, the feasibility of the scheme is verified by practical application of development projects, and the overall information display and data mining are proposed to be further improved.Keywords: efficiency, quality gate, software process, tools
Procedia PDF Downloads 35826577 Geochemical Evaluation of Weathering-Induced Release of Trace Metals from the Maastritchian Shales in Parts of Bida an Anambra Basins, Nigeria
Authors: Adetunji Olusegun Aderigibigbe
Abstract:
Shales, especially black shales, are of great geological significance, in the study of heavy/trace metal contamination. This is due to their abundance in occurrence and high concentration of heavy metals embedded which are released during their weathering. Heavy metals constitute one of the most dangerous pollution known to human because they are toxic (i.e., carcinogenic), non-biodegradable and can enter the global eco-biological circle. In the past, heavy metal contamination in aquatic environment and agricultural top soil has been attributed to industrial wastes, mining extractions and pollution from traffic vehicles; only a few studies have focused on weathering of shale as possible source of heavy metal contamination. Based on the above background, this study attempts to establish weathering of shale as possible source of trace/heavy metal contaminations. This was done by carefully selecting fresh and their corresponding weathered shale samples from selected localities in Bida and Anambra Basins. The samples were analysed in Activation Laboratories Ltd; Ontario, Canada for trace/heavy metal. It was observed that some major and trace metals were released during weathering, i.e., some were depleted and some enriched. By this contamination of water zones and agricultural top soils are not only traceable to biogenic processes but geogenic inputs (weathering of shale) as well.Keywords: contamination, fresh samples, heavy metals, pollution, shales, trace metals, weathered samples
Procedia PDF Downloads 13326576 How to Use Big Data in Logistics Issues
Authors: Mehmet Akif Aslan, Mehmet Simsek, Eyup Sensoy
Abstract:
Big Data stands for today’s cutting-edge technology. As the technology becomes widespread, so does Data. Utilizing massive data sets enable companies to get competitive advantages over their adversaries. Out of many area of Big Data usage, logistics has significance role in both commercial sector and military. This paper lays out what big data is and how it is used in both military and commercial logistics.Keywords: big data, logistics, operational efficiency, risk management
Procedia PDF Downloads 64126575 Sludge Densification: Emerging and Efficient Way to Look at Biological Nutrient Removal Treatment
Authors: Raj Chavan
Abstract:
Currently, there are over 14,500 Water Resource Recovery Facilities (WRRFs) in the United States, with ~35% of them having some type of nutrient limits in place. These WRRFs account for about 1% of overall power demand and 2% of total greenhouse gas emissions (GHG) in the United States and contribute for 10 to 15% of the overall nutrient load to surface rivers in the United States. The evolution of densification technologies toward more compact and energy-efficient nutrient removal processes has been impacted by a number of factors. Existing facilities that require capacity expansion or biomass densification for higher treatability within the same footprint are being subjected to more stringent requirements relating to nutrient removal prior to surface water discharge. Densification of activated sludge has received recent widespread interest as a means for achieving process intensification and nutrient removal at WRRFs. At the core of the technology are the aerobic sludge granules where the biological processes occur. There is considerable interest in the prospect of producing granular sludge in continuous (or traditional) activated sludge processes (CAS) or densification of biomass by moving activated sludge flocs to a denser aggregate of biomass as a highly effective technique of intensification. This presentation will provide a fundamental understanding of densification by presenting insights and practical issues. The topics that will be discussed include methods used to generate and retain densified granules; the mechanisms that allow biological flocs to densify; the role that physical selectors play in the densification of biological flocs; some viable ways for managing biological flocs that have become densified; effects of physical selection design parameters on the retention of densified biological flocs and finally some operational solutions for customizing the flocs and granules required to meet performance and capacity targets. In addition, it will present some case studies where biological and physical parameters were used to generate aerobic granular sludge in the continuous flow system.Keywords: densification, aerobic granular sludge, nutrient removal, intensification
Procedia PDF Downloads 18626574 A Case Study of Ontology-Based Sentiment Analysis for Fan Pages
Authors: C. -L. Huang, J. -H. Ho
Abstract:
Social media has become more and more important in our life. Many enterprises promote their services and products to fans via the social media. The positive or negative sentiment of feedbacks from fans is very important for enterprises to improve their products, services, and promotion activities. The purpose of this paper is to understand the sentiment of the fan’s responses by analyzing the responses posted by fans on Facebook. The entity and aspect of fan’s responses were analyzed based on a predefined ontology. The ontology for cell phone sentiment analysis consists of aspect categories on the top level as follows: overall, shape, hardware, brand, price, and service. Each category consists of several sub-categories. All aspects for a fan’s response were found based on the ontology, and their corresponding sentimental terms were found using lexicon-based approach. The sentimental scores for aspects of fan responses were obtained by summarizing the sentimental terms in responses. The frequency of 'like' was also weighted in the sentimental score calculation. Three famous cell phone fan pages on Facebook were selected as demonstration cases to evaluate performances of the proposed methodology. Human judgment by several domain experts was also built for performance comparison. The performances of proposed approach were as good as those of human judgment on precision, recall and F1-measure.Keywords: opinion mining, ontology, sentiment analysis, text mining
Procedia PDF Downloads 23226573 Effect of Heavy Metals on the Life History Trait of Heterocephalobellus sp. and Cephalobus sp. (Nematode: Cephalobidae) Collected from a Small-Scale Mining Site, Davao de Oro, Philippines
Authors: Alissa Jane S. Mondejar, Florifern C. Paglinawan, Nanette Hope N. Sumaya, Joey Genevieve T. Martinez, Mylah Villacorte-Tabelin
Abstract:
Mining is associated with increased heavy metals in the environment, and heavy metal contamination disrupts the activities of soil fauna, such as nematodes, causing changes in the function of the soil ecosystem. Previous studies found that nematode community composition and diversity indices were strongly affected by heavy metals (e.g., Pb, Cu, and Zn). In this study, the influence of heavy metals on nematode survivability and reproduction were investigated. Life history analysis of the free-living nematodes, Heterocephalobellus sp. and Cephalobus sp. (Rhabditida: Cephalobidae) were assessed using the hanging drop technique, a technique often used in life history trait experiments. The nematodes were exposed to different temperatures, i.e.,20°C, 25°C, and 30°C, in different groups (control and heavy metal exposed) and fed with the same bacterial density of 1×109 Escherichia coli cells ml-1 for 30 days. Results showed that increasing temperature and exposure to heavy metals had a significant influence on the survivability and egg production of both species. Heterocephalobellus sp. and Cephalobus sp., when exposed to 20°C survived longer and produced few numbers of eggs but without subsequent hatching. Life history parameters of Heterocephalobellus sp. showed that the value of parameters was higher in the control group under net production rate (R0), fecundity (mx) which is also the same value for the total fertility rate (TFR), generation times (G0, G₁, and Gh) and Population doubling time (PDT). However, a lower rate of natural increase (rm) was observed since generation times were higher. Meanwhile, the life history parameters of Cephalobus sp. showed that the value of net production rate (R0) was higher in the exposed group. Fecundity (mx) which is also the same value for the TFR, G0, G1, Gh, and PDT, were higher in the control group. However, a lower rate of natural increase (rm) was observed since generation times were higher. In conclusion, temperature and exposure to heavy metals had a negative influence on the life history of the nematodes, however, further experiments should be considered.Keywords: artisanal and small-scale gold mining (ASGM), hanging drop method, heavy metals, life history trait.
Procedia PDF Downloads 9726572 Advancement of Computer Science Research in Nigeria: A Bibliometric Analysis of the Past Three Decades
Authors: Temidayo O. Omotehinwa, David O. Oyewola, Friday J. Agbo
Abstract:
This study aims to gather a proper perspective of the development landscape of Computer Science research in Nigeria. Therefore, a bibliometric analysis of 4,333 bibliographic records of Computer Science research in Nigeria in the last 31 years (1991-2021) was carried out. The bibliographic data were extracted from the Scopus database and analyzed using VOSviewer and the bibliometrix R package through the biblioshiny web interface. The findings of this study revealed that Computer Science research in Nigeria has a growth rate of 24.19%. The most developed and well-studied research areas in the Computer Science field in Nigeria are machine learning, data mining, and deep learning. The social structure analysis result revealed that there is a need for improved international collaborations. Sparsely established collaborations are largely influenced by geographic proximity. The funding analysis result showed that Computer Science research in Nigeria is under-funded. The findings of this study will be useful for researchers conducting Computer Science related research. Experts can gain insights into how to develop a strategic framework that will advance the field in a more impactful manner. Government agencies and policymakers can also utilize the outcome of this research to develop strategies for improved funding for Computer Science research.Keywords: bibliometric analysis, biblioshiny, computer science, Nigeria, science mapping
Procedia PDF Downloads 11226571 Toxic Metal and Radiological Risk Assessment of Soil, Water and Vegetables around a Gold Mine Turned Residential Area in Mokuro Area of Ile-Ife, Osun State Nigeria: An Implications for Human Health
Authors: Grace O. Akinlade, Danjuma D. Maza, Oluwakemi O. Olawolu, Delight O. Babalola, John A. O. Oyekunle, Joshua O. Ojo
Abstract:
The Mokuro area of Ile-Ife, South West Nigeria, was well known for gold mining in the past (about twenty years ago). However, the place has since been reclaimed and converted to residential area without any environmental risk assessment of the impact of the mining tailings on the environment. Soil, water, and plant samples were collected from 4 different locations around the mine-turned-residential area. Soil samples were pulverized and sieved into finer particles, while the plant samples were dried and pulverized. All the samples were digested and analyzed for As, Pb, Cd, and Zn using atomic absorption spectroscopy (AAS). From the analysis results, the hazard index (HI) was then calculated for the metals. The soil and plant samples were air dried and pulverized, then weighed, after which the samples were packed into special and properly sealed containers to prevent radon gas leakage. After the sealing, the samples were kept for 28 days to attain secular equilibrium. The concentrations of 40K, 238U, and 232Th in the samples were measured using a cesium iodide (CsI) spectrometer and URSA software. The AAS analysis showed that As, Pb, Cd (Toxic metals), and Zn (essential trace metals) are in concentrations lower than permissible limits in plants and soil samples, while the water samples had concentrations higher than permissible limits. The calculated health indices (HI) show that HI for water is >1 and that of plants and soil is <1. Gamma spectrometry result shows high levels of activity concentrations above the recommended limits for all the soil and plant samples collected from the area. Only the water samples have activity concentrations below the recommended limit. Consequently, the absorbed dose, annual effective dose, and excess lifetime cancer risk are all above the recommended safe limit for all the samples except for water samples. In conclusion, all the samples collected from the area are either contaminated with toxic metals or they pose radiological hazards to the consumers. Further detailed study is therefore recommended in order to be able to advise the residents appropriately.Keywords: toxic metals, gamma spectrometry, Ile-Ife, radiological hazards, gold mining
Procedia PDF Downloads 5726570 The Results of Longitudinal Water Quality Monitoring of the Brandywine River, Chester County, Pennsylvania by High School Students
Authors: Dina L. DiSantis
Abstract:
Strengthening a sense of responsibility while relating global sustainability concepts such as water quality and pollution to a local water system can be achieved by teaching students to conduct and interpret water quality monitoring tests. When students conduct their own research, they become better stewards of the environment. Providing outdoor learning and place-based opportunities for students helps connect them to the natural world. By conducting stream studies and collecting data, students are able to better understand how the natural environment is a place where everything is connected. Students have been collecting physical, chemical and biological data along the West and East Branches of the Brandywine River, in Pennsylvania for over ten years. The stream studies are part of the advanced placement environmental science and aquatic science courses that are offered as electives to juniors and seniors at the Downingtown High School West Campus in Downingtown, Pennsylvania. Physical data collected includes: temperature, turbidity, width, depth, velocity, and volume of flow or discharge. The chemical tests conducted are: dissolved oxygen, carbon dioxide, pH, nitrates, alkalinity and phosphates. Macroinvertebrates are collected with a kick net, identified and then released. Students collect the data from several locations while traveling by canoe. In the classroom, students prepare a water quality data analysis and interpretation report based on their collected data. The summary of the results from longitudinal water quality data collection by students, as well as the strengths and weaknesses of student data collection will be presented.Keywords: place-based, student data collection, sustainability, water quality monitoring
Procedia PDF Downloads 15626569 Development of a Software System for Management and Genetic Analysis of Biological Samples for Forensic Laboratories
Authors: Mariana Lima, Rodrigo Silva, Victor Stange, Teodiano Bastos
Abstract:
Due to the high reliability reached by DNA tests, since the 1980s this kind of test has allowed the identification of a growing number of criminal cases, including old cases that were unsolved, now having a chance to be solved with this technology. Currently, the use of genetic profiling databases is a typical method to increase the scope of genetic comparison. Forensic laboratories must process, analyze, and generate genetic profiles of a growing number of samples, which require time and great storage capacity. Therefore, it is essential to develop methodologies capable to organize and minimize the spent time for both biological sample processing and analysis of genetic profiles, using software tools. Thus, the present work aims the development of a software system solution for laboratories of forensics genetics, which allows sample, criminal case and local database management, minimizing the time spent in the workflow and helps to compare genetic profiles. For the development of this software system, all data related to the storage and processing of samples, workflows and requirements that incorporate the system have been considered. The system uses the following software languages: HTML, CSS, and JavaScript in Web technology, with NodeJS platform as server, which has great efficiency in the input and output of data. In addition, the data are stored in a relational database (MySQL), which is free, allowing a better acceptance for users. The software system here developed allows more agility to the workflow and analysis of samples, contributing to the rapid insertion of the genetic profiles in the national database and to increase resolution of crimes. The next step of this research is its validation, in order to operate in accordance with current Brazilian national legislation.Keywords: database, forensic genetics, genetic analysis, sample management, software solution
Procedia PDF Downloads 37026568 High-Throughput Artificial Guide RNA Sequence Design for Type I, II and III CRISPR/Cas-Mediated Genome Editing
Authors: Farahnaz Sadat Golestan Hashemi, Mohd Razi Ismail, Mohd Y. Rafii
Abstract:
A huge revolution has emerged in genome engineering by the discovery of CRISPR (clustered regularly interspaced palindromic repeats) and CRISPR-associated system genes (Cas) in bacteria. The function of type II Streptococcus pyogenes (Sp) CRISPR/Cas9 system has been confirmed in various species. Other S. thermophilus (St) CRISPR-Cas systems, CRISPR1-Cas and CRISPR3-Cas, have been also reported for preventing phage infection. The CRISPR1-Cas system interferes by cleaving foreign dsDNA entering the cell in a length-specific and orientation-dependant manner. The S. thermophilus CRISPR3-Cas system also acts by cleaving phage dsDNA genomes at the same specific position inside the targeted protospacer as observed in the CRISPR1-Cas system. It is worth mentioning, for the effective DNA cleavage activity, RNA-guided Cas9 orthologs require their own specific PAM (protospacer adjacent motif) sequences. Activity levels are based on the sequence of the protospacer and specific combinations of favorable PAM bases. Therefore, based on the specific length and sequence of PAM followed by a constant length of target site for the three orthogonals of Cas9 protein, a well-organized procedure will be required for high-throughput and accurate mining of possible target sites in a large genomic dataset. Consequently, we created a reliable procedure to explore potential gRNA sequences for type I (Streptococcus thermophiles), II (Streptococcus pyogenes), and III (Streptococcus thermophiles) CRISPR/Cas systems. To mine CRISPR target sites, four different searching modes of sgRNA binding to target DNA strand were applied. These searching modes are as follows: i) coding strand searching, ii) anti-coding strand searching, iii) both strand searching, and iv) paired-gRNA searching. The output of such procedure highlights the power of comparative genome mining for different CRISPR/Cas systems. This could yield a repertoire of Cas9 variants with expanded capabilities of gRNA design, and will pave the way for further advance genome and epigenome engineering.Keywords: CRISPR/Cas systems, gRNA mining, Streptococcus pyogenes, Streptococcus thermophiles
Procedia PDF Downloads 25726567 The Analysis Fleet Operational Performance as an Indicator of Load and Haul Productivity
Authors: Linet Melisa Daubanes, Nhleko Monique Chiloane
Abstract:
The shovel-truck system is the most prevalent material handling system used in surface mining operations. Material handling entails the loading and hauling of material from production areas to dumping areas. The material handling process has operational delays that have a negative impact on the productivity of the load and haul fleet. Factors that may contribute to operational delays include shovel-truck mismatch, haul routes, machine breakdowns, extreme weather conditions, etc. The aim of this paper is to investigate factors that contribute to operational delays affecting the productivity of the load and haul fleet at the mine. Productivity is the measure of the effectiveness of producing products from a given quantity of units, the ratio of output to inputs. Productivity can be improved by producing more outputs with the same or fewer units and/or introducing better working methods etc. Several key performance indicators (KPI) for the evaluation of productivity will be discussed in this study. These KPIs include but are not limited to hauling conditions, bucket fill factor, cycle time, and utilization. The research methodology of this study is a combination of on-site time studies and observations. Productivity can be optimized by managing the factors that affect the operational performance of the haulage fleet.Keywords: cycle time, fleet performance, load and haul, surface mining
Procedia PDF Downloads 19526566 Predicting Match Outcomes in Team Sport via Machine Learning: Evidence from National Basketball Association
Authors: Jacky Liu
Abstract:
This paper develops a team sports outcome prediction system with potential for wide-ranging applications across various disciplines. Despite significant advancements in predictive analytics, existing studies in sports outcome predictions possess considerable limitations, including insufficient feature engineering and underutilization of advanced machine learning techniques, among others. To address these issues, we extend the Sports Cross Industry Standard Process for Data Mining (SRP-CRISP-DM) framework and propose a unique, comprehensive predictive system, using National Basketball Association (NBA) data as an example to test this extended framework. Our approach follows a holistic methodology in feature engineering, employing both Time Series and Non-Time Series Data, as well as conducting Explanatory Data Analysis and Feature Selection. Furthermore, we contribute to the discourse on target variable choice in team sports outcome prediction, asserting that point spread prediction yields higher profits as opposed to game-winner predictions. Using machine learning algorithms, particularly XGBoost, results in a significant improvement in predictive accuracy of team sports outcomes. Applied to point spread betting strategies, it offers an astounding annual return of approximately 900% on an initial investment of $100. Our findings not only contribute to academic literature, but have critical practical implications for sports betting. Our study advances the understanding of team sports outcome prediction a burgeoning are in complex system predictions and pave the way for potential profitability and more informed decision making in sports betting markets.Keywords: machine learning, team sports, game outcome prediction, sports betting, profits simulation
Procedia PDF Downloads 10226565 Using Closed Frequent Itemsets for Hierarchical Document Clustering
Authors: Cheng-Jhe Lee, Chiun-Chieh Hsu
Abstract:
Due to the rapid development of the Internet and the increased availability of digital documents, the excessive information on the Internet has led to information overflow problem. In order to solve these problems for effective information retrieval, document clustering in text mining becomes a popular research topic. Clustering is the unsupervised classification of data items into groups without the need of training data. Many conventional document clustering methods perform inefficiently for large document collections because they were originally designed for relational database. Therefore they are impractical in real-world document clustering and require special handling for high dimensionality and high volume. We propose the FIHC (Frequent Itemset-based Hierarchical Clustering) method, which is a hierarchical clustering method developed for document clustering, where the intuition of FIHC is that there exist some common words for each cluster. FIHC uses such words to cluster documents and builds hierarchical topic tree. In this paper, we combine FIHC algorithm with ontology to solve the semantic problem and mine the meaning behind the words in documents. Furthermore, we use the closed frequent itemsets instead of only use frequent itemsets, which increases efficiency and scalability. The experimental results show that our method is more accurate than those of well-known document clustering algorithms.Keywords: FIHC, documents clustering, ontology, closed frequent itemset
Procedia PDF Downloads 39926564 Uncertainty Quantification of Corrosion Anomaly Length of Oil and Gas Steel Pipelines Based on Inline Inspection and Field Data
Authors: Tammeen Siraj, Wenxing Zhou, Terry Huang, Mohammad Al-Amin
Abstract:
The high resolution inline inspection (ILI) tool is used extensively in the pipeline industry to identify, locate, and measure metal-loss corrosion anomalies on buried oil and gas steel pipelines. Corrosion anomalies may occur singly (i.e. individual anomalies) or as clusters (i.e. a colony of corrosion anomalies). Although the ILI technology has advanced immensely, there are measurement errors associated with the sizes of corrosion anomalies reported by ILI tools due limitations of the tools and associated sizing algorithms, and detection threshold of the tools (i.e. the minimum detectable feature dimension). Quantifying the measurement error in the ILI data is crucial for corrosion management and developing maintenance strategies that satisfy the safety and economic constraints. Studies on the measurement error associated with the length of the corrosion anomalies (in the longitudinal direction of the pipeline) has been scarcely reported in the literature and will be investigated in the present study. Limitations in the ILI tool and clustering process can sometimes cause clustering error, which is defined as the error introduced during the clustering process by including or excluding a single or group of anomalies in or from a cluster. Clustering error has been found to be one of the biggest contributory factors for relatively high uncertainties associated with ILI reported anomaly length. As such, this study focuses on developing a consistent and comprehensive framework to quantify the measurement errors in the ILI-reported anomaly length by comparing the ILI data and corresponding field measurements for individual and clustered corrosion anomalies. The analysis carried out in this study is based on the ILI and field measurement data for a set of anomalies collected from two segments of a buried natural gas pipeline currently in service in Alberta, Canada. Data analyses showed that the measurement error associated with the ILI-reported length of the anomalies without clustering error, denoted as Type I anomalies is markedly less than that for anomalies with clustering error, denoted as Type II anomalies. A methodology employing data mining techniques is further proposed to classify the Type I and Type II anomalies based on the ILI-reported corrosion anomaly information.Keywords: clustered corrosion anomaly, corrosion anomaly assessment, corrosion anomaly length, individual corrosion anomaly, metal-loss corrosion, oil and gas steel pipeline
Procedia PDF Downloads 30926563 The Environmental Concerns in Coal Mining, and Utilization in Pakistan
Authors: S. R. H. Baqri, T. Shahina, M. T. Hasan
Abstract:
Pakistan is facing acute shortage of energy and looking for indigenous resources of the energy mix to meet the short fall. After the discovery of huge coal resources in Thar Desert of Sindh province, focus has shifted to coal power generation. The government of Pakistan has planned power generation of 20000 MW on coal by the year 2025. This target will be achieved by mining and power generation in Thar coal Field and on imported coal in different parts of Pakistan. Total indigenous coal production of around 3.0 million tons is being utilized in brick kilns, cement and sugar industry. Coal-based power generation is only limited to three units of 50 MW near Hyderabad from nearby Lakhra Coal field. The purpose of this presentation is to identify and redressal of issues of coal mining and utilization with reference to environmental hazards. Thar coal resource is estimated at 175 billion tons out of a total resource estimate of 184 billion tons in Pakistan. Coal of Pakistan is of Tertiary age (Palaeocene/Eocene) and classified from lignite to sub-bituminous category. Coal characterization has established three main pollutants such as Sulphur, Carbon dioxide and Methane besides some others associated with coal and rock types. The element Sulphur occurs in organic as well as inorganic forms associated with coals as free sulphur and as pyrite, gypsum, respectively. Carbon dioxide, methane and minerals are mostly associated with fractures, joints local faults, seatearth and roof rocks. The abandoned and working coal mines give kerosene odour due to escape of methane in the atmosphere. While the frozen methane/methane ices in organic matter rich sediments have also been reported from the Makran coastal and offshore areas. The Sulphur escapes into the atmosphere during mining and utilization of coal in industry. The natural erosional processes due to rivers, streams, lakes and coastal waves erode over lying sediments allowing pollutants to escape into air and water. Power plants emissions should be controlled through application of appropriate clean coal technology and need to be regularly monitored. Therefore, the systematic and scientific studies will be required to estimate the quantity of methane, carbon dioxide and sulphur at various sites such as abandoned and working coal mines, exploratory wells for coal, oil and gas. Pressure gauges on gas pipes connecting the coal-bearing horizons will be installed on surface to know the quantity of gas. The quality and quantity of gases will be examined according to the defined intervals of times. This will help to design and recommend the methods and procedures to stop the escape of gases into atmosphere. The element of Sulphur can be removed partially by gravity and chemical methods after grinding and before industrial utilization of coal.Keywords: atmosphere, coal production, energy, pollutants
Procedia PDF Downloads 43526562 Analysis of Citation Rate and Data Reuse for Openly Accessible Biodiversity Datasets on Global Biodiversity Information Facility
Authors: Nushrat Khan, Mike Thelwall, Kayvan Kousha
Abstract:
Making research data openly accessible has been mandated by most funders over the last 5 years as it promotes reproducibility in science and reduces duplication of effort to collect the same data. There are evidence that articles that publicly share research data have higher citation rates in biological and social sciences. However, how and whether shared data is being reused is not always intuitive as such information is not easily accessible from the majority of research data repositories. This study aims to understand the practice of data citation and how data is being reused over the years focusing on biodiversity since research data is frequently reused in this field. Metadata of 38,878 datasets including citation counts were collected through the Global Biodiversity Information Facility (GBIF) API for this purpose. GBIF was used as a data source since it provides citation count for datasets, not a commonly available feature for most repositories. Analysis of dataset types, citation counts, creation and update time of datasets suggests that citation rate varies for different types of datasets, where occurrence datasets that have more granular information have higher citation rates than checklist and metadata-only datasets. Another finding is that biodiversity datasets on GBIF are frequently updated, which is unique to this field. Majority of the datasets from the earliest year of 2007 were updated after 11 years, with no dataset that was not updated since creation. For each year between 2007 and 2017, we compared the correlations between update time and citation rate of four different types of datasets. While recent datasets do not show any correlations, 3 to 4 years old datasets show weak correlation where datasets that were updated more recently received high citations. The results are suggestive that it takes several years to cumulate citations for research datasets. However, this investigation found that when searched on Google Scholar or Scopus databases for the same datasets, the number of citations is often not the same as GBIF. Hence future aim is to further explore the citation count system adopted by GBIF to evaluate its reliability and whether it can be applicable to other fields of studies as well.Keywords: data citation, data reuse, research data sharing, webometrics
Procedia PDF Downloads 17826561 Analyzing Factors Impacting COVID-19 Vaccination Rates
Authors: Dongseok Cho, Mitchell Driedger, Sera Han, Noman Khan, Mohammed Elmorsy, Mohamad El-Hajj
Abstract:
Since the approval of the COVID-19 vaccine in late 2020, vaccination rates have varied around the globe. Access to a vaccine supply, mandated vaccination policy, and vaccine hesitancy contribute to these rates. This study used COVID-19 vaccination data from Our World in Data and the Multilateral Leaders Task Force on COVID-19 to create two COVID-19 vaccination indices. The first index is the Vaccine Utilization Index (VUI), which measures how effectively each country has utilized its vaccine supply to doubly vaccinate its population. The second index is the Vaccination Acceleration Index (VAI), which evaluates how efficiently each country vaccinated its population within its first 150 days. Pearson correlations were created between these indices and country indicators obtained from the World Bank. The results of these correlations identify countries with stronger health indicators, such as lower mortality rates, lower age dependency ratios, and higher rates of immunization to other diseases, displaying higher VUI and VAI scores than countries with lesser values. VAI scores are also positively correlated to Governance and Economic indicators, such as regulatory quality, control of corruption, and GDP per capita. As represented by the VUI, proper utilization of the COVID-19 vaccine supply by country is observed in countries that display excellence in health practices. A country’s motivation to accelerate its vaccination rates within the first 150 days of vaccinating, as represented by the VAI, was largely a product of the governing body’s effectiveness and economic status, as well as overall excellence in health practises.Keywords: data mining, Pearson correlation, COVID-19, vaccination rates and hesitancy
Procedia PDF Downloads 11426560 Microdosimetry in Biological Cells: A Monte Carlo Method
Authors: Hamidreza Jabal Ameli, Anahita Movahedi
Abstract:
Purpose: In radionuclide therapy, radioactive atoms are coupled to monoclonal antibodies (mAbs) for treating cancer tumor while limiting radiation to healthy tissues. We know that tumoral and normal tissues are not equally sensitive to radiation. In fact, biological effects such as cellular repair processes or the presence of less radiosensitive cells such as hypoxic cells should be taken account. For this reason, in this paper, we want to calculate biological effect dose (BED) inside tumoral area and healthy cells around tumors. Methods: In this study, deposited doses of a radionuclide, gold-198, inside cells lattice and surrounding healthy tissues were calculated with Monte Carlo method. The elemental compositions and density of malignant and healthy tissues were obtained from ICRU Report 44. For reaching to real condition of oxygen effects, the necrosis and hypoxia area inside tumors has been assessed. Results: With regard to linear-quadratic expression which was defined in Monte Carlo, results showed that a large amount of BED is deposited in the well-oxygenated part of the hypoxia area compared to necrosis area. Moreover, there is a significant difference between the curves of absorbed dose with BED and without BED.Keywords: biological dose, monte carlo, hypoxia, radionuclide therapy
Procedia PDF Downloads 48726559 Biological Activities of Species in the Genus Tulbaghia: A Review
Authors: S. Takaidza, M. Pillay, F. Mtunzi
Abstract:
Since time immemorial, plants have been used by several communities to treat a large number of diseases. Numerous studies on the pharmacology of medicinal plants have been done. Medicinal plants constitute a potential source for the production of new medicines and may complement conventional antimicrobials and probably decrease health costs. Phytochemical compounds in plants are known to be biologically active aiding, for example, as antioxidants and antimicrobials. The overwhelming challenge of drug resistance has resulted in an increasing trend towards using medicinal plants to treat various diseases, especially in developing countries. Species of the genus Tulbaghia has been widely used in traditional medicine to treat various ailments such rheumatism, fits, fever, earache, tuberculosis etc. It is believed that the species possess several therapeutic properties. This paper evaluates some of the biological activities of the genus Tulbaghia. It is evident from current literature that T. violacea is the most promising species. The other species of Tulbaghia still require further studies to ascertain their medicinal potential.Keywords: biological activities, antimicrobial, antioxidant, phytochemicals, tulbaghia
Procedia PDF Downloads 38526558 Test of Biological Control against Brachytrupes Megacephalus Lefèbre, 1827 (Orthoptera, Gryllinae) by Using Entomopathogenic Fungi
Authors: W. Lakhdari, B. Doumendji-Mitich, A. Dahliz, S. Doumendji, Y. Bouchikh, R. M'lik, H. Hammi, A. Soud
Abstract:
This work was done in order to fight against Brachytrupes megacephalus, a major pest in the Algerian oasis and promote one aspect of biological control against it. He wears a hand on the isolation and identification of indigenous fungi on imagos of this insect harvested in the station of INRAA Touggourt and secondly, the study of the pathogenicity of these strains fungal on this orthoptère adults. The results obtained showed the presence of six different species of entomopathogenic fungi, it is: Aspergillus flavus, Fusarium sp, Beauveria bassiana, Penicillium sp, Metharizium anisopliae and Aspergillus Niger. The pathogenicity test using fungi Beauveria bassiana strains and Metharizium anisopliae. On adult of B. megacephalus highlights the effectiveness of these strains of predatory adults, with a mortality rate approaching 100% after 11 days.Keywords: biological control, brachytrupes megacephalus, entomopathogenic fungi, Southeastern Algeria
Procedia PDF Downloads 41026557 Microfluidic Device for Real-Time Electrical Impedance Measurements of Biological Cells
Authors: Anil Koklu, Amin Mansoorifar, Ali Beskok
Abstract:
Dielectric spectroscopy (DS) is a noninvasive, label free technique for a long term real-time measurements of the impedance spectra of biological cells. DS enables characterization of cellular dielectric properties such as membrane capacitance and cytoplasmic conductivity. We have developed a lab-on-a-chip device that uses an electro-activated microwells array for loading, DS measurements, and unloading of biological cells. We utilized from dielectrophoresis (DEP) to capture target cells inside the wells and release them after DS measurement. DEP is a label-free technique that exploits differences among dielectric properties of the particles. In detail, DEP is the motion of polarizable particles suspended in an ionic solution and subjected to a spatially non-uniform external electric field. To the best of our knowledge, this is the first microfluidic chip that combines DEP and DS to analyze biological cells using electro-activated wells. Device performance is tested using two different cell lines of prostate cancer cells (RV122, PC-3). Impedance measurements were conducted at 0.2 V in the 10 kHz to 40 MHz range with 6 s time resolution. An equivalent circuit model was developed to extract the cell membrane capacitance and cell cytoplasmic conductivity from the impedance spectra. We report the time course of the variations in dielectric properties of PC-3 and RV122 cells suspended in low conductivity medium (LCB), which enhances dielectrophoretic and impedance responses, and their response to sudden pH change from a pH of 7.3 to a pH of 5.8. It is shown that microfluidic chip allowed online measurements of dielectric properties of prostate cancer cells and the assessment of the cellular level variations under external stimuli such as different buffer conductivity and pH. Based on these data, we intend to deploy the current device for single cell measurements by fabricating separately addressable N × N electrode platforms. Such a device will allow time-dependent dielectric response measurements for individual cells with the ability of selectively releasing them using negative-DEP and pressure driven flow.Keywords: microfluidic, microfabrication, lab on a chip, AC electrokinetics, dielectric spectroscopy
Procedia PDF Downloads 15126556 Applying Arima Data Mining Techniques to ERP to Generate Sales Demand Forecasting: A Case Study
Authors: Ghaleb Y. Abbasi, Israa Abu Rumman
Abstract:
This paper modeled sales history archived from 2012 to 2015 bulked in monthly bins for five products for a medical supply company in Jordan. The sales forecasts and extracted consistent patterns in the sales demand history from the Enterprise Resource Planning (ERP) system were used to predict future forecasting and generate sales demand forecasting using time series analysis statistical technique called Auto Regressive Integrated Moving Average (ARIMA). This was used to model and estimate realistic sales demand patterns and predict future forecasting to decide the best models for five products. Analysis revealed that the current replenishment system indicated inventory overstocking.Keywords: ARIMA models, sales demand forecasting, time series, R code
Procedia PDF Downloads 385