Search results for: axial flux induction machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4631

Search results for: axial flux induction machine

3911 Recovery of Iodide Ion from TFT-LCD Wastewater by Forward Osmosis

Authors: Yu-Ting Chen, Shiao-Shing Chen, Hung-Te Hsu, Saikat Sinha Ray

Abstract:

Forward osmosis (FO) is a crucial technology with low operating pressure and cost for water reuse and reclamation. In Taiwan, with the advance of science and technology, thin film transistor liquid crystal displays (TFT-LCD) based industries are growing exponentially. In the optoelectronic industry wastewater, the iodide is one of the valuable element; it is also used in the medical industry. In this study, it was intended to concentrate iodide by utilizing FO system and can be reused for TFT-LCD production. Cellulose triacetate (CTA) membranes were used for all these FO experiments, and potassium iodide solution was used as the feed solution. It has been found that EDTA-2Na as draw solution at pH 8 produced high water flux and minimized salt leakage. The result also demonstrated that EDTA-2Na of concentration 0.6M could achieve the highest water flux (6.69L/m2 h). Additionally, from the recovered iodide ion from pH 3-8, the I- species was found to be more than 99%, whereas I2 was measured to be less than 1%. When potassium iodide solution was used from low to high concentration (1000 ppm to 10000 ppm), the iodide rejection was found to be than more 90%. Since, CTA membrane is negatively charged and I- is anionic in nature, so it will from electrostatic repulsion and hence there will be higher rejection. The overall performance demonstrates that recovery of concentrated iodide using FO system is a promising technology.

Keywords: draw solution, EDTA-2Na, forward osmosis, potassium iodide

Procedia PDF Downloads 367
3910 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 241
3909 Design and Implementation of a Memory Safety Isolation Method Based on the Xen Cloud Environment

Authors: Dengpan Wu, Dan Liu

Abstract:

In view of the present cloud security problem has increasingly become one of the major obstacles hindering the development of the cloud computing, put forward a kind of memory based on Xen cloud environment security isolation technology implementation. And based on Xen virtual machine monitor system, analysis of the model of memory virtualization is implemented, using Xen memory virtualization system mechanism of super calls and grant table, based on the virtual machine manager internal implementation of access control module (ACM) to design the security isolation system memory. Experiments show that, the system can effectively isolate different customer domain OS between illegal access to memory data.

Keywords: cloud security, memory isolation, xen, virtual machine

Procedia PDF Downloads 409
3908 Photovoltaic Modules Fault Diagnosis Using Low-Cost Integrated Sensors

Authors: Marjila Burhanzoi, Kenta Onohara, Tomoaki Ikegami

Abstract:

Faults in photovoltaic (PV) modules should be detected to the greatest extent as early as possible. For that conventional fault detection methods such as electrical characterization, visual inspection, infrared (IR) imaging, ultraviolet fluorescence and electroluminescence (EL) imaging are used, but they either fail to detect the location or category of fault, or they require expensive equipment and are not convenient for onsite application. Hence, these methods are not convenient to use for monitoring small-scale PV systems. Therefore, low cost and efficient inspection techniques with the ability of onsite application are indispensable for PV modules. In this study in order to establish efficient inspection technique, correlation between faults and magnetic flux density on the surface is of crystalline PV modules are investigated. Magnetic flux on the surface of normal and faulted PV modules is measured under the short circuit and illuminated conditions using two different sensor devices. One device is made of small integrated sensors namely 9-axis motion tracking sensor with a 3-axis electronic compass embedded, an IR temperature sensor, an optical laser position sensor and a microcontroller. This device measures the X, Y and Z components of the magnetic flux density (Bx, By and Bz) few mm above the surface of a PV module and outputs the data as line graphs in LabVIEW program. The second device is made of a laser optical sensor and two magnetic line sensor modules consisting 16 pieces of magnetic sensors. This device scans the magnetic field on the surface of PV module and outputs the data as a 3D surface plot of the magnetic flux intensity in a LabVIEW program. A PC equipped with LabVIEW software is used for data acquisition and analysis for both devices. To show the effectiveness of this method, measured results are compared to those of a normal reference module and their EL images. Through the experiments it was confirmed that the magnetic field in the faulted areas have different profiles which can be clearly identified in the measured plots. Measurement results showed a perfect correlation with the EL images and using position sensors it identified the exact location of faults. This method was applied on different modules and various faults were detected using it. The proposed method owns the ability of on-site measurement and real-time diagnosis. Since simple sensors are used to make the device, it is low cost and convenient to be sued by small-scale or residential PV system owners.

Keywords: fault diagnosis, fault location, integrated sensors, PV modules

Procedia PDF Downloads 224
3907 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning

Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody

Abstract:

The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.

Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification

Procedia PDF Downloads 109
3906 Energy Absorption of Circular Thin-Walled Tube with Curved-Crease Patterns under Axial Crushing

Authors: Grzegorz Dolzyk, Sungmoon Jung

Abstract:

Thin-walled tubes are commonly used as energy absorption devices for their excellent mechanical properties and high manufacturability. Techniques such as grooving and pre-folded origami shapes were introduced to circular and polygonal tubes to improve its energy absorption efficiency. This paper examines the energy absorption characteristics of circular tubes with pre-embedded curved-crease pattern. Set of numerical analyzes were conducted with different grooving patterns for tubes with various diameter (D) to thickness (t) ratio. It has been found that even very shallow grooving can positively affect thin wall tubes, leading to increased energy absorption and higher crushing load efficiency. The phenomenon is associated with nonsymmetric deformation that is usually observed for tubes with a high D/t ratio ( > 90). Grooving can redirect a natural mode of post-buckling deformation to a one with a higher number of lobes such that its beneficial and more stable. Also, the opposite effect can be achieved, and highly disrupted deformation can be a cause of reduced energy absorption capabilities. Curved-crease engraved patterns can be used to stabilize and change a form of hazardous post-buckling deformation.

Keywords: axial crushing, energy absorption, grooving, thin-wall structures

Procedia PDF Downloads 146
3905 Empirical Analysis of Velocity Behavior for Collaborative Robots in Transient Contact Cases

Authors: C. Schneider, M. M. Seizmeir, T. Suchanek, M. Hutter-Mironovova, M. Bdiwi, M. Putz

Abstract:

In this paper, a suitable measurement setup is presented to conduct force and pressure measurements for transient contact cases at the example of lathe machine tending. Empirical measurements were executed on a selected collaborative robot’s behavior regarding allowable operating speeds under consideration of sensor- and workpiece-specific factors. Comparisons between the theoretic calculations proposed in ISO/TS 15066 and the practical measurement results reveal a basis for future research. With the created database, preliminary risk assessment and economic assessment procedures of collaborative machine tending cells can be facilitated.

Keywords: biomechanical thresholds, collaborative robots, force and pressure measurements, machine tending, transient contact

Procedia PDF Downloads 245
3904 Injury Prediction for Soccer Players Using Machine Learning

Authors: Amiel Satvedi, Richard Pyne

Abstract:

Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.

Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer

Procedia PDF Downloads 183
3903 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: decision tree, feature selection, intrusion detection system, support vector machine

Procedia PDF Downloads 266
3902 Parameters Influencing Human Machine Interaction in Hospitals

Authors: Hind Bouami

Abstract:

Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedbacks helps to identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled.

Keywords: life-critical systems, situation awareness, human-machine interaction, decision-making

Procedia PDF Downloads 181
3901 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems

Authors: Jianhua Zhou, Yuwen Zhang

Abstract:

A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.

Keywords: conduction, inverse problems, conjugated gradient method, laser

Procedia PDF Downloads 370
3900 Using Machine Learning as an Alternative for Predicting Exchange Rates

Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior

Abstract:

This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.

Keywords: exchage rate, prediction, machine learning, deep learning

Procedia PDF Downloads 33
3899 Review on Rainfall Prediction Using Machine Learning Technique

Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya

Abstract:

Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.

Keywords: ANN, CNN, supervised learning, machine learning, deep learning

Procedia PDF Downloads 205
3898 Human Machine Interface for Controlling a Robot Using Image Processing

Authors: Ambuj Kumar Gautam, V. Vasu

Abstract:

This paper introduces a head movement based Human Machine Interface (HMI) that uses the right and left movements of head to control a robot motion. Here we present an approach for making an effective technique for real-time face orientation information system, to control a robot which can be efficiently used for Electrical Powered Wheelchair (EPW). Basically this project aims at application related to HMI. The system (machine) identifies the orientation of the face movement with respect to the pixel values of image in a certain areas. Initially we take an image and divide that whole image into three parts on the basis of its number of columns. On the basis of orientation of face, maximum pixel value of approximate same range of (R, G, and B value of a pixel) lie in one of divided parts of image. This information we transfer to the microcontroller through serial communication port and control the motion of robot like forward motion, left and right turn and stop in real time by using head movements.

Keywords: electrical powered wheelchair (EPW), human machine interface (HMI), robotics, microcontroller

Procedia PDF Downloads 292
3897 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study

Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng

Abstract:

MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.

Keywords: microRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM

Procedia PDF Downloads 402
3896 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms

Authors: Rikson Gultom

Abstract:

Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.

Keywords: abusive language, hate speech, machine learning, optimization, social media

Procedia PDF Downloads 129
3895 Design of a Low Cost Programmable LED Lighting System

Authors: S. Abeysekera, M. Bazghaleh, M. P. L. Ooi, Y. C. Kuang, V. Kalavally

Abstract:

Smart LED-based lighting systems have significant advantages over traditional lighting systems due to their capability of producing tunable light spectrums on demand. The main challenge in the design of smart lighting systems is to produce sufficient luminous flux and uniformly accurate output spectrum for sufficiently broad area. This paper outlines the programmable LED lighting system design principles of design to achieve the two aims. In this paper, a seven-channel design using low-cost discrete LEDs is presented. Optimization algorithms are used to calculate the number of required LEDs, LEDs arrangements and optimum LED separation distance. The results show the illumination uniformity for each channel. The results also show that the maximum color error is below 0.0808 on the CIE1976 chromaticity scale. In conclusion, this paper considered the simulation and design of a seven-channel programmable lighting system using low-cost discrete LEDs to produce sufficient luminous flux and uniformly accurate output spectrum for sufficiently broad area.

Keywords: light spectrum control, LEDs, smart lighting, programmable LED lighting system

Procedia PDF Downloads 187
3894 Regeneration of Plantlets via Direct Somatic Embryogenesis from Different Explants of Murraya koenigii

Authors: Nisha Khatik, Ramesh Joshi

Abstract:

An in vitro plant regeneration system was developed via direct somatic embryogenesis from different seedling explants of an important medicinal plant Murraya koenigii (L) Spreng. Cotyledons (COT), Hypocotyle (HYP)(10 to 15 mm) and Root (RT) segments (10 to 20 mm) were excised from 60 days old seedlings as explants. The somatic embryos induction was achieved on MS basal medium augmented with different concentrations of BAP 1.33 to 8.40 µM and TDZ 1.08 to 9.82 µM. The globular embryos originated from cut ends and entire surface of the root, hypocotyle explants and margins of cotyledons within 30-40days. The percentage of somatic embryos induction per explant was significantly higher in HYP explants (94.21±5.77%) in the MS basal medium supplemented with 6.20 µM BAP and 8.64 µM TDZ. The highest rate of conversion of torpedo, heart and cotyledonary stages from globular stage was obtained in MS medium supplemented with 8.64 µM TDZ. The matured somatic embryos were transferred to the MS basal medium without PGRs. Highest 88% of the matured embryos were germinated on transfer to the PGR free medium where they grew for a further 3-4 weeks. Out of seventy six hardened plants seventy (92%) plantlets were found healthy under field conditions.

Keywords: Murraya koenigii, somatic embryogenesis, thidiazuron, regeneration, rutaceae

Procedia PDF Downloads 428
3893 The Influence of Swirl Burner Geometry on the Sugar-Cane Bagasse Injection and Burning

Authors: Juan Harold Sosa-Arnao, Daniel José de Oliveira Ferreira, Caice Guarato Santos, Justo Emílio Alvarez, Leonardo Paes Rangel, Song Won Park

Abstract:

A comprehensive CFD model is developed to represent heterogeneous combustion and two burner designs of supply sugar-cane bagasse into a furnace. The objective of this work is to compare the insertion and burning of a Brazilian south-eastern sugar-cane bagasse using a new swirl burner design against an actual geometry under operation. The new design allows control the particles penetration and scattering inside furnace by adjustment of axial/tangential contributions of air feed without change their mass flow. The model considers turbulence using RNG k-, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The obtained results are favorable to use of new design swirl burner because its axial/tangential control promotes more penetration or more scattering than actual design and allows reproduce the actual design operation without change the overall mass flow supply.

Keywords: comprehensive CFD model, sugar-cane bagasse combustion, swirl burner, contributions

Procedia PDF Downloads 440
3892 Core-Shell Structured Magnetic Nanoparticles for Efficient Hyperthermia Cancer Treatment

Authors: M. R. Phadatare, J. V. Meshram, S. H. Pawar

Abstract:

Conversion of electromagnetic energy into heat by nanoparticles (NPs) has the potential to be a powerful, non-invasive technique for biomedical applications such as magnetic fluid hyperthermia, drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this paper, an attempt has been made to increase the efficiency of magnetic, thermal induction by NPs. To increase the efficiency of magnetic, thermal induction by NPs, one can take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the NP and maximize the specific absorption rate, which is the gauge of conversion efficiency. In order to examine the tunability of magnetocrystalline anisotropy and its magnetic heating power, a representative magnetically hard material (CoFe₂O₄) has been coupled to a soft material (Ni₀.₅Zn₀.₅Fe₂O₄). The synthesized NPs show specific absorption rates that are of an order of magnitude larger than the conventional one.

Keywords: magnetic nanoparticles, surface functionalization of magnetic nanoparticles, magnetic fluid hyperthermia, specific absorption rate

Procedia PDF Downloads 322
3891 Identifying Metabolic Pathways Associated with Neuroprotection Mediated by Tibolone in Human Astrocytes under an Induced Inflammatory Model

Authors: Daniel Osorio, Janneth Gonzalez, Andres Pinzon

Abstract:

In this work, proteins and metabolic pathways associated with the neuroprotective response mediated by the synthetic neurosteroid tibolone under a palmitate-induced inflammatory model were identified by flux balance analysis (FBA). Three different metabolic scenarios (‘healthy’, ‘inflamed’ and ‘medicated’) were modeled over a gene expression data-driven constructed tissue-specific metabolic reconstruction of mature astrocytes. Astrocyte reconstruction was built, validated and constrained using three open source software packages (‘minval’, ‘g2f’ and ‘exp2flux’) released through the Comprehensive R Archive Network repositories during the development of this work. From our analysis, we predict that tibolone executes their neuroprotective effects through a reduction of neurotoxicity mediated by L-glutamate in astrocytes, inducing the activation several metabolic pathways with neuroprotective actions associated such as taurine metabolism, gluconeogenesis, calcium and the Peroxisome Proliferator Activated Receptor signaling pathways. Also, we found a tibolone associated increase in growth rate probably in concordance with previously reported side effects of steroid compounds in other human cell types.

Keywords: astrocytes, flux balance analysis, genome scale metabolic reconstruction, inflammation, neuroprotection, tibolone

Procedia PDF Downloads 224
3890 Review on Implementation of Artificial Intelligence and Machine Learning for Controlling Traffic and Avoiding Accidents

Authors: Neha Singh, Shristi Singh

Abstract:

Accidents involving motor vehicles are more likely to cause serious injuries and fatalities. It also has a host of other perpetual issues, such as the regular loss of life and goods in accidents. To solve these issues, appropriate measures must be implemented, such as establishing an autonomous incident detection system that makes use of machine learning and artificial intelligence. In order to reduce traffic accidents, this article examines the overview of artificial intelligence and machine learning in autonomous event detection systems. The paper explores the major issues, prospective solutions, and use of artificial intelligence and machine learning in road transportation systems for minimising traffic accidents. There is a lot of discussion on additional, fresh, and developing approaches that less frequent accidents in the transportation industry. The study structured the following subtopics specifically: traffic management using machine learning and artificial intelligence and an incident detector with these two technologies. The internet of vehicles and vehicle ad hoc networks, as well as the use of wireless communication technologies like 5G wireless networks and the use of machine learning and artificial intelligence for the planning of road transportation systems, are elaborated. In addition, safety is the primary concern of road transportation. Route optimization, cargo volume forecasting, predictive fleet maintenance, real-time vehicle tracking, and traffic management, according to the review's key conclusions, are essential for ensuring the safety of road transportation networks. In addition to highlighting research trends, unanswered problems, and key research conclusions, the study also discusses the difficulties in applying artificial intelligence to road transport systems. Planning and managing the road transportation system might use the work as a resource.

Keywords: artificial intelligence, machine learning, incident detector, road transport systems, traffic management, automatic incident detection, deep learning

Procedia PDF Downloads 115
3889 Analysis of Roll-Forming for High-Density Wire of Reed

Authors: Yujeong Shin, Seong Jin Cho, Jin Ho Kim

Abstract:

In the textile-weaving machine, the reed is the core component to separate thousands of strands of yarn and to produce the fabric in a continuous high-speed movement. In addition, the reed affects the quality of the fiber. Therefore, the wire forming analysis of the main raw materials of the reed needs to be considered. Roll-forming is a key technology among the manufacturing process of reed wire using textile machine. A simulation of roll-forming line in accordance with the reduction rate is performed using LS-DYNA. The upper roller, fixed roller and reed wire are modeled by finite element. The roller is set to be rigid body and the wire of SUS430 is set to be flexible body. We predict the variation of the cross-sectional shape of the wire depending on the reduction ratio.

Keywords: textile machine, reed, rolling, reduction ratio, wire

Procedia PDF Downloads 375
3888 Single Machine Scheduling Problem to Minimize the Number of Tardy Jobs

Authors: Ali Allahverdi, Harun Aydilek, Asiye Aydilek

Abstract:

Minimizing the number of tardy jobs is an important factor to consider while making scheduling decisions. This is because on-time shipments are vital for lowering cost and increasing customers’ satisfaction. This paper addresses the single machine scheduling problem with the objective of minimizing the number of tardy jobs. The only known information is the lower and upper bounds for processing times, and deterministic job due dates. A dominance relation is established, and an algorithm is proposed. Several heuristics are generated from the proposed algorithm. Computational analysis indicates that the performance of one of the heuristics is very close to the optimal solution, i.e., on average, less than 1.5 % from the optimal solution.

Keywords: single machine scheduling, number of tardy jobs, heuristi, lower and upper bounds

Procedia PDF Downloads 555
3887 Experimental and Simulation Stress Strain Comparison of Hot Single Point Incremental Forming

Authors: Amar Al-Obaidi, Verena Kräusel, Dirk Landgrebe

Abstract:

Induction assisted single point incremental forming (IASPIF) is a flexible method and can be simply utilized to form a high strength alloys. Due to the interaction between the mechanical and thermal properties during IASPIF an evaluation for the process is necessary to be performed analytically. Therefore, a numerical simulation was carried out in this paper. The numerical analysis was operated at both room and elevated temperatures then compared with experimental results. Fully coupled dynamic temperature displacement explicit analysis was used to simulated the hot single point incremental forming. The numerical analysis was indicating that during hot single point incremental forming were a combination between complicated compression, tension and shear stresses. As a result, the equivalent plastic strain was increased excessively by rising both the formed part depth and the heating temperature during forming. Whereas, the forming forces were decreased from 5 kN at room temperature to 0.95 kN at elevated temperature. The simulation shows that the maximum true strain was occurred in the stretching zone which was the same as in experiment.

Keywords: induction heating, single point incremental forming, FE modeling, advanced high strength steel

Procedia PDF Downloads 210
3886 A Design System for Complex Profiles of Machine Members Using a Synthetic Curve

Authors: N. Sateesh, C. S. P. Rao, K. Satyanarayana, C. Rajashekar

Abstract:

This paper proposes a development of a CAD/CAM system for complex profiles of various machine members using a synthetic curve i.e. B-spline. Conventional methods in designing and manufacturing of complex profiles are tedious and time consuming. Even programming those on a computer numerical control (CNC) machine can be a difficult job because of the complexity of the profiles. The system developed provides graphical and numerical representation B-spline profile for any given input. In this paper, the system is applicable to represent a cam profile with B-spline and attempt is made to improve the follower motion.

Keywords: plate-cams, cam profile, b-spline, computer numerical control (CNC), computer aided design and computer aided manufacturing (CAD/CAM), R-D-R-D (rise-dwell-return-dwell)

Procedia PDF Downloads 614
3885 Reliability Assessment and Failure Detection in a Complex Human-Machine System Using Agent-Based and Human Decision-Making Modeling

Authors: Sanjal Gavande, Thomas Mazzuchi, Shahram Sarkani

Abstract:

In a complex aerospace operational environment, identifying failures in a procedure involving multiple human-machine interactions are difficult. These failures could lead to accidents causing loss of hardware or human life. The likelihood of failure further increases if operational procedures are tested for a novel system with multiple human-machine interfaces and with no prior performance data. The existing approach in the literature of reviewing complex operational tasks in a flowchart or tabular form doesn’t provide any insight into potential system failures due to human decision-making ability. To address these challenges, this research explores an agent-based simulation approach for reliability assessment and fault detection in complex human-machine systems while utilizing a human decision-making model. The simulation will predict the emergent behavior of the system due to the interaction between humans and their decision-making capability with the varying states of the machine and vice-versa. Overall system reliability will be evaluated based on a defined set of success-criteria conditions and the number of recorded failures over an assigned limit of Monte Carlo runs. The study also aims at identifying high-likelihood failure locations for the system. The research concludes that system reliability and failures can be effectively calculated when individual human and machine agent states are clearly defined. This research is limited to the operations phase of a system lifecycle process in an aerospace environment only. Further exploration of the proposed agent-based and human decision-making model will be required to allow for a greater understanding of this topic for application outside of the operations domain.

Keywords: agent-based model, complex human-machine system, human decision-making model, system reliability assessment

Procedia PDF Downloads 169
3884 Unseen Classes: The Paradigm Shift in Machine Learning

Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan

Abstract:

Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.

Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery

Procedia PDF Downloads 173
3883 DeClEx-Processing Pipeline for Tumor Classification

Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba

Abstract:

Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx.

Keywords: machine learning, healthcare, classification, explainability

Procedia PDF Downloads 58
3882 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets

Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson

Abstract:

Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.

Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime

Procedia PDF Downloads 97