Search results for: rewriting systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9455

Search results for: rewriting systems

2075 An Analysis of the Dominance of Migrants in the South African Spaza and Retail market: A Relationship-Based Network Perspective

Authors: Meron Okbandrias

Abstract:

The South African formal economy is rule-based economy, unlike most African and Asian markets. It has a highly developed financial market. In such a market, foreign migrants have dominated the small or spaza shops that service the poor. They are highly competitive and capture significant market share in South Africa. This paper analyses the factors that assisted the foreign migrants in having a competitive age. It does that by interviewing Somali, Bangladesh, and Ethiopian shop owners in Cape Town analysing the data through a narrative analysis. The paper also analyses the 2019 South African consumer report. The three migrant nationalities mentioned above dominate the spaza shop business and have significant distribution networks. The findings of the paper indicate that family, ethnic, and nationality based network, in that order of importance, form bases for a relationship-based business network that has trust as its mainstay. Therefore, this network ensures the pooling of resources and abiding by certain principles outside the South African rule-based system. The research identified practises like bulk buying within a community of traders, sharing information, buying from a within community distribution business, community based transportation system and providing seed capital for people from the community to start a business is all based on that relationship-based system. The consequences of not abiding by the rules of these networks are social and economic exclusion. In addition, these networks have their own commercial and social conflict resolution mechanisms aside from the South African justice system. Network theory and relationship based systems theory form the theoretical foundations of this paper.

Keywords: migrant, spaza shops, relationship-based system, South Africa

Procedia PDF Downloads 131
2074 Assessing Denitrification-Disintegration Model’s Efficacy in Simulating Greenhouse Gas Emissions, Crop Growth, Yield, and Soil Biochemical Processes in Moroccan Context

Authors: Mohamed Boullouz, Mohamed Louay Metougui

Abstract:

Accurate modeling of greenhouse gas (GHG) emissions, crop growth, soil productivity, and biochemical processes is crucial considering escalating global concerns about climate change and the urgent need to improve agricultural sustainability. The application of the denitrification-disintegration (DNDC) model in the context of Morocco's unique agro-climate is thoroughly investigated in this study. Our main research hypothesis is that the DNDC model offers an effective and powerful tool for precisely simulating a wide range of significant parameters, including greenhouse gas emissions, crop growth, yield potential, and complex soil biogeochemical processes, all consistent with the intricate features of environmental Moroccan agriculture. In order to verify these hypotheses, a vast amount of field data covering Morocco's various agricultural regions and encompassing a range of soil types, climatic factors, and crop varieties had to be gathered. These experimental data sets will serve as the foundation for careful model calibration and subsequent validation, ensuring the accuracy of simulation results. In conclusion, the prospective research findings add to the global conversation on climate-resilient agricultural practices while encouraging the promotion of sustainable agricultural models in Morocco. A policy architect's and an agricultural actor's ability to make informed decisions that not only advance food security but also environmental stability may be strengthened by the impending recognition of the DNDC model as a potent simulation tool tailored to Moroccan conditions.

Keywords: greenhouse gas emissions, DNDC model, sustainable agriculture, Moroccan cropping systems

Procedia PDF Downloads 69
2073 Developing Urban Design and Planning Approach to Enhance the Efficiency of Infrastructure and Public Transportation in Order to Reduce GHG Emissions

Authors: A. Rostampouryasouri, A. Maghoul, S. Tahersima

Abstract:

The rapid growth of urbanization and the subsequent increase in population in cities have resulted in the destruction of the environment to cater to the needs of citizens. The industrialization of urban life has led to the production of pollutants, which has significantly contributed to the rise of air pollution. Infrastructure can have both positive and negative effects on air pollution. The effects of infrastructure on air pollution are complex and depend on various factors such as the type of infrastructure, location, and context. This study examines the effects of infrastructure on air pollution, drawing on a range of empirical evidence from Iran and China. Our paper focus for analyzing the data is on the following concepts: 1. Urban design and planning principles and practices 2. Infrastructure efficiency and optimization strategies 3. Public transportation systems and their environmental impact 4. GHG emissions reduction strategies in urban areas 5. Case studies and best practices in sustainable urban development This paper employs a mixed methodology approach with a focus on developmental and applicative purposes. The mixed methods approach combines both quantitative and qualitative research methods to provide a more comprehensive understanding of the research topic. A group of 20 architectural specialists and experts who are proficient in the field of research, design, and implementation of green architecture projects were interviewed in a systematic and purposeful manner. The research method was based on content analysis using MAXQDA2020 software. The findings suggest that policymakers and urban planners should consider the potential impacts of infrastructure on air pollution and take measures to mitigate negative effects while maximizing positive ones. This includes adopting a nature-based approach to urban planning and infrastructure development, investing in information infrastructure, and promoting modern logistic transport infrastructure.

Keywords: GHG emissions, infrastructure efficiency, urban development, urban design

Procedia PDF Downloads 85
2072 Research and Implementation of Cross-domain Data Sharing System in Net-centric Environment

Authors: Xiaoqing Wang, Jianjian Zong, Li Li, Yanxing Zheng, Jinrong Tong, Mao Zhan

Abstract:

With the rapid development of network and communication technology, a great deal of data has been generated in different domains of a network. These data show a trend of increasing scale and more complex structure. Therefore, an effective and flexible cross-domain data-sharing system is needed. The Cross-domain Data Sharing System(CDSS) in a net-centric environment is composed of three sub-systems. The data distribution sub-system provides data exchange service through publish-subscribe technology that supports asynchronism and multi-to-multi communication, which adapts to the needs of the dynamic and large-scale distributed computing environment. The access control sub-system adopts Attribute-Based Access Control(ABAC) technology to uniformly model various data attributes such as subject, object, permission and environment, which effectively monitors the activities of users accessing resources and ensures that legitimate users get effective access control rights within a legal time. The cross-domain access security negotiation subsystem automatically determines the access rights between different security domains in the process of interactive disclosure of digital certificates and access control policies through trust policy management and negotiation algorithms, which provides an effective means for cross-domain trust relationship establishment and access control in a distributed environment. The CDSS’s asynchronous,multi-to-multi and loosely-coupled communication features can adapt well to data exchange and sharing in dynamic, distributed and large-scale network environments. Next, we will give CDSS new features to support the mobile computing environment.

Keywords: data sharing, cross-domain, data exchange, publish-subscribe

Procedia PDF Downloads 128
2071 Exploring Individual Decision Making Processes and the Role of Information Structure in Promoting Uptake of Energy Efficient Technologies

Authors: Rebecca J. Hafner, Daniel Read, David Elmes

Abstract:

The current research applies decision making theory in order to address the problem of increasing uptake of energy-efficient technologies in the market place, where uptake is currently slower than one might predict following rational choice models. Specifically, in two studies we apply the alignable/non-alignable features effect and explore the impact of varying information structure on the consumers’ preference for standard versus energy efficient technologies. As researchers in the Interdisciplinary centre for Storage, Transformation and Upgrading of Thermal Energy (i-STUTE) are currently developing energy efficient heating systems for homes and businesses, we focus on the context of home heating choice, and compare preference for a standard condensing boiler versus an energy efficient heat pump, according to experimental manipulations in the structure of prior information. In Study 1, we find that people prefer stronger alignable features when options are similar; an effect which is mediated by an increased tendency to infer missing information is the same. Yet, in contrast to previous research, we find no effects of alignability on option preference when options differ. The advanced methodological approach used here, which is the first study of its kind to randomly allocate features as either alignable or non-alignable, highlights potential design effects in previous work. Study 2 is designed to explore the interaction between alignability and construal level as an explanation for the shift in attentional focus when options differ. Theoretical and applied implications for promoting energy efficient technologies are discussed.

Keywords: energy-efficient technologies, decision-making, alignability effects, construal level theory, CO2 reduction

Procedia PDF Downloads 332
2070 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey

Authors: Mahdiyeh Zafaranchi

Abstract:

With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.

Keywords: efficient building, electric and gas consumption, eQuest, Passive parameters

Procedia PDF Downloads 115
2069 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid

Authors: Abdulla Rahil, Rupert Gammon, Neil Brown

Abstract:

The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.

Keywords: hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen

Procedia PDF Downloads 235
2068 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 88
2067 An Overview of Technology Availability to Support Remote Decentralized Clinical Trials

Authors: Simone Huber, Bianca Schnalzer, Baptiste Alcalde, Sten Hanke, Lampros Mpaltadoros, Thanos G. Stavropoulos, Spiros Nikolopoulos, Ioannis Kompatsiaris, Lina Pérez- Breva, Vallivana Rodrigo-Casares, Jaime Fons-Martínez, Jeroen de Bruin

Abstract:

Developing new medicine and health solutions and improving patient health currently rely on the successful execution of clinical trials, which generate relevant safety and efficacy data. For their success, recruitment and retention of participants are some of the most challenging aspects of protocol adherence. Main barriers include: i) lack of awareness of clinical trials; ii) long distance from the clinical site; iii) the burden on participants, including the duration and number of clinical visits and iv) high dropout rate. Most of these aspects could be addressed with a new paradigm, namely the Remote Decentralized Clinical Trials (RDCTs). Furthermore, the COVID-19 pandemic has highlighted additional advantages and challenges for RDCTs in practice, allowing participants to join trials from home and not depend on site visits, etc. Nevertheless, RDCTs should follow the process and the quality assurance of conventional clinical trials, which involve several processes. For each part of the trial, the Building Blocks, existing software and technologies were assessed through a systematic search. The technology needed to perform RDCTs is widely available and validated but is yet segmented and developed in silos, as different software solutions address different parts of the trial and at various levels. The current paper is analyzing the availability of technology to perform RDCTs, identifying gaps and providing an overview of Basic Building Blocks and functionalities that need to be covered to support the described processes.

Keywords: architectures and frameworks for health informatics systems, clinical trials, information and communications technology, remote decentralized clinical trials, technology availability

Procedia PDF Downloads 223
2066 Development of a Fuzzy Logic Based Model for Monitoring Child Pornography

Authors: Mariam Ismail, Kazeem Rufai, Jeremiah Balogun

Abstract:

A study was conducted to apply fuzzy logic to the development of a monitoring model for child pornography based on associated risk factors, which can be used by forensic experts or integrated into forensic systems for the early detection of child pornographic activities. A number of methods were adopted in the study, which includes an extensive review of related works was done in order to identify the factors that are associated with child pornography following which they were validated by an expert sex psychologist and guidance counselor, and relevant data was collected. Fuzzy membership functions were used to fuzzify the associated variables identified alongside the risk of the occurrence of child pornography based on the inference rules that were provided by the experts consulted, and the fuzzy logic expert system was simulated using the Fuzzy Logic Toolbox available in the MATLAB Software Release 2016. The results of the study showed that there were 4 categories of risk factors required for assessing the risk of a suspect committing child pornography offenses. The results of the study showed that 2 and 3 triangular membership functions were used to formulate the risk factors based on the 2 and 3 number of labels assigned, respectively. The results of the study showed that 5 fuzzy logic models were formulated such that the first 4 was used to assess the impact of each category on child pornography while the last one takes the 4 outputs from the 4 fuzzy logic models as inputs required for assessing the risk of child pornography. The following conclusion was made; there were factors that were related to personal traits, social traits, history of child pornography crimes, and self-regulatory deficiency traits by the suspects required for the assessment of the risk of child pornography crimes committed by a suspect. Using the values of the identified risk factors selected for this study, the risk of child pornography can be easily assessed from their values in order to determine the likelihood of a suspect perpetuating the crime.

Keywords: fuzzy, membership functions, pornography, risk factors

Procedia PDF Downloads 135
2065 Environmental Accounting Practice: Analyzing the Extent and Qualification of Environmental Disclosures of Turkish Companies Located in BIST-XKURY Index

Authors: Raif Parlakkaya, Mustafa Nihat Demirci, Mehmet Nuri Salur

Abstract:

Environmental pollution has detrimental effects on the quality of our life and its scope has reached such an extent that measures are being taken both at the national and international levels to reduce, prevent and mitigate its impact on social, economic and political spheres. Therefore, awareness of environmental problems has been increasing among stakeholders and accordingly among companies. It is seen that corporate reporting is expanding beyond environmental performance. Primary purpose of publishing an environmental report is to provide specific audiences with useful, meaningful information. This paper is intended to analyze the extent and qualification of environmental disclosures of Turkish publicly quoted firms and see how it varies from one sector to another. The data for the study were collected from annual activity reports of companies, listed on the corporate governance index (BIST-XKURY) of Istanbul Stock Exchange. Content analysis was the research methodology used to measure the extent of environmental disclosure. Accordingly, 2015 annual activity reports of companies that carry out business in some particular fields were acquired from Capital Market Board, websites of Public Disclosure Platform and companies’ own websites. These reports were categorized into five main aspects: Environmental policies, environmental management systems, environmental protection and conservation activities, environmental awareness and information on environmental lawsuits. Subsequently, each component was divided into several variables related to what each firm is supposed to disclose about environmental information. In this context, the nature and scope of the information disclosed on each item were assessed according to five different ways (N.I: No Information; G.E.: General Explanations; Q.E.: Qualitative Detailed Explanations; N.E.: Quantitative (numerical) Detailed Explanations; Q.&N.E.: Both Qualitative and Quantitative Explanations).

Keywords: environmental accounting, disclosure, corporate governance, content analysis

Procedia PDF Downloads 271
2064 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter

Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball

Abstract:

The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.

Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS

Procedia PDF Downloads 53
2063 Developing a Spatial Transport Model to Determine Optimal Routes When Delivering Unprocessed Milk

Authors: Sunday Nanosi Ndovi, Patrick Albert Chikumba

Abstract:

In Malawi, smallholder dairy farmers transport unprocessed milk to sell at Milk Bulking Groups (MBGs). MBGs store and chill the milk while awaiting collection by processors. The farmers deliver milk using various modes of transportation such as foot, bicycle, and motorcycle. As a perishable food, milk requires timely transportation to avoid deterioration. In other instances, some farmers bypass the nearest MBGs for facilities located further away. Untimely delivery worsens quality and results in rejection at MBG. Subsequently, these rejections lead to revenue losses for dairy farmers. Therefore, the objective of this study was to optimize routes when transporting milk by selecting the shortest route using time as a cost attribute in Geographic Information Systems (GIS). A spatially organized transport system impedes milk deterioration while promoting profitability for dairy farmers. A transportation system was modeled using Route Analysis and Closest Facility network extensions. The final output was to find the quickest routes and identify the nearest milk facilities from incidents. Face-to-face interviews targeted leaders from all 48 MBGs in the study area and 50 farmers from Namahoya MBG. During field interviews, coordinates were captured in order to create maps. Subsequently, maps supported the selection of optimal routes based on the least travel times. The questionnaire targeted 200 respondents. Out of the total, 182 respondents were available. Findings showed that out of the 50 sampled farmers that supplied milk to Namahoya, only 8% were nearest to the facility, while 92% were closest to 9 different MBGs. Delivering milk to the nearest MBGs would minimize travel time and distance by 14.67 hours and 73.37 km, respectively.

Keywords: closest facility, milk, route analysis, spatial transport

Procedia PDF Downloads 61
2062 Engineering Education for Sustainable Development in China: Perceptions Bias between Experienced Engineers and Engineering Students

Authors: Liang Wang, Wei Zhang

Abstract:

Nowadays, sustainable development has increasingly become an important research topic of engineering education. Existing research on Engineering Education for Sustainable Development (EESD) has highlighted the importance of perceptions for ethical responsibility to address sustainable development in practice. However, whether and how the professional engineering experience affects those perceptions has not been proved, especially in a Chinese context. Our study fills this gap by investigating the perceptions bias of EESD between experienced engineers and engineering students. We specifically examined what EESD means for experienced engineers and engineering students using a triple-dimensional model to understand if there are obvious differences between the two groups. Our goal is to make the benefits of these experiences more accessible in school context. The data (n=438) came from a questionnaire created and adapted from previously published studies containing 288 students from mechanical or civil engineering and 150 civil engineers with rich working experience, and the questionnaire was distributed during Fall 2020. T-test was used to find the difference in different dimensions between the two groups. The statistical results show that there is a significant difference in the perceptions of EESD between experienced engineers and inexperienced engineering students in China. Experienced engineers tend to consider sustainable development from ecological, economic, and social perspectives, while engineering students' answers focus more on ecology and ignore economic and social dimensions to some extend. The findings provide empirical evidence that professional experience is helpful to cultivate the cognition and ability of sustainable development in engineering education. The results of this work indicate that more practical content should be added to engineering education to promote sustainable development. In addition, for the design of engineering courses and professional practice systems for sustainable development, we should not only pay attention to the ecological aspects but also emphasize the coordination of ecological, economic, and socially sustainable development (e.g., engineer's ethical responsibility).

Keywords: engineering education, sustainable development, experienced engineers, engineering students

Procedia PDF Downloads 107
2061 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 264
2060 From Pink to Ink: Understanding the Decision-Making Process of Post-mastectomy Women Who Have Covered Their Scars with Decorative Tattoos

Authors: Fernanda Rodriguez

Abstract:

Breast cancer is pervasive among women, and an increasing number of women are opting for a mastectomy: a medical operation in which one or both breasts are removed with the intention of treating or averting breast cancer. However, there is an emerging population of cancer survivors in European nations that, rather than attempting to reconstruct their breasts to resemble as much as possible ‘normal’ breasts, have turned to dress their scars with decorative tattoos. At a practical level, this study hopes to improve the support systems of these women by possibly providing professionals in the medical field, tattoo artists, and family members of cancer survivors with a deeper understanding of their motivations and decision-making processes for choosing an alternative restorative route - such as decorative tattoos - after their mastectomy. At an intellectual level, however, this study aims to narrow a gap in the academic field concerning the relationship between mastectomies and alternative methods of healing, such as decorative tattoos, as well as to broaden the understanding regarding meaning-making and the ‘normal’ feminine body. Thus, by means of semi-structured interviews and a phenomenological standpoint, this research set itself the goal to understand why do women who have undergone a mastectomy choose to dress their scars with decorative tattoos instead of attempting to regain ‘normalcy’ through breast reconstruction or 3D areola tattoos? The results obtained from the interviews with fifteen women showed that the disillusionment with one part of the other of breast restoration techniques had led these women to find an alternative form of healing that allows them not only to close a painful chapter of their life but also to regain control over their bodies after a period of time in which agency was taking away from them. Decorative post-mastectomy tattoos allow these women to grant their bodies with new meanings and produce their own interpretation of their feminine body and identity.

Keywords: alternative femininity, decorative mastectomy tattoos, gender embodiment, social stigmatization

Procedia PDF Downloads 122
2059 Health and the Politics of Trust: Multi-Drug-Resistant Tuberculosis in Kathmandu

Authors: Mattia Testuzza

Abstract:

Public health is a social endeavour, which involves many different actors: from extremely stratified, structured health systems to unofficial networks of people and knowledge. Health and diseases are an intertwined individual and social experiences. Both patients and health workers navigate this public space through relations of trust. Trust in healthcare goes from the personal trust between a patient and her/his doctor to the trust of both the patient and the health worker in the medical knowledge and the healthcare system. Trust it is not a given, but it is continuously negotiated, given and gained. The key to understand these essential relations of trust in health is to recognise them as a social practice, which therefore implies agency and power. In these terms, health is constantly public and made public, as trust emerges as a meaningfully political phenomenon. Trust as a power relation can be observed at play in the implementation of public health policies such as the WHO’s Directly-Observed Theraphy Short-course (DOTS), and with the increasing concern for drug-resistance that tuberculosis pose, looking at the role of trust in the healthcare delivery system and implementation of public health policies becomes significantly relevant. The ethnographic fieldwork was carried out in four months through observation of the daily practices at the National Tuberculosis Center of Nepal, and semi-structured interviews with MultiDrug-Resistant Tuberculosis (MDR-TB) patients at different stages of the treatment, their relatives, MDR-TB specialised nurses, and doctors. Throughout the research, the role which trust plays in tuberculosis treatment emerged as one fundamental ax that cuts through all the different factors intertwined with drug-resistance development, unfolding a tension between the DOTS policy, which undermines trust, and the day-to-day healthcare relations and practices which cannot function without trust. Trust also stands out as a key component of the solutions to unforeseen issues which develop from the overall uncertainty of the context - for example, political instability and extreme poverty - in which tuberculosis treatment is carried out in Nepal.

Keywords: trust, tuberculosis, drug-resistance, politics of health

Procedia PDF Downloads 259
2058 Extension and Closure of a Field for Engineering Purpose

Authors: Shouji Yujiro, Memei Dukovic, Mist Yakubu

Abstract:

Fields are important objects of study in algebra since they provide a useful generalization of many number systems, such as the rational numbers, real numbers, and complex numbers. In particular, the usual rules of associativity, commutativity and distributivity hold. Fields also appear in many other areas of mathematics; see the examples below. When abstract algebra was first being developed, the definition of a field usually did not include commutativity of multiplication, and what we today call a field would have been called either a commutative field or a rational domain. In contemporary usage, a field is always commutative. A structure which satisfies all the properties of a field except possibly for commutativity, is today called a division ring ordivision algebra or sometimes a skew field. Also non-commutative field is still widely used. In French, fields are called corps (literally, body), generally regardless of their commutativity. When necessary, a (commutative) field is called corps commutative and a skew field-corps gauche. The German word for body is Körper and this word is used to denote fields; hence the use of the blackboard bold to denote a field. The concept of fields was first (implicitly) used to prove that there is no general formula expressing in terms of radicals the roots of a polynomial with rational coefficients of degree 5 or higher. An extension of a field k is just a field K containing k as a subfield. One distinguishes between extensions having various qualities. For example, an extension K of a field k is called algebraic, if every element of K is a root of some polynomial with coefficients in k. Otherwise, the extension is called transcendental. The aim of Galois Theory is the study of algebraic extensions of a field. Given a field k, various kinds of closures of k may be introduced. For example, the algebraic closure, the separable closure, the cyclic closure et cetera. The idea is always the same: If P is a property of fields, then a P-closure of k is a field K containing k, having property, and which is minimal in the sense that no proper subfield of K that contains k has property P. For example if we take P (K) to be the property ‘every non-constant polynomial f in K[t] has a root in K’, then a P-closure of k is just an algebraic closure of k. In general, if P-closures exist for some property P and field k, they are all isomorphic. However, there is in general no preferable isomorphism between two closures.

Keywords: field theory, mechanic maths, supertech, rolltech

Procedia PDF Downloads 380
2057 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 64
2056 A Comparative Analysis of the Private and Social Benefit-Cost Ratios of Organic and Inorganic Rice Farming: Case Study of Smallholder Farmers in the Aveyime Community, Ghana

Authors: Jerome E. Abiemo, Takeshi Mizunoya

Abstract:

The Aveyime community in the Volta region of Ghana is one of the major hubs for rice production. In the past, rice farmers applied organic pesticides to control pests, and compost as a soil amendment to improve fertility and productivity. However, the introduction of chemical pesticides and fertilizers have led many farmers to convert to inorganic system of rice production, without considering the social costs (e.g. groundwater contamination and health costs) related to the use of pesticides. The study estimates and compares the private and social BCRs of organic and inorganic systems of rice production. Both stratified and simple random sampling techniques were employed to select 300 organic and inorganic rice farmers and 50 pesticide applicators. The respondents were interviewed with pre-tested questionnaires. The Contingent Valuation Method (CVM) which elucidates organic farmers` Willingness-to-Pay (WTP) was employed to estimate the cost of groundwater contamination. The Cost of Illness (COI) analysis was used to estimate the health cost of pesticide-induced poisoning of applicators. The data collated, was analyzed with the aid of Microsoft excel. The study found that high private benefit (e.g. increase in farm yield and income) was the most influential factor for the rapid adoption of pesticides among rice farmers. The study also shows that the social costs of inorganic rice production were high. As such the social BCR of inorganic farming (0.2) was low as compared to organic farming (0.7). Based on the results, it was recommended that government should impose pesticide environmental tax, review current agricultural policies to favour organic farming and promote extension education to farmers on pesticide risk, to ensure agricultural and environmental sustainability.

Keywords: benefit-cost-ratio (BCR), inorganic farming, pesticides, social cost

Procedia PDF Downloads 483
2055 Exploring the Effectiveness of End-Of-Life Patient Decision Add in the ICU

Authors: Ru-Yu Lien, Shih-Hsin Hung, Shu-Fen Lu, Ju-Jen Shie, Wen-Ju Yang, Yuann-Meei Tzeng, Chien-Ying Wang

Abstract:

Background: The quality of care in intensive care units (ICUs) is crucial, especially for terminally ill patients. Shared decision-making (SDM) with families is essential to ensure appropriate care and reduce suffering. Aim: This study explores the effectiveness of an end-of-life decision support Patient Decision Aid (PDA) in an ICU setting. Methods: This study employed a cross-sectional research design conducted in an ICU from August 2020 to June 2023. Participants included family members of end-of-life patients aged 20 or older. A total of 319 participants. Family members of end-of-life patients received the PDA, and data were collected after they made medical decisions. Data collection involved providing family members with a PDA during family meetings. A post-PDA questionnaire with 17 questions assessed PDA effectiveness and anxiety levels. Statistical analysis was performed using SPSS 22.0. Results: The PDA significantly reduced anxiety levels among family members (p < 0.001). It helped them organize their thoughts, prepare for discussions with doctors, and understand critical decision factors. Most importantly, it influenced decision outcomes, with a shift towards palliative care and withdrawal of life-sustaining treatment. Conclusion: This study highlights the importance of family-centered end-of-life care in ICUs. PDAs promote informed decision-making, reduce conflicts, and enhance patient and family involvement. These tools align patient values and goals with medical recommendations, ultimately leading to decisions that prioritize comfort and quality of life. Implementing PDAs in healthcare systems can ensure that patients' care aligns with their values.

Keywords: shared decision-making, patient decision aid, end-of-life care, intensive care unit, family-centered care

Procedia PDF Downloads 91
2054 Influence of Digestate Fertilization on Soil Microbial Activity, Greenhouse Gas Emissions and Yield

Authors: M. Doyeni, S. Suproniene, V. Tilvikiene

Abstract:

Agricultural wastes contribute significantly to global climate change through greenhouse gas emissions if not adequately recycled and sustainably managed. A recurring agricultural waste is livestock wastes that have consistently served as feedstock for biogas systems. The objective of this study was to access the influence of digestate fertilization on soil microbial activity and greenhouse gas emissions in agricultural fields. Wheat (Triticum spp. L.) was fertilized with different types of animal wastes digestates (organic fertilizers) and mineral nitrogen (inorganic fertilizer) for three years. The 170 kg N ha⁻¹ presented in digestates were split fertilized at an application rate of 90 and 80 kg N ha⁻¹. The soil microorganism activity could be predicted significantly using the dehydrogenase activity and soil microbial biomass carbon. By combining the two different monitoring approaches, the different methods applied in this study were sensitive to enzymatic activities and organic carbon in the living component of the soil organic matter. The emissions of greenhouse gasses (carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) were monitored directly by a static chamber system. The soil and environmental variables were measured to determine their influence on greenhouse gas emissions. Emission peaks was observed in N₂O and CO₂ after the first application of fertilizers with the emissions flattening out over the cultivating season while CH₄ emission was negligible with no apparent patterns observed. Microbial biomass carbon and dehydrogenase activity were affected by the fertilized organic digestates. A significant difference was recorded between the control and the digestate treated soils for the microbial biomass carbon and dehydrogenase. Results also showed individual and cumulative emissions of CO₂, CH₄ and N₂O from the digestates were relatively low suggesting the digestate fertilization can be an efficient method for improving soil quality and reducing greenhouse gases from agricultural sources in temperate climate conditions.

Keywords: greenhouse gas emission, manure digestate, soil microbial activity, yield

Procedia PDF Downloads 143
2053 Quantifying Rumen Enteric Methane Production in Extensive Production Systems

Authors: Washaya Soul, Mupangwa John, Mapfumo Lizwell, Muchenje Voster

Abstract:

Ruminant animals contribute a considerable amount of methane to the atmosphere, which is a cause of concern for global warming. Two studies were conducted in beef and goats where the studies aimed to determine the enteric CH₄ levels from a herd of beef cows raised on semi-arid rangelands and to evaluate the effect of supplementing goats with forage legumes: Vigna unguiculata and Lablab purpureus on enteric methane production. A total of 24 cows were selected from Boran and Nguni cows (n = 12 per breed) from two different farms; parity (P1 – P4) and season (dry vs. wet) were considered predictor variables in the first experiment. Eighteen goats (weaners, 9 males, 9 females) were used, in which sex and forage species were predictor variables in the second experiment. Three treatment diets were used in goats. Methane was measured using a Laser methane detector [LMD] for six consecutive days and repeated once after every three months in beef cows and once every week for 6 weeks in goats during the post-adaptation period. Parity and breed had no effects on CH₄ production in beef cows; however, season significantly influenced CH₄ outputs. Methane production was higher (P<0.05) in the dry compared to the wet season, 31.1CH₄/DMI(g/kg) and 28.8 CH₄/DMI(g/kg) for the dry and wet seasons, respectively. In goats, forage species and sex of the animal affected enteric methane production (P<0.05). Animals produce more gas when ruminating than feeding or just standing for all treatments. The control treatment exhibited higher (P<0.05) methane emissions per kg of DMI. Male goats produced more methane compared to females (17.40L/day; 12.46 g/kg DMI and 0.126g/day) versus (15.47L/day, 12.28 g/kg DMI, 0.0109g/day) respectively. It was concluded that cows produce more CH₄/DMI during the dry season, while forage legumes reduce enteric methane production in goats, and male goats produce more gas compared to females. It is recommended to introduce forage legumes, particularly during the dry season, to reduce the amount of gas produced.

Keywords: beef cows, extensive grazing system, forage legumes, greenhouse gases, goats Laser methane detector.

Procedia PDF Downloads 71
2052 Hydrodynamics of Periphyton Biofilters in Recirculating Aquaculture

Authors: Adam N. Bell, Sarina J. Ergas, Michael Nystrom, Nathan P. Brennan, Kevan L. Main

Abstract:

Integrated Multi-Trophic Aquaculture systems (IMTA) have the potential to improve the sustainability of seafood production, generate organic fertilizer and feed, remove waste discharges and reduce energy use. IMTA can include periphyton biofilters where algae and microbes grow on surfaces, along with caught detritus and amphipods. Periphyton biofilters provide many advantages: nitrification, denitrification, primary production and ecological diversity. The goal of this study was to determine how biofilter hydraulic residence time (τ) effects periphyton biomass production, dissolved oxygen (DO) and nutrient removal. A pilot scale recirculating aquaculture system (RAS) was designed, constructed and operated at different hydraulic residence times (τ= 1, 2, 4, 6, 8 hours per tank). For each τ, a conservative tracer study was conducted to investigate system hydrodynamics. Data on periphyton weights, pH, nitrogen species, phosphorus, temperature and DO were collected. The tracer study for τ =1 hour revealed that the normalized time < τ, indicating short-circuiting. Periphyton biomass production rate was relatively unaffected by τ (R_e<1 for all τ). Average ammonia nitrogen removal was > 75% for all trials. Nitrate and nitrite did not accumulate in the RAS for τ≥4 hours due to enhanced denitrification in anoxic zones. For τ≥4 hours DO concentration was at a maximum of 4 mg L-1 after 14:00, and decreased to 0 mg L-1 during nighttime. At τ=1 hour, the RAS stayed > 2 mg L-1 and DO was more evenly distributed. For the validation trial, the culture tank was stocked with Centropomus undecimalis (common snook) and the system was operated at τ= 1 hr. Preliminary results showed that a RAS with an integrated periphyton biofilter could support fish health with low nutrient concentrations DO > 6 mg L-1.

Keywords: sustainable aquaculture, resource recovery, nitrogen, microalgae, hydrodynamics, integrated multi-trophic aquaculture

Procedia PDF Downloads 137
2051 Application of Environmental Justice Concept in Urban Planning, The Peri-Urban Environment of Tehran as the Case Study

Authors: Zahra Khodaee

Abstract:

Environmental Justice (EJ) concept consists of multifaceted movements, community struggles, and discourses in contemporary societies that seek to reduce environmental risks, increase environmental protections, and generally reduce environmental inequalities suffered by minority and poor communities; a term that incorporates ‘environmental racism’ and ‘environmental classism,’ captures the idea that different racial and socioeconomic groups experience differential access to environmental quality. This article explores environmental justice as an urban phenomenon in urban planning and applies it in peri-urban environment of a metropolis. Tehran peri-urban environments which are the result of meeting the city- village- nature systems or «city-village junction» have gradually faced effects such as accelerated environmental decline, changes without land-use plan, and severe service deficiencies. These problems are instances of environmental injustice which make the planners to adjust the problems and use and apply the appropriate strategies and policies by looking for solutions and resorting to theories, techniques and methods related to environmental justice. In order to access to this goal, try to define environmental justice through justice and determining environmental justice indices to analysis environmental injustice in case study. Then, make an effort to introduce some criteria to select case study in two micro and micro levels. Qiyamdasht town as the peri-urban environment of Tehran metropolis is chosen and examined to show the existence of environmental injustice by questionnaire analysis and SPSS software. Finally, use AIDA technique to design a strategic plan and reduce environmental injustice in case study by introducing the better scenario to be used in policy and decision making areas.

Keywords: environmental justice, metropolis of Tehran, Qiyam, Dasht peri, urban settlement, analysis of interconnected decision area (AIDA)

Procedia PDF Downloads 497
2050 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge

Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi

Abstract:

Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.

Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring

Procedia PDF Downloads 213
2049 Interactive IoT-Blockchain System for Big Data Processing

Authors: Abdallah Al-ZoubI, Mamoun Dmour

Abstract:

The spectrum of IoT devices is becoming widely diversified, entering almost all possible fields and finding applications in industry, health, finance, logistics, education, to name a few. The IoT active endpoint sensors and devices exceeded the 12 billion mark in 2021 and are expected to reach 27 billion in 2025, with over $34 billion in total market value. This sheer rise in numbers and use of IoT devices bring with it considerable concerns regarding data storage, analysis, manipulation and protection. IoT Blockchain-based systems have recently been proposed as a decentralized solution for large-scale data storage and protection. COVID-19 has actually accelerated the desire to utilize IoT devices as it impacted both demand and supply and significantly affected several regions due to logistic reasons such as supply chain interruptions, shortage of shipping containers and port congestion. An IoT-blockchain system is proposed to handle big data generated by a distributed network of sensors and controllers in an interactive manner. The system is designed using the Ethereum platform, which utilizes smart contracts, programmed in solidity to execute and manage data generated by IoT sensors and devices. such as Raspberry Pi 4, Rasbpian, and add-on hardware security modules. The proposed system will run a number of applications hosted by a local machine used to validate transactions. It then sends data to the rest of the network through InterPlanetary File System (IPFS) and Ethereum Swarm, forming a closed IoT ecosystem run by blockchain where a number of distributed IoT devices can communicate and interact, thus forming a closed, controlled environment. A prototype has been deployed with three IoT handling units distributed over a wide geographical space in order to examine its feasibility, performance and costs. Initial results indicated that big IoT data retrieval and storage is feasible and interactivity is possible, provided that certain conditions of cost, speed and thorough put are met.

Keywords: IoT devices, blockchain, Ethereum, big data

Procedia PDF Downloads 152
2048 Assimilating Remote Sensing Data Into Crop Models: A Global Systematic Review

Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam

Abstract:

Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.

Keywords: crop models, remote sensing, data assimilation, crop yield estimation

Procedia PDF Downloads 134
2047 Assimilating Remote Sensing Data into Crop Models: A Global Systematic Review

Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam

Abstract:

Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.

Keywords: crop models, remote sensing, data assimilation, crop yield estimation

Procedia PDF Downloads 84
2046 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components

Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea

Abstract:

Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.

Keywords: assessment, part of speech, sentiment analysis, student feedback

Procedia PDF Downloads 148