Search results for: multiple subordinated modeling
1092 A Rare Case of Myometrial Ectopic
Authors: Madeleine Cox
Abstract:
Objective: Discussion of diagnosis and management options for myometrial ectopic pregnancy Case: A 30 yo G1P0 presented to the emergency department with vaginal bleeding for the last 4 days. She had a positive home urine pregnancy test, confirmed with a serum HCG. When she presented for an ultrasound, there was no intrauterine pregnancy, no evidence of adnexal pregnancy, however, the anterior myometrium of the uterus was noted to be markedly abnormal. When she presented to the emergency department of a busy tertiary hospital in Queensland, she had a small amount of vaginal bleeding, was anxious but well, observations normal. Repeat blood testes demonstrated a serum HCG of 9246 IU/L, haemoglobin of 143g/L. The patient had an interesting history of a right oophorectomy and open myomectomy in another country. A repeat ultrasound again showed an abnormality within the myometrium of the uterus, which was initially reported as concerning for an AVM, or potentially invasive gestational trophoblastic disease. An MRI was organised 2 days later, which demonstrated a intramural/subserosal irregularity in the right lateral body measuring 35x38x42mm with peripheral enhancement and central cystic components, favouring a myometrial ectopic most likely at the site of previous myomectomy. Alternative diagnosis of AVM, GTD were considered less likely. After discussion with the patient, IV methotrexate was administered as an in patient 4 days after her initial presentation to emergency. After this, her HCG fell to 1236 IU/L on day 6 post treatment. Weekly reviews showed stable ultrasound appearances with a steadily dropping HCG level. A repeat MRI was performed 3 weeks after methotrexate administration which confirmed involution of the myometrial ectopic, however, showed ongoing progression of vascularity surrounding the site. Despite resolution of HCG, the patient persisted to have ongoing bleeding associated with this and went to have uterine artery embolisation. Follow up ultrasound showed resolution of abnormal vascularity and negative HCG levels. Conclusion: Myometrial ectopic pregnancies are a rare occurrence and require a multidisciplinary approach to achieve timely management for these patients. This patient was in a very well resourced setting with excellent access to Interventional Radiology and specialist Radiologists who could work together with the Obstetrics, Gynaecology, and Maternal Fetal Medicine team to provide multiple options of management which preserved her fertility. This case has a very good outcome, with the patient being referred back to our service 12 months later with an early intrauterine pregnancy.Keywords: ectopic, pregnancy, miscarriage, gynaecology
Procedia PDF Downloads 1341091 Potential Impacts of Maternal Nutrition and Selection for Residual Feed Intake on Metabolism and Fertility Parameters in Angus Bulls
Authors: Aidin Foroutan, David S. Wishart, Leluo L. Guan, Carolyn Fitzsimmons
Abstract:
Maximizing efficiency and growth potential of beef cattle requires not only genetic selection (i.e. residual feed intake (RFI)) but also adequate nutrition throughout all stages of growth and development. Nutrient restriction during gestation has been shown to negatively affect post-natal growth and development as well as fertility of the offspring. This, when combined with RFI may affect progeny traits. This study aims to investigate the impact of selection for divergent genetic potential for RFI and maternal nutrition during early- to mid-gestation, on bull calf traits such as fertility and muscle development using multiple ‘omics’ approaches. Comparisons were made between High-diet vs. Low-diet and between High-RFI vs. Low-RFI animals. An epigenetics experiment on semen samples identified 891 biomarkers associated with growth and development. A gene expression study on Longissimus thoracis muscle, semimembranosus muscle, liver, and testis identified 4 genes associated with muscle development and immunity of which Myocyte enhancer factor 2A [MEF2A; induces myogenesis and control muscle differentiation] was the only differentially expressed gene identified in all four tissues. An initial metabolomics experiment on serum samples using nuclear magnetic resonance (NMR) identified 4 metabolite biomarkers related to energy and protein metabolism. Once all the biomarkers are identified, bioinformatics approaches will be used to create a database covering all the ‘omics’ data collected from this project. This database will be broadened by adding other information obtained from relevant literature reviews. Association analyses with these data sets will be performed to reveal key biological pathways affected by RFI and maternal nutrition. Through these association studies between the genome and metabolome, it is expected that candidate biomarker genes and metabolites for feed efficiency, fertility, and/or muscle development are identified. If these gene/metabolite biomarkers are validated in a larger animal population, they could potentially be used in breeding programs to select superior animals. It is also expected that this work will lead to the development of an online tool that could be used to predict future traits of interest in an animal given its measurable ‘omics’ traits.Keywords: biomarker, maternal nutrition, omics, residual feed intake
Procedia PDF Downloads 1921090 Impacts of Commercial Honeybees on Native Butterflies in High-Elevation Meadows in Utah, USA
Authors: Jacqueline Kunzelman, Val Anderson, Robert Johnson, Nicholas Anderson, Rebecca Bates
Abstract:
In an effort to protect honeybees from colony collapse disorder, beekeepers are filing for government permits to use natural lands as summer pasture for honeybees under the multiple-use management regime in the United States. Utilizing natural landscapes in high mountain ranges may help strengthen honeybee colonies, as this natural setting is generally void of chemical pollutants and pesticides that are found in agricultural and urban settings. However, the introduction of a competitive species could greatly impact the native species occupying these natural landscapes. While honeybees and butterflies have different life histories, behavior, and foraging strategies, they compete for the same nectar resources. Few, if any, studies have focused on the potential population effects of commercial honeybees on native butterfly abundance and diversity. This study attempts to observe this impact using a paired before-after control-impact (BACI) design. Over the course of two years, malaise trap samples were collected every week during the months of the flowering season in two similar areas separated by 11 kilometers. Each area contained nine malaise trap sites for replication. In the first year, samples were taken to analyze and establish trends within the pollinating communities. In the second year, honeybees were introduced to only one of the two areas, and a change in trends between the two areas was assessed. Contrary to the original hypothesis, the resulting observation was an overall significant increase in the mean butterfly abundance in the impact areas after honeybees were introduced, while control areas remained relatively stable. This overall increase in abundance over the season can be attributed to an increase in butterflies during the first and second periods of the data collection when populations were near their peak. Several potential theories are 1) Honeybees are deterring a natural predator/competitor of butterflies that previously limited population growth. 2) Honeybees are consuming resources regularly used by butterflies, which may extend the foraging time and consequent capture rates of butterflies. 3) Environmental factors such as number of rainy days were inconsistent between control and impact areas, biasing capture rates. This ongoing research will help determine the suitability of high mountain ranges for the summer pasturing of honeybees and the population impacts on many different pollinators.Keywords: butterfly, competition, honeybee, pollinator
Procedia PDF Downloads 1491089 Modeling Standpipe Pressure Using Multivariable Regression Analysis by Combining Drilling Parameters and a Herschel-Bulkley Model
Authors: Seydou Sinde
Abstract:
The aims of this paper are to formulate mathematical expressions that can be used to estimate the standpipe pressure (SPP). The developed formulas take into account the main factors that, directly or indirectly, affect the behavior of SPP values. Fluid rheology and well hydraulics are some of these essential factors. Mud Plastic viscosity, yield point, flow power, consistency index, flow rate, drillstring, and annular geometries are represented by the frictional pressure (Pf), which is one of the input independent parameters and is calculated, in this paper, using Herschel-Bulkley rheological model. Other input independent parameters include the rate of penetration (ROP), applied load or weight on the bit (WOB), bit revolutions per minute (RPM), bit torque (TRQ), and hole inclination and direction coupled in the hole curvature or dogleg (DL). The technique of repeating parameters and Buckingham PI theorem are used to reduce the number of the input independent parameters into the dimensionless revolutions per minute (RPMd), the dimensionless torque (TRQd), and the dogleg, which is already in the dimensionless form of radians. Multivariable linear and polynomial regression technique using PTC Mathcad Prime 4.0 is used to analyze and determine the exact relationships between the dependent parameter, which is SPP, and the remaining three dimensionless groups. Three models proved sufficiently satisfactory to estimate the standpipe pressure: multivariable linear regression model 1 containing three regression coefficients for vertical wells; multivariable linear regression model 2 containing four regression coefficients for deviated wells; and multivariable polynomial quadratic regression model containing six regression coefficients for both vertical and deviated wells. Although that the linear regression model 2 (with four coefficients) is relatively more complex and contains an additional term over the linear regression model 1 (with three coefficients), the former did not really add significant improvements to the later except for some minor values. Thus, the effect of the hole curvature or dogleg is insignificant and can be omitted from the input independent parameters without significant losses of accuracy. The polynomial quadratic regression model is considered the most accurate model due to its relatively higher accuracy for most of the cases. Data of nine wells from the Middle East were used to run the developed models with satisfactory results provided by all of them, even if the multivariable polynomial quadratic regression model gave the best and most accurate results. Development of these models is useful not only to monitor and predict, with accuracy, the values of SPP but also to early control and check for the integrity of the well hydraulics as well as to take the corrective actions should any unexpected problems appear, such as pipe washouts, jet plugging, excessive mud losses, fluid gains, kicks, etc.Keywords: standpipe, pressure, hydraulics, nondimensionalization, parameters, regression
Procedia PDF Downloads 841088 Intellectual Capital as Resource Based Business Strategy
Authors: Vidya Nimkar Tayade
Abstract:
Introduction: Intellectual capital of an organization is a key factor to success. Many companies invest a huge amount in their Research and development activities. Any innovation is helpful not only to that particular company but also to many other companies, industry and mankind as a whole. Companies undertake innovative changes for increasing their capital profitability and indirectly increase in pay packages of their employees. The quality of human capital can also improve due to such positive changes. Employees become more skilled and experienced due to such innovations and inventions. For increasing intangible capital, the author has referred to a couple of books and referred case studies to come to a conclusion. Different charts and tables are also referred to by the author. Case studies are more important because they are proven and established techniques. They enable students to apply theoretical concepts in real-world situations. It gives solutions to an open-ended problem with multiple potential solutions. There are three different strategies for undertaking intellectual capital increase. They are: Research push strategy/ Technology pushed approach, Market pull strategy/ approach and Open innovation strategy/approach. Research push strategy, In this strategy, research is undertaken and innovation is achieved on its own. After invention inventor company protects such invention and finds buyers for such invention. In this way, the invention is pushed into the market. In this method, research and development are undertaken first and the outcome of this research is commercialized. Market pull strategy, In this strategy, commercial opportunities are identified first and our research is concentrated in that particular area. For solving a particular problem, research is undertaken. It becomes easier to commercialize this type of invention. Because what is the problem is identified first and in that direction, research and development activities are carried on. Open invention strategy, In this type of research, more than one company enters into an agreement of research. The benefits of the outcome of this research will be shared by both companies. Internal and external ideas and technologies are involved. These ideas are coordinated and then they are commercialized. Due to globalization, people from the outside company are also invited to undertake research and development activities. Remuneration of employees of both the companies can increase and the benefit of commercialization of such invention is also shared by both the companies. Conclusion: In modern days, not only can tangible assets be commercialized, but also intangible assets can also be commercialized. The benefits of such an invention can be shared by more than one company. Competition can become more meaningful. Pay packages of employees can improve. It Is a need for time to adopt such strategies to benefit employees, competitors, stakeholders.Keywords: innovation, protection, management, commercialization
Procedia PDF Downloads 1691087 The Use of Artificial Intelligence in Digital Forensics and Incident Response in a Constrained Environment
Authors: Dipo Dunsin, Mohamed C. Ghanem, Karim Ouazzane
Abstract:
Digital investigators often have a hard time spotting evidence in digital information. It has become hard to determine which source of proof relates to a specific investigation. A growing concern is that the various processes, technology, and specific procedures used in the digital investigation are not keeping up with criminal developments. Therefore, criminals are taking advantage of these weaknesses to commit further crimes. In digital forensics investigations, artificial intelligence is invaluable in identifying crime. It has been observed that an algorithm based on artificial intelligence (AI) is highly effective in detecting risks, preventing criminal activity, and forecasting illegal activity. Providing objective data and conducting an assessment is the goal of digital forensics and digital investigation, which will assist in developing a plausible theory that can be presented as evidence in court. Researchers and other authorities have used the available data as evidence in court to convict a person. This research paper aims at developing a multiagent framework for digital investigations using specific intelligent software agents (ISA). The agents communicate to address particular tasks jointly and keep the same objectives in mind during each task. The rules and knowledge contained within each agent are dependent on the investigation type. A criminal investigation is classified quickly and efficiently using the case-based reasoning (CBR) technique. The MADIK is implemented using the Java Agent Development Framework and implemented using Eclipse, Postgres repository, and a rule engine for agent reasoning. The proposed framework was tested using the Lone Wolf image files and datasets. Experiments were conducted using various sets of ISA and VMs. There was a significant reduction in the time taken for the Hash Set Agent to execute. As a result of loading the agents, 5 percent of the time was lost, as the File Path Agent prescribed deleting 1,510, while the Timeline Agent found multiple executable files. In comparison, the integrity check carried out on the Lone Wolf image file using a digital forensic tool kit took approximately 48 minutes (2,880 ms), whereas the MADIK framework accomplished this in 16 minutes (960 ms). The framework is integrated with Python, allowing for further integration of other digital forensic tools, such as AccessData Forensic Toolkit (FTK), Wireshark, Volatility, and Scapy.Keywords: artificial intelligence, computer science, criminal investigation, digital forensics
Procedia PDF Downloads 2131086 Assessment of Biofuel Feedstock Production on Arkansas State Highway Transportation Department's Marginalized Lands
Authors: Ross J. Maestas
Abstract:
Biofuels are derived from multiple renewable bioenergy feedstocks including animal fats, wood, starchy grains, and oil seeds. Transportation agencies have considered growing the latter two on underutilized and nontraditional lands that they manage, such as in the Right of Way (ROW), abandoned weigh stations, and at maintenance yards. These crops provide the opportunity to generate revenue or supplement fuel once converted and offer a solution to increasing fuel costs and instability by creating a ‘home-grown’ alternative. Biofuels are non-toxic, biodegradable, and emit less Green House Gasses (GHG) than fossil fuels, therefore allowing agencies to meet sustainability goals and regulations. Furthermore, they enable land managers to achieve soil erosion and roadside aesthetic strategies. The research sought to understand if the cultivation of a biofuel feedstock within the Arkansas State Highway Transportation Department’s (AHTD) managed and marginalized lands is feasible by identifying potential land areas and crops. To determine potential plots the parcel data was downloaded from Arkansas’s GIS office. ArcGIS was used to query the data for all variations of the names of property owned by AHTD and a KML file was created that identifies the queried parcel data in Google Earth. Furthermore, biofuel refineries in the state were identified to optimize the harvest to transesterification process. Agricultural data was collected from federal and state agencies and universities to assess various oil seed crops suitable for conversion and suited to grow in Arkansas’s climate and ROW conditions. Research data determined that soybean is the best adapted biofuel feedstock for Arkansas with camelina and canola showing possibilities as well. Agriculture is Arkansas’s largest industry and soybean is grown in over half of the state’s counties. Successful cultivation of a feedstock in the aforementioned areas could potentially offer significant employment opportunity for which the skilled farmers already exist. Based on compiled data, AHTD manages 21,489 acres of marginalized land. The result of the feasibility assessment offer suggestions and guidance should AHTD decide to further investigate this type of initiative.Keywords: Arkansas highways, biofuels, renewable energy initiative, marginalized lands
Procedia PDF Downloads 3291085 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method
Authors: Dangut Maren David, Skaf Zakwan
Abstract:
Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.Keywords: prognostics, data-driven, imbalance classification, deep learning
Procedia PDF Downloads 1751084 How Fascism and Authoritarianism Are Expanding in the USA
Authors: Warner Woodworth
Abstract:
While the explosion of autocratic governments is growing globally, perhaps nowhere is it more obvious than in the United States since 2015. In that nation, democracy is increasingly caving to extreme Right-wing movements, especially after Donald Trump lost to Joe Biden in the 2020 election. Angered by that rejection, he and his support groups that foster extremism began an all-out assault on freedom, beginning with the attack on the US Capitol itself on January 6, 2021. Since then, following Trump’s two presidential impeachments, 34 felony convictions, 88 impending court cases by the Department of Justice, and crimes by some of his most ardent co-conspirators, the rule of law, traditional political values, and even the Constitution became threatened. Now, since his Nov. 5, 2024, campaign victory, the dark clouds of autocracies loom larger every day. To wit: Appointments to Trump’s cabinet are all extremists promising to eliminate major beneficiary citizen programs such as healthcare, civil rights, education, justice, and a massive move to drive millions of immigrants from the country. The political divide is at its highest extreme since the 1861 Civil War between North and South. Autocratization is manifest daily in fake news media, as well as traditional conspiracy organizations such as politically violent motorcycle gangs, the John Birch Society, Eagle Forum, and Anti-Constitutional Sheriffs and other law enforcement groups. Even worse is the expansion of violent groups such as the Proud Boys, Aryan Nations, Patriot Front, White Nationalists, Stormfront, Oath Keepers, Three Percenters, Ku Klux Klan, Moms for Liberty, American Nazi Party, Operation Homeland, Skinhead organizations, America First, Veterans on Patrol, hundreds of militia groups from coast to coast, and of course, hundreds more under the banner of Trump’s movement, ‘Make America Great Again.’ This paper will draw on the author’s decades of researching these groups and Trump's new authoritarian agenda. Qualitative data will include expert analysis from multiple academic disciplines as Americans, and the larger world seek to understand these dangerous U.S. trends and future prospects. The paper concludes by sharing the prospects of America’s future over the next four years, or longer if Trump’s vow to be a dictator is extended.Keywords: American authoritarianism, trump, fascism, conspiracies, extremism
Procedia PDF Downloads 121083 Connecting MRI Physics to Glioma Microenvironment: Comparing Simulated T2-Weighted MRI Models of Fixed and Expanding Extracellular Space
Authors: Pamela R. Jackson, Andrea Hawkins-Daarud, Cassandra R. Rickertsen, Kamala Clark-Swanson, Scott A. Whitmire, Kristin R. Swanson
Abstract:
Glioblastoma Multiforme (GBM), the most common primary brain tumor, often presents with hyperintensity on T2-weighted or T2-weighted fluid attenuated inversion recovery (T2/FLAIR) magnetic resonance imaging (MRI). This hyperintensity corresponds with vasogenic edema, however there are likely many infiltrating tumor cells within the hyperintensity as well. While MRIs do not directly indicate tumor cells, MRIs do reflect the microenvironmental water abnormalities caused by the presence of tumor cells and edema. The inherent heterogeneity and resulting MRI features of GBMs complicate assessing disease response. To understand how hyperintensity on T2/FLAIR MRI may correlate with edema in the extracellular space (ECS), a multi-compartmental MRI signal equation which takes into account tissue compartments and their associated volumes with input coming from a mathematical model of glioma growth that incorporates edema formation was explored. The reasonableness of two possible extracellular space schema was evaluated by varying the T2 of the edema compartment and calculating the possible resulting T2s in tumor and peripheral edema. In the mathematical model, gliomas were comprised of vasculature and three tumor cellular phenotypes: normoxic, hypoxic, and necrotic. Edema was characterized as fluid leaking from abnormal tumor vessels. Spatial maps of tumor cell density and edema for virtual tumors were simulated with different rates of proliferation and invasion and various ECS expansion schemes. These spatial maps were then passed into a multi-compartmental MRI signal model for generating simulated T2/FLAIR MR images. Individual compartments’ T2 values in the signal equation were either from literature or estimated and the T2 for edema specifically was varied over a wide range (200 ms – 9200 ms). T2 maps were calculated from simulated images. T2 values based on simulated images were evaluated for regions of interest (ROIs) in normal appearing white matter, tumor, and peripheral edema. The ROI T2 values were compared to T2 values reported in literature. The expanding scheme of extracellular space is had T2 values similar to the literature calculated values. The static scheme of extracellular space had a much lower T2 values and no matter what T2 was associated with edema, the intensities did not come close to literature values. Expanding the extracellular space is necessary to achieve simulated edema intensities commiserate with acquired MRIs.Keywords: extracellular space, glioblastoma multiforme, magnetic resonance imaging, mathematical modeling
Procedia PDF Downloads 2351082 Neurocognitive and Executive Function in Cocaine Addicted Females
Authors: Gwendolyn Royal-Smith
Abstract:
Cocaine ranks as one of the world’s most addictive and commonly abused stimulant drugs. Recent evidence indicates that the abuse of cocaine has risen so quickly among females that this group now accounts for about 40 percent of all users in the United States. Neuropsychological studies have demonstrated that specific neural activation patterns carry higher risks for neurocognitive and executive function in cocaine addicted females thereby increasing their vulnerability for poorer treatment outcomes and more frequent post-treatment relapse when compared to males. This study examined secondary data with a convenience sample of 164 cocaine addicted male and females to assess neurocognitive and executive function. The principal objective of this study was to assess whether individual performance on the Stroop Word Color Task is predictive of treatment success by gender. A second objective of the study evaluated whether individual performance employing neurocognitive measures including the Stroop Word-Color task, the Rey Auditory Verbal Learning Test (RALVT), the Iowa Gambling Task, the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale (FrSBE) test demonstrated differences in neurocognitive and executive function performance by gender. Logistic regression models were employed utilizing a covariate adjusted model application. Initial analyses of the Stroop Word color tasks indicated significant differences in the performance of males and females, with females experiencing more challenges in derived interference reaction time and associate recall ability. In early testing including the Rey Auditory Verbal Learning Test (RALVT), the number of advantageous vs disadvantageous cards from the Iowa Gambling Task, the number of perseverance errors from the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale, results were mixed with women scoring lower in multiple indicators in both neurocognitive and executive function.Keywords: cocaine addiction, gender, neuropsychology, neurocognitive, executive function
Procedia PDF Downloads 4021081 Bi-Component Particle Segregation Studies in a Spiral Concentrator Using Experimental and CFD Techniques
Authors: Prudhvinath Reddy Ankireddy, Narasimha Mangadoddy
Abstract:
Spiral concentrators are commonly used in various industries, including mineral and coal processing, to efficiently separate materials based on their density and size. In these concentrators, a mixture of solid particles and fluid (usually water) is introduced as feed at the top of a spiral channel. As the mixture flows down the spiral, centrifugal and gravitational forces act on the particles, causing them to stratify based on their density and size. Spiral flows exhibit complex fluid dynamics, and interactions involve multiple phases and components in the process. Understanding the behavior of these phases within the spiral concentrator is crucial for achieving efficient separation. An experimental bi-component particle interaction study is conducted in this work utilizing magnetite (heavier density) and silica (lighter density) with different proportions processed in the spiral concentrator. The observation separation reveals that denser particles accumulate towards the inner region of the spiral trough, while a significant concentration of lighter particles are found close to the outer edge. The 5th turn of the spiral trough is partitioned into five zones to achieve a comprehensive distribution analysis of bicomponent particle segregation. Samples are then gathered from these individual streams using an in-house sample collector, and subsequent analysis is conducted to assess component segregation. Along the trough, there was a decline in the concentration of coarser particles, accompanied by an increase in the concentration of lighter particles. The segregation pattern indicates that the heavier coarse component accumulates in the inner zone, whereas the lighter fine component collects in the outer zone. The middle zone primarily consists of heavier fine particles and lighter coarse particles. The zone-wise results reveal that there is a significant fraction of segregation occurs in inner and middle zones. Finer magnetite and silica particles predominantly accumulate in outer zones with the smallest fraction of segregation. Additionally, numerical simulations are also carried out using the computational fluid dynamics (CFD) model based on the volume of fluid (VOF) approach incorporating the RSM turbulence model. The discrete phase model (DPM) is employed for particle tracking, thereby understanding the particle segregation of magnetite and silica along the spiral trough.Keywords: spiral concentrator, bi-component particle segregation, computational fluid dynamics, discrete phase model
Procedia PDF Downloads 681080 GenAI Agents in Product Management: A Case Study from the Manufacturing Sector
Authors: Aron Witkowski, Andrzej Wodecki
Abstract:
Purpose: This study aims to explore the feasibility and effectiveness of utilizing Generative Artificial Intelligence (GenAI) agents as product managers within the manufacturing sector. It seeks to evaluate whether current GenAI capabilities can fulfill the complex requirements of product management and deliver comparable outcomes to human counterparts. Study Design/Methodology/Approach: This research involved the creation of a support application for product managers, utilizing high-quality sources on product management and generative AI technologies. The application was designed to assist in various aspects of product management tasks. To evaluate its effectiveness, a study was conducted involving 10 experienced product managers from the manufacturing sector. These professionals were tasked with using the application and providing feedback on the tool's responses to common questions and challenges they encounter in their daily work. The study employed a mixed-methods approach, combining quantitative assessments of the tool's performance with qualitative interviews to gather detailed insights into the user experience and perceived value of the application. Findings: The findings reveal that GenAI-based product management agents exhibit significant potential in handling routine tasks, data analysis, and predictive modeling. However, there are notable limitations in areas requiring nuanced decision-making, creativity, and complex stakeholder interactions. The case study demonstrates that while GenAI can augment human capabilities, it is not yet fully equipped to independently manage the holistic responsibilities of a product manager in the manufacturing sector. Originality/Value: This research provides an analysis of GenAI's role in product management within the manufacturing industry, contributing to the limited body of literature on the application of GenAI agents in this domain. It offers practical insights into the current capabilities and limitations of GenAI, helping organizations make informed decisions about integrating AI into their product management strategies. Implications for Academic and Practical Fields: For academia, the study suggests new avenues for research in AI-human collaboration and the development of advanced AI systems capable of higher-level managerial functions. Practically, it provides industry professionals with a nuanced understanding of how GenAI can be leveraged to enhance product management, guiding investments in AI technologies and training programs to bridge identified gaps.Keywords: generative artificial intelligence, GenAI, NPD, new product development, product management, manufacturing
Procedia PDF Downloads 521079 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention
Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang
Abstract:
Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles
Procedia PDF Downloads 2591078 Patterns of Private Transfers in the Philippines: An Analysis of Who Gives and Receives More
Authors: Rutcher M. Lacaza, Stephen Jun V. Villejo
Abstract:
This paper investigated the patterns of private transfers in the Philippines using the Family Income Expenditure Survey (FIES) 2009, conducted by the Philippine government’s National Statistics Office (NSO) every three years. The paper performed bivariate analysis on net transfers, using the identified determinants for a household to be either a net receiver or a net giver. The household characteristics considered are the following: age, sex, marital status, employment status and educational attainment of the household head, and also size, location, pre-transfer income and the number of employed members of the household. The variables net receiver and net giver are determined by computing the net transfer, subtracting total gifts from total receipts. The receipts are defined as the sum of cash received from abroad, cash received from domestic sources, total gifts received and inheritance. While gifts are defined as the sum of contributions and donations to church and other religious institutions, contributions and donations to other institutions, gifts and contributions to others, and gifts and assistance to private individuals outside the family. Both in kind and in cash transfers are considered in the analysis. It also performed a multiple regression analysis on transfers received and income including other household characteristics to examine the motives for giving transfers – whether altruism or exchanged. It also used the binary logistic regression to estimate the probability of being a net receiver or net giver given the household characteristics. The study revealed that receiving tends to be universal – both the non-poor and the poor benefit although the poor receive substantially less than the non-poor. Regardless of whether households are net receivers or net givers, households in the upper deciles generally give and receive more than those in the lower deciles. It also appears that private transfers may just flow within economic groups. Big amounts of transfers are, therefore, directed to the non-poor and the small amounts go to the poor. This was also supported by the increasing function of gross transfers received and the income of households – the poor receiving less and the non-poor receiving more. This is contrary to the theory that private transfers can help equalize the distribution of income. This suggested that private transfers in the Philippines are not altruistically motivated but exchanged. However, bilateral data on transfers received or given is needed to test this theory directly. The results showed that transfers are much needed by the poor and it is important to understand the nature of private transfers, to ensure that government transfer programs are properly designed and targeted so as to prevent the duplication of private safety nets already present among the non-poor.Keywords: private transfers, net receiver, net giver, altruism, exchanged.
Procedia PDF Downloads 2161077 Spontaneous Rupture of Splenic Artery Pseudoaneurysm; A Rare Presentation of Acute Abdominal Pain in the Emergency Department: Case Report
Authors: Zainab Elazab, Azhar Aziz
Abstract:
Background: Spontaneous Splenic artery pseudoaneurysm rupture is a rare condition which is potentially life threatening, if not detected and managed early. We report a case of abdominal pain with intraperitoneal free fluid, which turned out to be spontaneous rupture of a splenic artery pseudoaneurysm, and was treated with arterial embolization. Case presentation: A 28-year old, previously healthy male presented to the ED with a history of sudden onset upper abdominal pain and fainting attack. The patient denied any history of trauma or prior similar attacks. On examination, the patient had tachycardia and a low-normal BP (HR 110, BP 106/66) but his other vital signs were normal (Temp. 37.2, RR 18 and SpO2 100%). His abdomen was initially soft with mild tenderness in the upper region. Blood tests showed leukocytosis of 12.3 X109/L, Hb of 12.6 g/dl and lactic acid of 5.9 mmol/L. Ultrasound showed trace of free fluid in the perihepatic and perisplenic areas, and a splenic hypoechoic lesion. The patient remained stable; however, his abdomen became increasingly tender with guarding. We made a provisional diagnosis of a perforated viscus and the patient was started on IV fluids and IV antibiotics. An erect abdominal x-ray did not show any free air under the diaphragm so a CT abdomen was requested. Meanwhile, bedside ultrasound was repeated which showed increased amount of free fluid, suggesting intra-abdominal bleeding as the most probable etiology for the condition. His CT abdomen revealed a splenic injury with multiple lacerations, a focal intrasplenic enhancing area on venous phase scan (suggesting a pseudoaneurysm with associated splenic intraparenchymal, sub capsular and perisplenic hematomas). Free fluid in the subhepatic and intraperitoneal regions along the small bowel was also detected. Angiogram was done which confirmed a diagnosis of pseudoaneurysm of intrasplenic arterial branch, and angio-embolization was done to control the bleeding. The patient was later discharged in good condition with a surgery follow-up. Conclusion: Splenic artery pseudoaneurysm rupture is a rare cause of abdominal pain which should be considered in any case of abdominal pain with intraperitoneal bleeding. Early management is crucial as it carries a high mortality. Bedside ultrasound is a useful tool to help for early diagnosis of such cases.Keywords: abdominal pain, pseudo aneurysm, rupture, splenic artery
Procedia PDF Downloads 3101076 Using Arellano-Bover/Blundell-Bond Estimator in Dynamic Panel Data Analysis – Case of Finnish Housing Price Dynamics
Authors: Janne Engblom, Elias Oikarinen
Abstract:
A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models are dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Arellano-Bover/Blundell-Bond Generalized method of moments (GMM) estimator which is an extension of the Arellano-Bond model where past values and different transformations of past values of the potentially problematic independent variable are used as instruments together with other instrumental variables. The Arellano–Bover/Blundell–Bond estimator augments Arellano–Bond by making an additional assumption that first differences of instrument variables are uncorrelated with the fixed effects. This allows the introduction of more instruments and can dramatically improve efficiency. It builds a system of two equations—the original equation and the transformed one—and is also known as system GMM. In this study, Finnish housing price dynamics were examined empirically by using the Arellano–Bover/Blundell–Bond estimation technique together with ordinary OLS. The aim of the analysis was to provide a comparison between conventional fixed-effects panel data models and dynamic panel data models. The Arellano–Bover/Blundell–Bond estimator is suitable for this analysis for a number of reasons: It is a general estimator designed for situations with 1) a linear functional relationship; 2) one left-hand-side variable that is dynamic, depending on its own past realizations; 3) independent variables that are not strictly exogenous, meaning they are correlated with past and possibly current realizations of the error; 4) fixed individual effects; and 5) heteroskedasticity and autocorrelation within individuals but not across them. Based on data of 14 Finnish cities over 1988-2012 differences of short-run housing price dynamics estimates were considerable when different models and instrumenting were used. Especially, the use of different instrumental variables caused variation of model estimates together with their statistical significance. This was particularly clear when comparing estimates of OLS with different dynamic panel data models. Estimates provided by dynamic panel data models were more in line with theory of housing price dynamics.Keywords: dynamic model, fixed effects, panel data, price dynamics
Procedia PDF Downloads 15101075 Mobilizing Resources for Social Entrepreneurial Opportunity: A Framework of Engagement Strategy
Authors: Balram Bhushan
Abstract:
The emergence of social entrepreneurship challenges the strict categorization of not-for-profit, for-profit and hybrid organizations. Although the blurring of boundaries helps social entrepreneurial organizations (SEOs) make better use of emerging opportunities, it poses a significant challenge while mobilizing money from different sources. Additionally, for monetary resources, the legal framework of the host country may further complicate the issue by imposing strict accounting standards. Under such circumstances, the resource providers fail to recognize the suitable engagement strategy with the SEO of their choice. Based on the process of value creation and value capture, this paper develops a guiding framework for resource providers to design an appropriate mix of engagement with the identified SEOs. Essentially, social entrepreneurship creates value at the societal level, but value capture is a characteristic of an organization. Additionally, SEOs prefer value creation over value capture. The paper argued that the nature of the relationship between value creation and value capture determines the extent of blurred boundaries of the organization. Accordingly, synergistic, antagonistic and sequential relationships were proposed between value capture and value creation. When value creation is synergistically associated with value creation, the preferred nature of such action falls within the nature of for-profit organizations within the strictest legal framework. Banks offering micro-loans are good examples of this category. Opposite to this, the antagonist relationship between value creation and value capture, where value capture opportunities are sacrificed for value creation, dictates non-profit organizational structure. Examples of this category include non-government organizations and charity organizations. Finally, the sequential relationship between value capture opportunities is followed for value creation opportunities and guides the action closer to the hybrid structure. Examples of this category include organizations where a non-for-profit unit controls for-profit units of the organization either legally or structurally. As an SEO may attempt to utilize multiple entrepreneurial opportunities falling across any of the three relationships between value creation and value capture, the resource providers need to evaluate an appropriate mix of these relationships before designing their engagement strategies. The paper suggests three guiding principles for the engagement strategy. First, the extent of investment should be proportional to the synergistic relationship between value capture and value creation. Second, the subsidized support should be proportional to the sequential relationship. Finally, the funding (charity contribution) should be proportional to the antagonistic relationship. Finally, the resource providers are needed to keep a close watch on the evolving relationship between value creation and value capture for introducing appropriate changes in their engagement strategy.Keywords: social entrepreneurship, value creation, value capture, entrepreneurial opportunity
Procedia PDF Downloads 1331074 Data Clustering Algorithm Based on Multi-Objective Periodic Bacterial Foraging Optimization with Two Learning Archives
Authors: Chen Guo, Heng Tang, Ben Niu
Abstract:
Clustering splits objects into different groups based on similarity, making the objects have higher similarity in the same group and lower similarity in different groups. Thus, clustering can be treated as an optimization problem to maximize the intra-cluster similarity or inter-cluster dissimilarity. In real-world applications, the datasets often have some complex characteristics: sparse, overlap, high dimensionality, etc. When facing these datasets, simultaneously optimizing two or more objectives can obtain better clustering results than optimizing one objective. However, except for the objectives weighting methods, traditional clustering approaches have difficulty in solving multi-objective data clustering problems. Due to this, evolutionary multi-objective optimization algorithms are investigated by researchers to optimize multiple clustering objectives. In this paper, the Data Clustering algorithm based on Multi-objective Periodic Bacterial Foraging Optimization with two Learning Archives (DC-MPBFOLA) is proposed. Specifically, first, to reduce the high computing complexity of the original BFO, periodic BFO is employed as the basic algorithmic framework. Then transfer the periodic BFO into a multi-objective type. Second, two learning strategies are proposed based on the two learning archives to guide the bacterial swarm to move in a better direction. On the one hand, the global best is selected from the global learning archive according to the convergence index and diversity index. On the other hand, the personal best is selected from the personal learning archive according to the sum of weighted objectives. According to the aforementioned learning strategies, a chemotaxis operation is designed. Third, an elite learning strategy is designed to provide fresh power to the objects in two learning archives. When the objects in these two archives do not change for two consecutive times, randomly initializing one dimension of objects can prevent the proposed algorithm from falling into local optima. Fourth, to validate the performance of the proposed algorithm, DC-MPBFOLA is compared with four state-of-art evolutionary multi-objective optimization algorithms and one classical clustering algorithm on evaluation indexes of datasets. To further verify the effectiveness and feasibility of designed strategies in DC-MPBFOLA, variants of DC-MPBFOLA are also proposed. Experimental results demonstrate that DC-MPBFOLA outperforms its competitors regarding all evaluation indexes and clustering partitions. These results also indicate that the designed strategies positively influence the performance improvement of the original BFO.Keywords: data clustering, multi-objective optimization, bacterial foraging optimization, learning archives
Procedia PDF Downloads 1421073 Prevailing Clinical Evidence on Medicinal Hemp (Cannabis Sativa L.)
Authors: Siti Hajar Muhamad Rosli, Xin Yi Lim, Terence Yew Chin Tan, Muhammad nor Farhan Sa’At, Syazwani Sirdar Ali, Ami Fazlin Syed Mohamed
Abstract:
A growing interest on therapeutic benefits of hemp (Cannabis sativa subsp. sativa) is evident in the pharmaceutical market, attributed to its lower levels of psychoactive constituent delta-9-tetrahydronannabidiol (THC). Deemed as a legal and safer alternative to its counterpart marijuana, the use of medicinal hemp is highly debatable as current scientific evidence on the efficacy for clinical use is yet to be established This study was aimed to provide an overview of the current landscape of hemp research, through recent clinical findings specific to the pharmacological properties of the hemp plant and its derived compounds. A systematic search was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analysis-ScR (PRISMA) checklist on electronic databases (MEDLINE, OVID, Cochrane Library Central, and Clinicaltrials.gov) for articles published from 2009 to 2019. With predetermined inclusion criteria, all human trials with hemp intervention were included. A total of 18 human trials were identified, investigating therapeutic effects on the neuronal, gastrointestinal, musculoskeletal and immune system, with sample sizes ranging from one to 194 subjects. Three randomised controlled trials showed hempseed pills (in Traditional Chinese Medicine formulation MaZiRenWan) consumption significantly improved spontaneous bowel movement in functional constipation. The use of commercial cannabidiol (CBD) sourced from hemp suggested benefits in cannabis dependence, epilepsy, and anxiety disorders. However, there was insufficient evidence to suggest analgesic or anxiolytics effects of hemp being equivalent to marijuana. All clinical trials reviewed varied in terms of test item formulation and standardisation, which made it challenging to confirm overall efficacy for a specific disease or condition. Published efficacy data on hemp are still at a preliminary level, with limited high quality clinical evidence for any specific therapeutic indication. With multiple variants of this plant having different phytochemical and bioactive compounds, future empirical research should focus on uniformity in experimental designs to further strengthen the notion of using medicinal hemp.Keywords: cannabis, complementary medicine, hemp, herbal medicine.
Procedia PDF Downloads 1181072 The Influence of Destination Image on Tourists' Experience at Osun Osogbo World Heritage Site
Authors: Bola Adeleke, Kayode Ogunsusi
Abstract:
Heritage sites have evolved to preserve culture and heritage and also to educate and entertain tourists. Tourist travel decisions and behavior are influenced by destination image and value of the experience of tourists. Perceived value is one of the important tools for securing a competitive edge in tourism destinations. The model of Ritchie and Crouch distinguished 36 attributes of competitiveness which are classified into five factors which are quality of experience, touristic attractiveness, environment and infrastructure, entertainment/outdoor activities and cultural traditions. The study extended this model with a different grouping of the determinants of destination competitiveness. The theoretical framework used for this study assumes that apart from attractions already situated in the grove, satisfaction with destination common service, and entertainment and events, can all be used in creating a positive image for/and in attracting customers (destination selection) to visit Osun Sacred Osogbo Grove during and after annual celebrations. All these will impact positively on travel experience of customers as well as their spiritual fulfillment. Destination image has a direct impact on tourists’ satisfaction which consequently impacts on tourists’ likely future behavior on whether to revisit a cultural destination or not. The study investigated the variables responsible for destination image competitiveness of the Heritage Site; assessed the factors enhancing the destination image; and evaluated the perceived value realized by tourists from their cultural experience at the grove. A complete enumeration of tourists above 18 years of age who visited the Heritage Site within the month of March and April 2017 was taken. 240 respondents, therefore, were used for the study. The structured questionnaire with 5 Likert scales was administered. Five factors comprising 63 variables were used to determine the destination image competitiveness through principal component analysis, while multiple regressions were used to evaluate perceived value of tourists at the grove. Results revealed that 11 out of the 12 variables determining the destination image competitiveness were significant in attracting tourists to the grove. From the R-value, all factors predicted tourists’ value of experience strongly (R= 0.936). The percentage variance of customer value was explained by 87.70% of the variance of destination common service, entertainment and event satisfaction, travel environment satisfaction and spiritual satisfaction, with F-value being significant at 0.00. Factors with high alpha value contributed greatly to adding value to enhancing destination and tourists’ experience. 11 variables positively predicted tourist value with significance. Managers of Osun World Heritage Site should improve on variables critical to adding values to tourists’ experience.Keywords: competitiveness, destination image, Osun Osogbo world heritage site, tourists
Procedia PDF Downloads 1871071 Mathematical Model to Simulate Liquid Metal and Slag Accumulation, Drainage and Heat Transfer in Blast Furnace Hearth
Authors: Hemant Upadhyay, Tarun Kumar Kundu
Abstract:
It is utmost important for a blast furnace operator to understand the mechanisms governing the liquid flow, accumulation, drainage and heat transfer between various phases in blast furnace hearth for a stable and efficient blast furnace operation. Abnormal drainage behavior may lead to high liquid build up in the hearth. Operational problems such as pressurization, low wind intake, and lower material descent rates, normally be encountered if the liquid levels in the hearth exceed a critical limit when Hearth coke and Deadman start to float. Similarly, hot metal temperature is an important parameter to be controlled in the BF operation; it should be kept at an optimal level to obtain desired product quality and a stable BF performance. It is not possible to carry out any direct measurement of above due to the hostile conditions in the hearth with chemically aggressive hot liquids. The objective here is to develop a mathematical model to simulate the variation in hot metal / slag accumulation and temperature during the tapping of the blast furnace based on the computed drainage rate, production rate, mass balance, heat transfer between metal and slag, metal and solids, slag and solids as well as among the various zones of metal and slag itself. For modeling purpose, the BF hearth is considered as a pressurized vessel, filled with solid coke particles. Liquids trickle down in hearth from top and accumulate in voids between the coke particles which are assumed thermally saturated. A set of generic mass balance equations gives the amount of metal and slag intake in hearth. A small drainage (tap hole) is situated at the bottom of the hearth and flow rate of liquids from tap hole is computed taking in account the amount of both the phases accumulated their level in hearth, pressure from gases in the furnace and erosion behaviors of tap hole itself. Heat transfer equations provide the exchange of heat between various layers of liquid metal and slag, and heat loss to cooling system through refractories. Based on all that information a dynamic simulation is carried out which provides real time information of liquids accumulation in hearth before and during tapping, drainage rate and its variation, predicts critical event timings during tapping and expected tapping temperature of metal and slag on preset time intervals. The model is in use at JSPL, India BF-II and its output is regularly cross-checked with actual tapping data, which are in good agreement.Keywords: blast furnace, hearth, deadman, hotmetal
Procedia PDF Downloads 1861070 The Compliance of Safe-Work Behaviors among Undergraduate Nursing Students with Different Clinical Experiences
Authors: K. C. Wong, K. L. Siu, S. N. Ng, K. N. Yip, Y. Y. Yuen, K. W. Lee, K. W. Wong, C. C. Li, H. P. Lam
Abstract:
Background: Occupational injuries among nursing profession were found related to repeated bedside nursing care, such as transfer, lifting and manual handling patients from previous studies. Likewise, undergraduate nursing students are also exposed to potential safety hazard due to their similar work nature of registered nurses. Especially, those students who worked as Temporary undergraduate nursing students (TUNS) which is a part-time clinical job in hospitals in Hong Kong who mainly assisted in providing bedside cares appeared to at high risk of work-related injuries. Several studies suggested the level of compliance with safe work behaviors was highly associated with work-related injuries. Yet, it had been limitedly studied among nursing students. This study was conducted to assess and compare the compliance with safe work behaviors and the levels of awareness of different workplace safety issues between undergraduate nursing students with or without TUNS experiences. Methods: This is a quantitative descriptive study using convenience sampling. 362 undergraduate nursing students in Hong Kong were recruited. The Safe Work Behavior relating to Patient Handling (SWB-PH) was used to assess their compliance of safe-work behaviors and the level of awareness of different workplace safety issues. Results: The results showed that most of the participants (n=250, 69.1%) who were working as TUNS. However, students who worked as TUNS had significantly lower safe-work behaviors compliance (mean SWB-PH score = 3.64±0.54) than those did not worked as TUNS (SWB-PH score=4.21±0.54) (p<0.001). Particularly, these students had higher awareness to seek help and use assistive devices but lower awareness of workplace safety issues and awareness of proper work posture than students without TUNS experiences. The students with TUNS experiences had higher engagement in help-seeking behaviors might be possibly explained by their richer clinical experiences which served as a facilitator to seek help from clinical staff whenever necessary. Besides, these experienced students were more likely to bear risks for occupational injuries and worked alone when no available aid which might be related to the busy working environment, heightened work pressures and high expectations of TUNS. Eventually, students who worked as TUNS might target on completing the assigned tasks and gradually neglecting the occupational safety. Conclusion: The findings contributed to an understanding of the level of compliance with safe work behaviors among nursing students with different clinical experiences. The results might guide the modification of current safety protocols and the introduction of multiple clinical training courses to improve nursing student’s engagement in safe work behaviors.Keywords: Occupational safety, Safety compliance, Safe-work behavior, Nursing students
Procedia PDF Downloads 1451069 Stuttering Persistence in Children: Effectiveness of the Psicodizione Method in a Small Italian Cohort
Authors: Corinna Zeli, Silvia Calati, Marco Simeoni, Chiara Comastri
Abstract:
Developmental stuttering affects about 10% of preschool children; although the high percentage of natural recovery, a quarter of them will become an adult who stutters. An effective early intervention should help those children with high persistence risk for the future. The Psicodizione method for early stuttering is an Italian behavior indirect treatment for preschool children who stutter in which method parents act as good guides for communication, modeling their own fluency. In this study, we give a preliminary measure to evaluate the long-term effectiveness of Psicodizione method on stuttering preschool children with a high persistence risk. Among all Italian children treated with the Psicodizione method between 2018 and 2019, we selected 8 kids with at least 3 high risk persistence factors from the Illinois Prediction Criteria proposed by Yairi and Seery. The factors chosen for the selection were: one parent who stutters (1pt mother; 1.5pt father), male gender, ≥ 4 years old at onset; ≥ 12 months from onset of symptoms before treatment. For this study, the families were contacted after an average period of time of 14,7 months (range 3 - 26 months). Parental reports were gathered with a standard online questionnaire in order to obtain data reflecting fluency from a wide range of the children’s life situations. The minimum worthwhile outcome was set at "mild evidence" in a 5 point Likert scale (1 mild evidence- 5 high severity evidence). A second group of 6 children, among those treated with the Piscodizione method, was selected as high potential for spontaneous remission (low persistence risk). The children in this group had to fulfill all the following criteria: female gender, symptoms for less than 12 months (before treatment), age of onset <4 years old, none of the parents with persistent stuttering. At the time of this follow-up, the children were aged 6–9 years, with a mean of 15 months post-treatment. Among the children in the high persistence risk group, 2 (25%) hadn’t had stutter anymore, and 3 (37,5%) had mild stutter based on parental reports. In the low persistency risk group, the children were aged 4–6 years, with a mean of 14 months post-treatment, and 5 (84%) hadn’t had stutter anymore (for the past 16 months on average).62,5% of children at high risk of persistence after Psicodizione treatment showed mild evidence of stutter at most. 75% of parents confirmed a better fluency than before the treatment. The low persistence risk group seemed to be representative of spontaneous recovery. This study’s design could help to better evaluate the success of the proposed interventions for stuttering preschool children and provides a preliminary measure of the effectiveness of the Psicodizione method on high persistence risk children.Keywords: early treatment, fluency, preschool children, stuttering
Procedia PDF Downloads 2191068 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System
Authors: Nareshkumar Harale, B. B. Meshram
Abstract:
The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design
Procedia PDF Downloads 2281067 The Moderating Role of Test Anxiety in the Relationships Between Self-Efficacy, Engagement, and Academic Achievement in College Math Courses
Authors: Yuqing Zou, Chunrui Zou, Yichong Cao
Abstract:
Previous research has revealed relationships between self-efficacy (SE), engagement, and academic achievement among students in Western countries, but these relationships remain unknown in college math courses among college students in China. In addition, previous research has shown that test anxiety has a direct effect on engagement and academic achievement. However, how test anxiety affects the relationships between SE, engagement, and academic achievement is still unknown. In this study, the authors aimed to explore the mediating roles of behavioral engagement (BE), emotional engagement (EE), and cognitive engagement (CE) in the association between SE and academic achievement and the moderating role of test anxiety in college math courses. Our hypotheses are that the association between SE and academic achievement was mediated by engagement and that test anxiety played a moderating role in the association. To explore the research questions, the authors collected data through self-reported surveys among 147 students at a northwestern university in China. Self-reported surveys were used to collect data. The motivated strategies for learning questionnaire (MSLQ) (Pintrich, 1991), the metacognitive strategies questionnaire (Wolters, 2004), and the engagement versus disaffection with learning scale (Skinner et al., 2008) were used to assess SE, CE, and BE and EE, respectively. R software was used to analyze the data. The main analyses used were reliability and validity analysis of scales, descriptive statistics analysis of measured variables, correlation analysis, regression analysis, and structural equation modeling (SEM) analysis and moderated mediation analysis to look at the structural relationships between variables at the same time. The SEM analysis indicated that student SE was positively related to BE, EE, and CE and academic achievement. BE, EE, and CE were all positively associated with academic achievement. That is, as the authors expected, higher levels of SE led to higher levels of BE, EE, and CE, and greater academic achievement. Higher levels of BE, EE, and CE led to greater academic achievement. In addition, the moderated mediation analysis found that the path of SE to academic achievement in the model was as significant as expected, as was the moderating effect of test anxiety in the SE-Achievement association. Specifically, test anxiety was found to moderate the association between SE and BE, the association between SE and CE, and the association between EE and Achievement. The authors investigated possible mediating effects of BE, EE, and CE in the associations between SE and academic achievement, and all indirect effects were found to be significant. As for the magnitude of mediations, behavioral engagement was the most important mediator in the SE-Achievement association. This study has implications for college teachers, educators, and students in China regarding ways to promote academic achievement in college math courses, including increasing self-efficacy and engagement and lessening test anxiety toward math.Keywords: academic engagement, self-efficacy, test anxiety, academic achievement, college math courses, behavioral engagement, cognitive engagement, emotional engagement
Procedia PDF Downloads 941066 Impact of Probiotic and Yeast Extract Supplementation on Metabolic Parameters and Liver Functioning Index in Dairy Cattle During Transition
Authors: Ali Hajimohammadi, Mohammad Salahlou, Saeed Nazifi, Abbas Rowshan-Ghasrodashti, Ahmadreza Mirzaei
Abstract:
Several studies have shown that the liver is vulnerable to detrimental alterations characterized by functional and morphological changes during the transitional period. Probiotic supplementation is pivotal in enhancing metabolic functions by orchestrating a harmonious equilibrium within the intestinal microbial community, thereby averting gastrointestinal infections and elevating the overall well-being, growth, and performance of ruminants. This study was designed to evaluate the impact of probiotic and yeast cell wall extract (YCW) supplementation on metabolic and hepatic functions during the transitional period. A cohort of forty dry cows was randomly divided into four groups, namely the probiotic group (Pr) receiving a basal diet combined with a blend of Bacillus subtilis, Bacillus lechiniformis, Streptococcus Thermophilis, and Enterococcus faecium; the YCW group receiving a basal diet enriched with Saccharomyces cerevisiae; the probiotic and yeast cell wall extract group (P & Y) receiving a basal diet supplemented with a mixture of probiotic and yeast cell wall extract; and the control group adhering to the basal diet. The intervention was initiated 21 days before calving and persisted until 28 days post-calving, except for the control group. The study entailed the collection of blood samples at four sampling times, encompassing 21 days preceding calving, seven days before calving, seven days post-calving, and four weeks post-calving. Multiple biochemical parameters were assessed, including urea, blood urea nitrogen (BUN), Gamma-glutamyl transferase (GGT), total bilirubin (TB), albumin, total protein (TP), globulin, glucose, triglyceride, cholesterol, and liver functionality index. The results showed that the Pr group exhibited reduced average levels of urea, BUN, triglycerides, and GGT compared to the control group (P > 0.05). Similarly, the YCW group demonstrated lowered average BUN, TB, and cholesterol levels than the control group (P > 0.05). Notably, the liver functionality index exhibited a discernible trend towards elevation in the Pr group compared to the control group (P = 0.06) and the P & Y group (P = 0.007). In essence, the supplementation of YCW and probiotics is associated with advantageous effects on metabolic parameters and liver functionality.Keywords: dairy cattle, probiotic, yeast extract supplement, liver functionality index, transition period
Procedia PDF Downloads 61065 Influence of Microparticles in the Contact Region of Quartz Sand Grains: A Micro-Mechanical Experimental Study
Authors: Sathwik Sarvadevabhatla Kasyap, Kostas Senetakis
Abstract:
The mechanical behavior of geological materials is very complex, and this complexity is related to the discrete nature of soils and rocks. Characteristics of a material at the grain scale such as particle size and shape, surface roughness and morphology, and particle contact interface are critical to evaluate and better understand the behavior of discrete materials. This study investigates experimentally the micro-mechanical behavior of quartz sand grains with emphasis on the influence of the presence of microparticles in their contact region. The outputs of the study provide some fundamental insights on the contact mechanics behavior of artificially coated grains and can provide useful input parameters in the discrete element modeling (DEM) of soils. In nature, the contact interfaces between real soil grains are commonly observed with microparticles. This is usually the case of sand-silt and sand-clay mixtures, where the finer particles may create a coating on the surface of the coarser grains, altering in this way the micro-, and thus the macro-scale response of geological materials. In this study, the micro-mechanical behavior of Leighton Buzzard Sand (LBS) quartz grains, with interference of different microparticles at their contact interfaces is studied in the laboratory using an advanced custom-built inter-particle loading apparatus. Special techniques were adopted to develop the coating on the surfaces of the quartz sand grains so that to establish repeatability of the coating technique. The characterization of the microstructure of coated particles on their surfaces was based on element composition analyses, microscopic images, surface roughness measurements, and single particle crushing strength tests. The mechanical responses such as normal and tangential load – displacement behavior, tangential stiffness behavior, and normal contact behavior under cyclic loading were studied. The behavior of coated LBS particles is compared among different classes of them and with pure LBS (i.e. surface cleaned to remove any microparticles). The damage on the surface of the particles was analyzed using microscopic images. Extended displacements in both normal and tangential directions were observed for coated LBS particles due to the plastic nature of the coating material and this varied with the variation of the amount of coating. The tangential displacement required to reach steady state was delayed due to the presence of microparticles in the contact region of grains under shearing. Increased tangential loads and coefficient of friction were observed for the coated grains in comparison to the uncoated quartz grains.Keywords: contact interface, microparticles, micro-mechanical behavior, quartz sand
Procedia PDF Downloads 1921064 Neuropharmacological and Neurochemical Evaluation of Methanolic Extract of Elaeocarpus sphaericus (Gaertn.) Stem Bark by Using Multiple Behaviour Models of Mice
Authors: Jaspreet Kaur, Parminder Nain, Vipin Saini, Sumitra Dahiya
Abstract:
Elaeocarpus sphaericus has been traditionally used in the Indian traditional medicine system for the treatment of stress, anxiety, depression, palpitation, epilepsy, migraine and lack of concentration. The study was investigated to evaluate the neurological potential such as anxiolytic, muscle relaxant and sedative activity of methanolic extract of Elaeocarpus sphaericus stem bark (MEESSB) in mice. Preliminary phytochemical screening and acute oral toxicity of MEESSB was carried out by using standard methods. The anxiety was induced by employing Elevated Plus-Maze (EPM), Light and Dark Test (LDT), Open Field Test (OFT) and Social Interaction test (SIT). The motor coordination and sedative effect was also observed by using actophotometer, rota-rod apparatus and ketamine-induced sleeping time, respectively. Animals were treated with different doses of MEESSB (i.e.100, 200, 400 and 800 mg/kg orally) and diazepam (2 mg/kg i.p) for 21 days. Brain neurotransmitters like dopamine, serotonin and nor-epinephrine level were estimated by validated methods. Preliminary phytochemical analysis of the extract revealed the presence of tannins, phytosterols, steroids and alkaloids. In the acute toxicity studies, MEESSB was found to be non-toxic and with no mortality. In anxiolytic studies, the different doses of MEESSB showed a significant (p<0.05) effect on EPM and LDT. In OFT and SIT, a significant (p<0.05) increase in ambulation, rearing and social interaction time was observed. In the case of motor coordination activity, the MEESSB does not cause any significant effect on the latency to fall off from the rotarod bar as compared to the control group. Moreover, no significant effects on ketamine-induced sleep latency and total sleeping time induced by ketamine were observed. Results of neurotransmitter estimation revealed the increased concentration of dopamine, whereas the level of serotonin and nor-epinephrine was found to be decreased in the mice brain, with MEESSB at dose 800 mg/kg only. The study has validated the folkloric use of the plant as an anxiolytic in Indian traditional medicine while also suggesting potential usefulness in the treatment of stress and anxiety without causing sedation.Keywords: anxiolytic, behavior experiments, brain neurotransmitters, elaeocarpus sphaericus
Procedia PDF Downloads 1771063 Resilience of the American Agriculture Sector
Authors: Dipak Subedi, Anil Giri, Christine Whitt, Tia McDonald
Abstract:
This study aims to understand the impact of the pandemic on the overall economic well-being of the agricultural sector of the United States. The two key metrics used to examine the economic well-being are the bankruptcy rate of the U.S. farm operations and the operating profit margin. One of the primary reasons for farm operations (in the U.S.) to file for bankruptcy is continuous negative profit or a significant decrease in profit. The pandemic caused significant supply and demand shocks in the domestic market. Furthermore, the ongoing trade disruptions, especially with China, also impacted the prices of agricultural commodities. The significantly reduced demand for ethanol and closure of meat processing plants affected both livestock and crop producers. This study uses data from courts to examine the bankruptcy rate over time of U.S. farm operations. Preliminary results suggest there wasn’t an increase in farm operations filing for bankruptcy in 2020. This was most likely because of record high Government payments to producers in 2020. The Federal Government made direct payments of more than $45 billion in 2020. One commonly used economic metric to measure farm profitability is the operating profit margin (OPM). Operating profit margin measures profitability as a share of the total value of production and government payments. The Economic Research Service of the United States Department of Agriculture defines a farm operation to be in a) a high-risk zone if the OPM is less than 10 percent and b) a low-risk zone if the OPM is higher than 25 percent. For this study, OPM was calculated for small, medium, and large-scale farm operations using the data from the Agriculture Resource Management Survey (OPM). Results show that except for small family farms, the share of farms in high-risk zone decreased in 2020 compared to the most recent non-pandemic year, 2019. This was most likely due to higher commodity prices at the end of 2020 and record-high government payments. Further investigation suggests a lower share of smaller farm operations receiving lower average government payments resulting in a large share (over 70 percent) being in the critical zone. This study should be of interest to multiple stakeholders, including policymakers across the globe, as it shows the resilience of the U.S. agricultural system as well as (some) impact of government payments.Keywords: U.S. farm sector, COVID-19, operating profit margin, farm bankruptcy, ag finance, government payments to the farm sector
Procedia PDF Downloads 90