Search results for: power/ground noise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8995

Search results for: power/ground noise

1705 Avidity and IgE versus IgG and IgM in Diagnosis of Maternal Toxoplasmosis

Authors: Ghada A. Gamea, Nabila A. Yaseen, Ahmed A. Othman, Ahmed S. Tawfik

Abstract:

Infection with Toxoplasma gondii can cause serious complications in pregnant women, leading to abortion, stillbirth, and congenital anomalies in the fetus. Definitive diagnosis of T. gondii acute infection is therefore critical for the clinical management of a mother and her fetus. This study was conducted on 250 pregnant females in the first trimester who were inpatients or outpatients at Obstetrics and Gynaecology Department at Tanta University Hospital. Screening of the selected females was done for the detection of immunoglobulin (IgG and IgM), and all subjects were submitted to history taking through a questionnaire including personal data, risk factors for Toxoplasma, complaint and history of the present illness. Thirty-eight samples, including 18 IgM +ve and 20 IgM-ve cases were further investigated by the avidity and IgE ELISA tests. The seroprevalence of toxoplasmosis in pregnant women was (42.8%) based on the presence of IgG antibodies in their sera. Contact with cats and consumption of raw or undercooked meat are important risk factors that were associated with toxoplasmosis in pregnant women. By serology, it could be observed that in the IgM +ve group, only one case (5.6%) showed an acute pattern by using the avidity test, though 10 (55.6%) cases were found to be acute by the IgE assay. On the other hand, in the IgM –ve group, 3 (15%) showed low avidity, but none of them was positive by using the IgE assay. In conclusion, there is no single serological test that can be used to confirm whether T. gondii infection is recent or was acquired in the distant past. A panel of tests for detection of toxoplasmosis will certainly have higher discriminatory power than any test alone.

Keywords: diagnosis, serology, seroprevalence, toxoplasmosis

Procedia PDF Downloads 147
1704 Benefits of Hybrid Mix in Renewable Energy and Integration with E-Efficient Compositions

Authors: Ahmed Khalil

Abstract:

Increased energy demands around the world have led to the raise in power production which has resulted with more greenhouse gas emissions through fossil sources. These fossil sources and emissions cause deterioration in echo-system. Therefore, renewable energy sources come to the scene as echo-friendly and clean energy sourcing, whereas the electrical devices and energy needs decrease in the timeline. Each of these renewable energy sources contribute to the reduction of greenhouse gases and mitigate environmental deterioration. However, there are also some general and source-specific challenges, which influence the choice of the investors. The most prominent general challenge that effects end-users’ comfort and reliability is usually determined as the intermittence which derives from the diversions of source conditions, due to nature dynamics and uncontrolled periodic changes. Research and development professionals strive to mitigate intermittence challenge through material improvement for each renewable source whereas hybrid source mix stand as a solution. This solution prevails well, when single renewable technologies are upgraded further. On the other hand, integration of energy efficient devices and systems, raise the affirmative effect of such solution in means of less energy requirement in sustainability composition or scenario. This paper provides a glimpse on the advantages of composing renewable source mix versus single usage, with contribution of sampled e-efficient systems and devices. Accordingly it demonstrates the extended benefits, through planning and predictive estimation stages of Ahmadi Town Projects in Kuwait.

Keywords: e-efficient systems, hybrid source, intermittence challenge, renewable energy

Procedia PDF Downloads 130
1703 Transport of Reactive Carbo-Iron Composite Particles for in situ Groundwater Remediation Investigated at Laboratory and Field Scale

Authors: Sascha E. Oswald, Jan Busch

Abstract:

The in-situ dechlorination of contamination by chlorinated solvents in groundwater via zero-valent iron (nZVI) is potentially an efficient and prompt remediation method. A key requirement is that nZVI has to be introduced in the subsurface in a way that substantial quantities of the contaminants are actually brought into direct contact with the nZVI in the aquifer. Thus it could be a more flexible and precise alternative to permeable reactive barrier techniques using granular iron. However, nZVI are often limited by fast agglomeration and sedimentation in colloidal suspensions, even more so in the aquifer sediments, which is a handicap for the application to treat source zones or contaminant plumes. Colloid-supported nZVI show promising characteristics to overcome these limitations and Carbo-Iron Colloids is a newly developed composite material aiming for that. The nZVI is built onto finely ground activated carbon of about a micrometer diameter acting as a carrier for it. The Carbo-Iron Colloids are often suspended with a polyanionic stabilizer, and carboxymethyl cellulose is one with good properties for that. We have investigated the transport behavior of Carbo-Iron Colloids (CIC) on different scales and for different conditions to assess its mobility in aquifer sediments as a key property for making its application feasible. The transport properties were tested in one-dimensional laboratory columns, a two-dimensional model aquifer and also an injection experiment in the field. Those experiments were accompanied by non-invasive tomographic investigations of the transport and filtration processes of CIC suspensions. The laboratory experiments showed that a larger part of the CIC can travel at least scales of meters for favorable but realistic conditions. Partly this is even similar to a dissolved tracer. For less favorable conditions this can be much smaller and in all cases a particular fraction of the CIC injected is retained mainly shortly after entering the porous medium. As field experiment a horizontal flow field was established, between two wells with a distance of 5 meters, in a confined, shallow aquifer at a contaminated site in North German lowlands. First a tracer test was performed and a basic model was set up to define the design of the CIC injection experiment. Then CIC suspension was introduced into the aquifer at the injection well while the second well was pumped and samples taken there to observe the breakthrough of CIC. This was based on direct visual inspection and total particle and iron concentrations of water samples analyzed in the laboratory later. It could be concluded that at least 12% of the CIC amount injected reached the extraction well in due course, some of it traveling distances larger than 10 meters in the non-uniform dipole flow field. This demonstrated that these CIC particles have a substantial mobility for reaching larger volumes of a contaminated aquifer and for interacting there by their reactivity with dissolved contaminants in the pore space. Therefore they seem suited well for groundwater remediation by in-situ formation of reactive barriers for chlorinated solvent plumes or even source removal.

Keywords: carbo-iron colloids, chlorinated solvents, in-situ remediation, particle transport, plume treatment

Procedia PDF Downloads 242
1702 Biogas as a Renewable Energy Fuel: A Review of Biogas Upgrading, Utilization and Storage

Authors: Imran Ullah Khana, Mohd Hafiz Dzarfan Othmanb, Haslenda Hashima, Takeshi Matsuurad, A. F. Ismailb, M. Rezaei-DashtArzhandib, I. Wan Azelee

Abstract:

Biogas upgrading is a widely studied and discussed topic, and its utilization as a natural gas substitute has gained significant attention in recent years. The production of biomethane provides a versatile application in both heat and power generation and as a vehicular fuel. This paper systematically reviews the state of the art of biogas upgrading technologies with upgrading efficiency, methane (CH4) loss, environmental effect, development and commercialization, and challenges in terms of energy consumption and economic assessment. The market situation for biogas upgrading has changed rapidly in recent years, giving membrane separation a significant market share with traditional biogas upgrading technologies. In addition, the potential utilization of biogas, efficient conversion into bio-compressed natural gas (bio-CNG), and storage systems are investigated in depth. Two storing systems for bio-CNG at filling stations, namely buffer and cascade storage systems are used. The best storage system should be selected on the basis of the advantages of both systems. Also, the fuel economy and mass emissions for bio-CNG and CNG-filled vehicles are studied. There is the same fuel economy and less carbon dioxide (CO2) emission for bio-CNG. Based on the results of comparisons between the technical features of upgrading technologies, various specific requirements for biogas utilization and the relevant investment, and operating and maintenance costs, future recommendations are made for biogas upgrading.

Keywords: biogas upgrading, cost, utilization, bio-CNG, storage, energy

Procedia PDF Downloads 43
1701 Co-Gasification Process for Green and Blue Hydrogen Production: Innovative Process Development, Economic Analysis, and Exergy Assessment

Authors: Yousaf Ayub

Abstract:

A co-gasification process, which involves the utilization of both biomass and plastic waste, has been developed to enable the production of blue and green hydrogen. To support this endeavor, an Aspen Plus simulation model has been meticulously created, and sustainability analysis is being conducted, focusing on economic viability, energy efficiency, advanced exergy considerations, and exergoeconomics evaluations. In terms of economic analysis, the process has demonstrated strong economic sustainability, as evidenced by an internal rate of return (IRR) of 8% at a process efficiency level of 70%. At present, the process has the potential to generate approximately 1100 kWh of electric power, with any excess electricity, beyond meeting the process requirements, capable of being harnessed for green hydrogen production via an alkaline electrolysis cell (AEC). This surplus electricity translates to a potential daily hydrogen production of around 200 kg. The exergy analysis of the model highlights that the gasifier component exhibits the lowest exergy efficiency, resulting in the highest energy losses, amounting to approximately 40%. Additionally, advanced exergy analysis findings pinpoint the gasifier as the primary source of exergy destruction, totaling around 9000 kW, with associated exergoeconomics costs amounting to 6500 $/h. Consequently, improving the gasifier's performance is a critical focal point for enhancing the overall sustainability of the process, encompassing energy, exergy, and economic considerations.

Keywords: blue hydrogen, green hydrogen, co-gasification, waste valorization, exergy analysis

Procedia PDF Downloads 53
1700 Improvement of Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation

Procedia PDF Downloads 419
1699 Improvement of Heat Pipes Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 359
1698 Statistical Design of Synthetic VP X-bar Control Chat Using Markov Chain Approach

Authors: Ali Akbar Heydari

Abstract:

Control charts are an important tool of statistical quality control. Thesecharts are used to detect and eliminate unwanted special causes of variation that occurred during aperiod of time. The design and operation of control charts require the determination of three design parameters: the sample size (n), the sampling interval (h), and the width coefficient of control limits (k). Thevariable parameters (VP) x-bar controlchart is the x-barchart in which all the design parameters vary between twovalues. These values are a function of the most recent process information. In fact, in the VP x-bar chart, the position of each sample point on the chart establishes the size of the next sample and the timeof its sampling. The synthetic x-barcontrol chartwhich integrates the x-bar chart and the conforming run length (CRL) chart, provides significant improvement in terms of detection power over the basic x-bar chart for all levels of mean shifts. In this paper, we introduce the syntheticVP x-bar control chart for monitoring changes in the process mean. To determine the design parameters, we used a statistical design based on the minimum out of control average run length (ARL) criteria. The optimal chart parameters of the proposed chart are obtained using the Markov chain approach. A numerical example is also done to show the performance of the proposed chart and comparing it with the other control charts. The results show that our proposed syntheticVP x-bar controlchart perform better than the synthetic x-bar controlchart for all shift parameter values. Also, the syntheticVP x-bar controlchart perform better than the VP x-bar control chart for the moderate or large shift parameter values.

Keywords: control chart, markov chain approach, statistical design, synthetic, variable parameter

Procedia PDF Downloads 152
1697 Improving Radiation Efficiency Using Metamaterial in Pyramidal Horn Antenna

Authors: Amit Kumar Baghel, Sisir Kumar Nayak

Abstract:

The proposed metamaterial design help to increase the radiation efficiency at 2.9 GHz by reducing the side and back lobes by making the phase difference of the waves emerging from the phase center of the horn antenna same after passing through metamaterial array. The unit cell of the metamaterial is having concentric ring structure made of copper of 0.035 mm thickness on both sides of FR4 sheet. The inner ring diameter is kept as 3 mm, and the outer ring diameters are changed according to the path and tramission phase difference of the unit cell from the phase center of the antenna in both the horizontal and vertical direction, i.e., in x- and y-axis. In this case, the ring radius varies from 3.19 mm to 6.99 mm with the respective S21 phase difference of -62.25° to -124.64°. The total phase difference can be calculated by adding the path difference of the respective unit cell in the array to the phase difference of S21. Taking one of the unit cell as the reference, the total phase difference between the reference unit cell and other cells must be integer multiple of 360°. The variation of transmission coefficient S21 with the ring radius is greater than -6 dB. The array having 5 x 5 unit cell is kept inside the pyramidal horn antenna (L X B X H = 295.451 x 384.233 x 298.66 mm3) at a distance of 36.68 mm from the waveguide throat. There is an improvement in side lobe level in E-plane by 14.6 dB when the array is used. The front to back lobe ration is increased by 1 dB by using the array. The proposed antenna with metamaterial array can be used in beam shaping for wireless power transfer applications.

Keywords: metamaterial, side lobe level, front to back ratio, beam forming

Procedia PDF Downloads 259
1696 Estimation of Energy Efficiency of Blue Hydrogen Production Onboard of Ships

Authors: Li Chin Law, Epaminondas Mastorakos, Mohd Roslee Othman, Antonis Trakakis

Abstract:

The paper introduces an alternative concept of carbon capture for shipping by using pre-combustion carbon capture technology (Pre-CCS), which was proven to be less energy intensive than post-combustion carbon capture from the engine exhaust. Energy assessment on amine-based post-combustion CCS on LNG-fuelled ships showed that the energy efficiency of CCS ships reduced from 48% to 36.6%. Then, an energy assessment was carried out to compare the power and heat requirements of the most used hydrogen production methods and carbon capture technologies. Steam methane reformer (SMR) was found to be 20% more energy efficient and achieved a higher methane conversion than auto thermal reaction and methane decomposition. Next, pressure swing adsorber (PSA) has shown a lower energy requirement than membrane separation, cryogenic separation, and amine absorption in pre-combustion carbon capture. Hence, an integrated system combining SMR and PSA (SMR-PSA) with waste heat integration (WHR) was proposed. This optimized SMR-based integrated system has achieved 65% of CO₂ reduction with less than 7-percentage point of energy penalty (41.7% of energy efficiency). Further integration of post-combustion CCS with the SMR-PSA integrated system improved carbon capture rate to 86.3% with 9-percentage points of energy penalty (39% energy efficiency). The proposed system was shown to be able to meet the carbon reduction targets set by International Maritime Organization (IMO) with certain energy penalties.

Keywords: shipping, decarbonisation, alternative fuels, low carbon, hydrogen, carbon capture

Procedia PDF Downloads 69
1695 The Mayan Calendar: An Ideology Laden and Worldview Changing Discourse

Authors: John Rosswell Cummings III

Abstract:

This research examines the discourse ancient Maya ritual practice manifest and maintained through language in a contemporary society as led by a daykeeper— a Maya spiritual leader— with the objective of discovering if the Maya Calendar has an influence on worldview. Through an ethnography of communication and discursive analysis framework, this research examines the discourse of and around the Maya calendar through original research. Data collected includes the ceremonial performance of the Tzolkin ritual, a ritual that takes place every 13 days to ceremonially welcome one of the 20 Universal Forces. During the ceremony, participants supplicate, sacrifice, and venerate. This ritual, based off the Tzolkin cycle in the Mayan Calendar, contains strong, culture-binding ideologies. This research performs a close analysis of the 20 energies of the Tzolkin and their glyphs so as to gain a better understanding of current ideologies in Maya communities. Through a linguistic relativity frame of reference, including both the strong and weak versions, the 20 Universal Forces are shown to influence ways of life. This research argues that it is not just the native language, but the discourses native to the community as held through the calendar, influence thought and have the potential to offer an alternate worldview, thus shaping the cultural narrative which in return influences identity of the community. Research of this kind, on calendric systems and linguistic relativity, has the power to make great discoveries about the societies of the world and their worldviews.

Keywords: anthropological linguistics, discourse analysis, cultural studies, sociolinguistics

Procedia PDF Downloads 146
1694 Measurement and Research of Green Office Building Operational Performance in China: A Case Study of a Green Office Building in Zhejiang Province

Authors: Xuechen Gui, Jian Ge, Senmiao Li

Abstract:

In recent years, green buildings in China have been developing rapidly and have developed into a wide variety of types, of which office building is a very important part. In many green office buildings, the energy consumption of building operation is high; the indoor environment quality needs to be improved, and the level of occupants’ satisfaction is low. This paper conducted a one-year measurement of operational performance of a green office building in Zhejiang Province. The measurement includes energy consumption of the building's one-year operation, the quality of the indoor environment and occupants’ satisfaction in different seasons. The energy consumption is collected from the power bureau. The quality of the indoor environment have been measured at different measuring points including offices, meeting rooms and reception for the whole year. The satisfaction of occupants are obtained from questionnaires. The results are compared with given standards and goals and the reasons why occupants are dissatisfied with the indoor environment are analyzed. Regarding energy consumption, the energy consumption of the building operational performance is much higher than the standard. Regarding the indoor environment, the temperature and humidity meet the standard for most of the time, but fine particulate matter (PM2.5) concentration is pretty high. Regarding occupants satisfaction, occupants have a higher expectation for indoor air quality even when the indoor air quality is well and occupants prefer a relatively humid environment. However the overall satisfaction is more than 80%, which indicates that occupants have a higher tolerability.

Keywords: green office building, energy consumption, indoor environment quality, occupants satisfaction, operational performance

Procedia PDF Downloads 171
1693 Studies on the Bioactivity of Different Solvents Extracts of Selected Marine Macroalgae against Fish Pathogens

Authors: Mary Ghobrial, Sahar Wefky

Abstract:

Marine macroalgae have proven to be rich source of bioactive compounds with biomedical potential, not only for human but also for veterinary medicine. Emergence of microbial disease in aquaculture industries implies serious loses. Usage of commercial antibiotics for fish disease treatment produces undesirable side effects. Marine organisms are a rich source of structurally novel biologically active metabolites. Competition for space and nutrients led to the evolution of antimicrobial defense strategies in the aquatic environment. The interest in marine organisms as a potential and promising source of pharmaceutical agents has increased in the last years. Many bioactive and pharmacologically active substances have been isolated from microalgae. Compounds with antibacterial, antifungal and antiviral activities have been also detected in green, brown and red algae. Selected species of marine benthic algae belonging to the Phaeophyta and Rhodophyta, collected from different coastal areas of Alexandria (Egypt), were investigated for their antibacterial and antifungal, activities. Macroalgae samples were collected during low tide from the Alexandria Mediterranean coast. Samples were air dried under shade at room temperature. The dry algae were ground, using electric mixer grinder. They were soaked in 10 ml of each of the solvents acetone, ethanol, methanol and hexane. Antimicrobial activity was evaluated using well-cut diffusion technique In vitro screening of organic solvent extracts from the marine macroalgae Laurencia pinnatifida, Pterocladia capillaceae, Stepopodium zonale, Halopteris scoparia and Sargassum hystrix, showed specific activity in inhibiting the growth of five virulent strains of bacteria pathogenic to fish Pseudomonas fluorescens, Aeromonas hydrophila, Vibrio anguillarum, V. tandara, Escherichia coli and two fungi Aspergillus flavus and A. niger. Results showed that, acetone and ethanol extracts of all test macroalgae exhibited antibacterial activity, while acetone extract of the brown Sargassum hystrix displayed the highest antifungal activity. The extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria rather than fungi tested. The gas liquid chromatography coupled with mass spectrometry detection technique allows good qualitative and quantitative analysis of the fractionated extracts with high sensitivity to the smaller amounts of components. Results indicated that, the main common component in the acetone extracts of L. pinnatifida and P. capillacea is 4-hydroxy-4-methyl2-pentanone representing 64.38 and 58.60%. Thus, the extracts derived from the red macroalgae were more efficient than those obtained from the brown macroalgae in combating bacterial pathogens rather than pathogenic fungi. The most preferred species over all was the red Laurencia pinnatifida. In conclusion, the present study provides the potential of red and brown macroalgae extracts for development of anti-pathogenic agents for use in fish aquaculture.

Keywords: bacteria, fungi, extracts, solvents

Procedia PDF Downloads 432
1692 Rational Bureaucracy and E-Government: A Philosophical Study of Universality of E-Government

Authors: Akbar Jamali

Abstract:

Hegel is the first great political philosopher who specifically contemplates on bureaucracy. For Hegel bureaucracy is the function of the state. Since state, essentially is a rational organization, its function; namely, bureaucracy must be rational. Since, what is rational is universal; Hegel had to explain how the bureaucracy could be understood as universal. Hegel discusses bureaucracy in his treatment of ‘executive power’. He analyses modern bureaucracy as a form of political organization, its constituent members, and its relation to the social environment. Therefore, the essence of bureaucracy in Hegel’s philosophy is the implementation of law and rules. Hegel argues that unlike the other social classes that are particular because they look for their own private interest, bureaucracy as a class is a ‘universal’ because their orientation is the interest of the state. State for Hegel is essentially rational and universal. It is the actualization of ‘objective Spirit’. Marx criticizes Hegel’s argument on the universality of state and bureaucracy. For Marx state is equal to bureaucracy, it constitutes a social class that based on the interest of bourgeois class that dominates the society and exploits proletarian class. Therefore, the main disagreement between these political philosophers is: whether the state (bureaucracy) is universal or particular. Growing e-government in modern state as an important aspect of development leads us to contemplate on the particularity and universality of e-government. In this article, we will argue that e-government essentially is universal. E-government, in itself, is impartial; therefore, it cannot be particular. The development of e-government eliminates many side effects of the private, personal or particular interest of the individuals who work as bureaucracy. Finally, we will argue that more a state is developed more it is universal. Therefore, development of e-government makes the state a more universal and affects the modern philosophical debate on the particularity or universality of bureaucracy and state.

Keywords: particularity, universality, rational bureaucracy, impartiality

Procedia PDF Downloads 238
1691 Comparative Study of Heat Transfer Capacity Limits of Heat Pipes

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved Heat pipe, heat pipe limits

Procedia PDF Downloads 415
1690 Supply Chain Technology Adoption in Textile and Apparel Industry

Authors: Zulkifli Mohamed Udin, Lee Khai-Loon, Mohamad Ghozali Hassan

Abstract:

In today’s dynamic business environment, the competition is no longer between firms, but between supply chains to gain competitive advantages. The global manufacturing sector, especially the textile and apparel industry are essentially known for its supply chain dependency. The delicate nature of its business leads to emphasis on the smooth movement of upstream and downstream supply chain. The nature of this industry, however, result in huge dynamic flow of physical, information, and financial. The dynamic management of these flows requires adoption of supply chain technologies. Even though technology is widely implemented and studied in many industries by researchers, adoption of supply chain technologies in Malaysian textile and apparel industry is limited. There is relatively a handful academic study conducted on recent developments in Malaysian textile and apparel industry and supply chain technology adoption indicate a major gap in supply chain performance studies. Considering the importance given to Third Industrial Master Plan by the government Malaysia, it is necessary to understand the power of supply chain technology adoptions. This study aims to investigate supply chain technology adoption by textile and apparel companies in Malaysia. The result highlighted the benefits perceived by textile and apparel companies from supply chain technologies. The indifference of small and medium enterprises to operation management acts as a major inhibitor to the adoption of supply chain technologies, since they have resource limitations. This study could be used as a precursor for further detailed studies on this issue.

Keywords: supply chain technology adoption, supply chain performance, textile, apparel industry

Procedia PDF Downloads 484
1689 The Cleaning Equipment to Prevents Dust Diffusion of Bus Air Filters

Authors: Jiraphorn Satechan, Thanaphon Khamthieng, Warunee Phanwong

Abstract:

This action research aimed at designing and developing the cleaning equipment to preventing dust diffusion of bus air filter. Quantitative and qualitative data collection methods were used to conduct data from October 1st, 2018 to September 30th, 2019. All of participants were male (100.0%) with aged 40- 49 years and 57.15%, of them finish bachelor degree. 71.43% of them was a driver and 57.15% of them had the working experience between 10 and 15 years. Research revealed that the participants assessed the quality of the bus air filter cleaning equipment for preventing dust diffusion at a moderate level (σ= 0.29), and 71.43 of them also suggested the development methods in order to improve the quality of bus air filters cleaning equipment as follows: 1) to install the circuit breaker for cutting the electricity and controlling the on-off of the equipment and to change the motor to the DC system, 2) should install the display monitor for wind pressure and electricity system as well as to install the air pressure gauge, 3) should install the tank lid lock for preventing air leakage and dust diffusion by increasing the blowing force and sucking power, 4) to stabilize the holding points for preventing the filter shaking while rotating and blowing for cleaning and to reduce the rotation speed in order to allow the filters to move slowly for the air system to blow for cleaning more thoroughly, 5) the amount of dust should be measured before and after cleaning and should be designed the cleaning equipment to be able to clean with a variety of filters, and sizes. Moreover, the light-weight materials should be used to build the cleaning equipment and the wheels should be installed at the base of the equipment in order to make it easier to move.

Keywords: Cleaning Equipment, Bus Air Filters, Preventing Dust Diffusion, Innovation

Procedia PDF Downloads 100
1688 Large Scale Method to Assess the Seismic Vulnerability of Heritage Buidings: Modal Updating of Numerical Models and Vulnerability Curves

Authors: Claire Limoge Schraen, Philippe Gueguen, Cedric Giry, Cedric Desprez, Frédéric Ragueneau

Abstract:

Mediterranean area is characterized by numerous monumental or vernacular masonry structures illustrating old ways of build and live. Those precious buildings are often poorly documented, present complex shapes and loadings, and are protected by the States, leading to legal constraints. This area also presents a moderate to high seismic activity. Even moderate earthquakes can be magnified by local site effects and cause collapse or significant damage. Moreover the structural resistance of masonry buildings, especially when less famous or located in rural zones has been generally lowered by many factors: poor maintenance, unsuitable restoration, ambient pollution, previous earthquakes. Recent earthquakes prove that any damage to these architectural witnesses to our past is irreversible, leading to the necessity of acting preventively. This means providing preventive assessments for hundreds of structures with no or few documents. In this context we want to propose a general method, based on hierarchized numerical models, to provide preliminary structural diagnoses at a regional scale, indicating whether more precise investigations and models are necessary for each building. To this aim, we adapt different tools, being developed such as photogrammetry or to be created such as a preprocessor starting from pictures to build meshes for a FEM software, in order to allow dynamic studies of the buildings of the panel. We made an inventory of 198 baroque chapels and churches situated in the French Alps. Then their structural characteristics have been determined thanks field surveys and the MicMac photogrammetric software. Using structural criteria, we determined eight types of churches and seven types for chapels. We studied their dynamical behavior thanks to CAST3M, using EC8 spectrum and accelerogramms of the studied zone. This allowed us quantifying the effect of the needed simplifications in the most sensitive zones and choosing the most effective ones. We also proposed threshold criteria based on the observed damages visible in the in situ surveys, old pictures and Italian code. They are relevant in linear models. To validate the structural types, we made a vibratory measures campaign using vibratory ambient noise and velocimeters. It also allowed us validating this method on old masonry and identifying the modal characteristics of 20 churches. Then we proceeded to a dynamic identification between numerical and experimental modes. So we updated the linear models thanks to material and geometrical parameters, often unknown because of the complexity of the structures and materials. The numerically optimized values have been verified thanks to the measures we made on the masonry components in situ and in laboratory. We are now working on non-linear models redistributing the strains. So we validate the damage threshold criteria which we use to compute the vulnerability curves of each defined structural type. Our actual results show a good correlation between experimental and numerical data, validating the final modeling simplifications and the global method. We now plan to use non-linear analysis in the critical zones in order to test reinforcement solutions.

Keywords: heritage structures, masonry numerical modeling, seismic vulnerability assessment, vibratory measure

Procedia PDF Downloads 489
1687 Carbon Capture and Storage in Geological Formation, its Legal, Regulatory Imperatives and Opportunities in India

Authors: Kalbende Krunal Ramesh

Abstract:

The Carbon Capture and Storage Technology (CCS) provides a veritable platform to bridge the gap between the seemingly irreconcilable twin global challenges of ensuring a secure, reliable and diversified energy supply and mitigating climate change by reducing atmospheric emissions of carbon dioxide. Making its proper regulatory policy and making it flexible for the government and private company by law to regulate, also exploring the opportunity in this sector is the main aim of this paper. India's total annual emissions was 1725 Mt CO2 in 2011, which comprises of 6% of total global emission. It is very important to control the greenhouse gas emission for the environment protection. This paper discusses the various regulatory policy and technology adopted by some of the countries for successful using CCS technology. The brief geology of sedimentary basins in India is studied, ranging from the category I to category IV and deep water and potential for mature technology in CCS is reviewed. Areas not suitable for CO2 storage using presently mature technologies were over viewed. CSS and Clean development mechanism was developed for India, considering the various aspects from research and development, project appraisal, approval and validation, implementation, monitoring and verification, carbon credit issued, cap and trade system and its storage potential. The opportunities in oil and gas operations, power sector, transport sector is discussed briefly.

Keywords: carbon credit issued, cap and trade system, carbon capture and storage technology, greenhouse gas

Procedia PDF Downloads 427
1686 Mathematical Modelling of Ultrasound Pre-Treatment in Microwave Dried Strawberry (Fragaria L.) Slices

Authors: Hilal Uslu, Salih Eroglu, Betul Ozkan, Ozcan Bulantekin, Alper Kuscu

Abstract:

In this study, the strawberry (Fragaria L.) fruits, which were pretreated with ultrasound (US), were worked on in the microwave by using 90W power. Then mathematical modelling was applied to dried fruits by using different experimental thin layer models. The sliced fruits were subjected to ultrasound treatment at a frequency of 40 kHz for 10, 20, and 30 minutes, in an ultrasonic water bath, with a ratio of 1:4 to fruit/water. They are then dried in the microwave (90W). The drying process continued until the product moisture was below 10%. By analyzing the moisture change of the products at a certain time, eight different thin-layer drying models, (Newton, page, modified page, Midilli, Henderson and Pabis, logarithmic, two-term, Wang and Singh) were tested for verification of experimental data. MATLAB R2015a statistical program was used for the modelling, and the best suitable model was determined with R²adj (coefficient of determination of compatibility), and root mean square error (RMSE) values. According to analysis, the drying model that best describes the drying behavior for both drying conditions was determined as the Midilli model by high R²adj and low RMSE values. Control, 10, 20, and 30 min US for groups R²adj and RMSE values was established as respectively; 0,9997- 0,005298; 0,9998- 0,004735; 0,9995- 0,007031; 0,9917-0,02773. In addition, effective diffusion coefficients were calculated for each group and were determined as 3,80x 10⁻⁸, 3,71 x 10⁻⁸, 3,26 x10⁻⁸ ve 3,5 x 10⁻⁸ m/s, respectively.

Keywords: mathematical modelling, microwave drying, strawberry, ultrasound

Procedia PDF Downloads 150
1685 Delineation of Different Geological Interfaces Beneath the Bengal Basin: Spectrum Analysis and 2D Density Modeling of Gravity Data

Authors: Md. Afroz Ansari

Abstract:

The Bengal basin is a spectacular example of a peripheral foreland basin formed by the convergence of the Indian plate beneath the Eurasian and Burmese plates. The basin is embraced on three sides; north, west and east by different fault-controlled tectonic features whereas released in the south where the rivers are drained into the Bay of Bengal. The Bengal basin in the eastern part of the Indian subcontinent constitutes the largest fluvio-deltaic to shallow marine sedimentary basin in the world today. This continental basin coupled with the offshore Bengal Fan under the Bay of Bengal forms the biggest sediment dispersal system. The continental basin is continuously receiving the sediments by the two major rivers Ganga and Brahmaputra (known as Jamuna in Bengal), and Meghna (emerging from the point of conflux of the Ganga and Brahmaputra) and large number of rain-fed, small tributaries originating from the eastern Indian Shield. The drained sediments are ultimately delivered into the Bengal fan. The significance of the present study is to delineate the variations in thicknesses of the sediments, different crustal structures, and the mantle lithosphere throughout the onshore-offshore Bengal basin. In the present study, the different crustal/geological units and the shallower mantle lithosphere were delineated by analyzing the Bouguer Gravity Anomaly (BGA) data along two long traverses South-North (running from Bengal fan cutting across the transition offshore-onshore of the Bengal basin and intersecting the Main Frontal Thrust of India-Himalaya collision zone in Sikkim-Bhutan Himalaya) and West-East (running from the Peninsular Indian Shield across the Bengal basin to the Chittagong–Tripura Fold Belt). The BGA map was derived from the analysis of topex data after incorporating Bouguer correction and all terrain corrections. The anomaly map was compared with the available ground gravity data in the western Bengal basin and the sub-continents of India for consistency of the data used. Initially, the anisotropy associated with the thicknesses of the different crustal units, crustal interfaces and moho boundary was estimated through spectral analysis of the gravity data with varying window size over the study area. The 2D density sections along the traverses were finalized after a number of iterations with the acceptable root mean square (RMS) errors. The estimated thicknesses of the different crustal units and dips of the Moho boundary along both the profiles are consistent with the earlier results. Further the results were encouraged by examining the earthquake database and focal mechanism solutions for better understanding the geodynamics. The earthquake data were taken from the catalogue of US Geological Survey, and the focal mechanism solutions were compiled from the Harvard Centroid Moment Tensor Catalogue. The concentrations of seismic events at different depth levels are not uncommon. The occurrences of earthquakes may be due to stress accumulation as a result of resistance from three sides.

Keywords: anisotropy, interfaces, seismicity, spectrum analysis

Procedia PDF Downloads 262
1684 Judicial Independence and Preservation of the Rule of Law in Africa: The Case of South Africa

Authors: Mbuzeni Mathenjwa

Abstract:

Upon their independence, most African countries adopted constitutions that proclaim respect for the rule of law. The decision to constitutionalise the rule of law is basically informed by the countries’ experience during the colonial era which was characterised by discrimination on various grounds including race, gender and religion. Despite the promise to be bound by and adhere to the rule of law, disrespect for the rule of law has become a norm in the African continent. This is evident from the reported incidence of abuse of power, failure to perform obligations imposed by law and flagrant disregard of the law by the Executive including the heads of states in the continent. In some African countries including South Africa, the courts of law have been approached to rule on the legality of the decisions of the executives, taken contrary to the prescripts of the law. South African Courts have laid down a number of decisions wherein they found that the conduct of the executive contravenes the rule of law. Consequently decisions of the executive have been declared invalid by courts. In this regard courts have become a safety net in preserving the rule of law in. Accordingly, this paper discusses the role of the courts in preserving the rule of law in Africa. This it does by explaining the notion of judicial independence and the doctrine of the rule of law. The explanation on the notion of judicial independence is relevant because only an independent judiciary can effectively review and set aside the decision of the executive including the president of a country. Furthermore, a comparative overview of the enforcement of the rule of law in African countries is done. The methods used for this research is literature review, and study of legislation and case law in selected African countries relating to the independence of the judiciary and the rule of law. Finally, a conclusion is drawn on the role of the independent judiciary to preserve the rule of law in Africa.

Keywords: Africa, constitutions, independence, judiciary

Procedia PDF Downloads 289
1683 Fracture Control of the Soda-Lime Glass in Laser Thermal Cleavage

Authors: Jehnming Lin

Abstract:

The effects of the contact ball-lens on the soda lime glass in laser thermal cleavage with a cw Nd-YAG laser were investigated in this study. A contact ball-lens was adopted to generate a bending force on the crack formation of the soda-lime glass in the laser cutting process. The Nd-YAG laser beam (wavelength of 1064 nm) was focused through the ball-lens and transmitted to the soda-lime glass, which was coated with a carbon film on the surface with a bending force from a ball-lens to generate a tensile stress state on the surface cracking. The fracture was controlled by the contact ball-lens and a straight cutting was tested to demonstrate the feasibility. Experimental observations on the crack propagation from the leading edge, main section and trailing edge of the glass sheet were compared with various mechanical and thermal loadings. Further analyses on the stress under various laser powers and contact ball loadings were made to characterize the innovative technology. The results show that the distributions of the side crack at the leading and trailing edges are mainly dependent on the boundary condition, contact force, cutting speed and laser power. With the increase of the mechanical and thermal loadings, the region of the side cracks might be dramatically reduced with proper selection of the geometrical constraints. Therefore, the application of the contact ball-lens is a possible way to control the fracture in laser cleavage with improved cutting qualities.

Keywords: laser cleavage, stress analysis, crack visualization, laser

Procedia PDF Downloads 431
1682 Automatic Tofu Stick Cutter to Increase the Production Capacity of Small and Medium Enterprises

Authors: Chaca Nugraha Zaid, Hikmat Ronaldo, Emerald Falah Brayoga, Azizah Eddy Setiawati, Soviandini Dwiki Kartika Putri, Novita Wijayanti

Abstract:

In the tofu stick production, the manual cutting process takes a half of working day or 4 hours for 21 kg of tofu. This issue has hampered the small and medium enterprises (SMEs) to increase the capacity of production to fulfill the market demand. In order to address the issue, the cutting process should be automized to create fast, efficient, and effective tools. This innovation to tackle this problem is an automatic cutter tool that is able to move continuously to cut the tofu into stick size. The tool uses the 78,5-watt electric motor and automatic sensors to drive the cutting tool automatically, resulting faster process time with more uniform size compared to the manual cutter. The component of this tool, i.e., cutting knife and the driver, electric motor, limit switch sensors, riley, Arduino nano, and power supply. The cutting speed cutting speed of this tool is 101,25 mm/s producing 64 tofu sticks. Benefits that can be obtained from the use of automatic tofu stick cutter, i.e. (1) Faster process (2) More uniform cutting result; (3) The quality of the tofu stick is maintained due to minimal contact with humans so that contamination can be suppressed; (4) The cutting knife can be modified to the desired size of the owner.

Keywords: automatic, cutter, small and medium enterprise, tofu stick

Procedia PDF Downloads 161
1681 Physico-Mechanical Behavior of Indian Oil Shales

Authors: K. S. Rao, Ankesh Kumar

Abstract:

The search for alternative energy sources to petroleum has increased these days because of increase in need and depletion of petroleum reserves. Therefore the importance of oil shales as an economically viable substitute has increased many folds in last 20 years. The technologies like hydro-fracturing have opened the field of oil extraction from these unconventional rocks. Oil shale is a compact laminated rock of sedimentary origin containing organic matter known as kerogen which yields oil when distilled. Oil shales are formed from the contemporaneous deposition of fine grained mineral debris and organic degradation products derived from the breakdown of biota. Conditions required for the formation of oil shales include abundant organic productivity, early development of anaerobic conditions, and a lack of destructive organisms. These rocks are not gown through the high temperature and high pressure conditions in Mother Nature. The most common approach for oil extraction is drastically breaking the bond of the organics which involves retorting process. The two approaches for retorting are surface retorting and in-situ processing. The most environmental friendly approach for extraction is In-situ processing. The three steps involved in this process are fracturing, injection to achieve communication, and fluid migration at the underground location. Upon heating (retorting) oil shale at temperatures in the range of 300 to 400°C, the kerogen decomposes into oil, gas and residual carbon in a process referred to as pyrolysis. Therefore it is very important to understand the physico-mechenical behavior of such rocks, to improve the technology for in-situ extraction. It is clear from the past research and the physical observations that these rocks will behave as an anisotropic rock so it is very important to understand the mechanical behavior under high pressure at different orientation angles for the economical use of these resources. By knowing the engineering behavior under above conditions will allow us to simulate the deep ground retorting conditions numerically and experimentally. Many researchers have investigate the effect of organic content on the engineering behavior of oil shale but the coupled effect of organic and inorganic matrix is yet to be analyzed. The favourable characteristics of Assam coal for conversion to liquid fuels have been known for a long time. Studies have indicated that these coals and carbonaceous shale constitute the principal source rocks that have generated the hydrocarbons produced from the region. Rock cores of the representative samples are collected by performing on site drilling, as coring in laboratory is very difficult due to its highly anisotropic nature. Different tests are performed to understand the petrology of these samples, further the chemical analyses are also done to exactly quantify the organic content in these rocks. The mechanical properties of these rocks are investigated by considering different anisotropic angles. Now the results obtained from petrology and chemical analysis are correlated with the mechanical properties. These properties and correlations will further help in increasing the producibility of these rocks. It is well established that the organic content is negatively correlated to tensile strength, compressive strength and modulus of elasticity.

Keywords: oil shale, producibility, hydro-fracturing, kerogen, petrology, mechanical behavior

Procedia PDF Downloads 343
1680 Empowering Change: The Role of Women Entrepreneurs in Sustainable Development and Local Empowerment in Tuscany

Authors: Kiana Taheri

Abstract:

Rural tourism has garnered significant attention as a catalyst for rural development and sustainability, particularly in regions like Tuscany, Italy, where the convergence of cultural heritage, picturesque landscapes, and agricultural traditions provides a fertile ground for tourism activities. This paper investigates the pivotal role of women entrepreneurs in driving sustainable rural tourism development, with a specific focus on Tuscany. Drawing upon a synthesis of literature on rural tourism, entrepreneurship, and gender studies, this research offers insights into how women entrepreneurs contribute to the economic, social, and environmental dimensions of rural tourism in Tuscany. The conceptual framework of this study is rooted in the evolving landscape of rural development, shaped by shifting paradigms in agricultural policies, such as the Common Agricultural Policy (CAP) of the European Union. This framework underscores the transition from traditional agrarian economies to dynamic rural tourism destinations characterized by a consumer-centric approach and a focus on sustainable development. Against this backdrop, the study delves into the multifaceted contributions of women entrepreneurs within the rural tourism sector. Central to the analysis is the recognition of rural tourism as a nexus of social, cultural, economic, and environmental interactions, wherein women entrepreneurs play a pivotal role in leveraging local resources, preserving cultural heritage, and fostering community engagement. By capitalizing on their unique perspectives, skills, and networks, women entrepreneurs drive innovation, diversification, and inclusivity within the tourism sector, thereby enhancing its resilience and long-term viability. Moreover, the study highlights the symbiotic relationship between rural tourism development and women's empowerment, as evidenced by the increasing prominence of women entrepreneurs in Tuscany's rural economy. Through their leadership roles in small and medium enterprises (SMEs) and agritourism ventures, women entrepreneurs not only contribute to economic growth but also challenge traditional gender norms and empower local communities. A key empirical focus of this research is a comprehensive case study of Tuscany, renowned for its successful rural tourism model and vibrant entrepreneurial ecosystem. Through qualitative interviews, surveys, and archival analysis, the study elucidates the strategies, challenges, and impacts of women entrepreneurs on sustainable rural tourism development in Tuscany. By examining the experiences of women entrepreneurs across diverse sectors of rural tourism, including hospitality, gastronomy, and cultural heritage, the study offers nuanced insights into their contributions to regional development and empowerment. In conclusion, this research contributes to the burgeoning scholarship on rural tourism, entrepreneurship, and gender studies by shedding light on the transformative role of women entrepreneurs in driving sustainable development agendas in rural areas. By elucidating the interplay between gender dynamics, entrepreneurial activities, and tourism development, this study seeks to inform policy interventions and strategic initiatives aimed at fostering inclusive and sustainable rural tourism ecosystems.

Keywords: rural tourism, women empowerment, entrepreneurship, sustainable development, small and medium-sized enterprises (SMEs)

Procedia PDF Downloads 48
1679 Improve Heat Pipes Thermal Performance In H-VAC Systems Using CFD Modeling

Authors: A. Ghanami, M.Heydari

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.used in the abstract.

Keywords: Heat pipe, HVAC system, Grooved Heat pipe, Heat pipe limits.

Procedia PDF Downloads 474
1678 Combustion Chamber Sizing for Energy Recovery from Furnace Process Gas: Waste to Energy

Authors: Balram Panjwani, Bernd Wittgens, Jan Erik Olsen, Stein Tore Johansen

Abstract:

The Norwegian ferroalloy industry is a world leader in sustainable production of ferrosilicon, silicon and manganese alloys with the lowest global specific energy consumption. One of the byproducts during the metal reduction process is energy rich off-gas and usually this energy is not harnessed. A novel concept for sustainable energy recovery from ferroalloy off-gas is discussed. The concept is founded on the idea of introducing a combustion chamber in the off-gas section in which energy rich off-gas mainly consisting of CO will be combusted. This will provide an additional degree of freedom for optimizing energy recovery. A well-controlled and high off-gas temperature will assure a significant increase in energy recovery and reduction of emissions to the atmosphere. Design and operation of the combustion chamber depend on many parameters, including the total power capacity of the combustion chamber, sufficient residence time for combusting the complex Poly Aromatic Hydrocarbon (PAH), NOx, as well as converting other potential pollutants. The design criteria for the combustion chamber have been identified and discussed and sizing of the combustion chamber has been carried out considering these design criteria. Computational Fluid Dynamics (CFD) has been utilized extensively for sizing the combustion chamber. The results from our CFD simulations of the flow in the combustion chamber and exploring different off-gas fuel composition are presented. In brief, the paper covers all aspect which impacts the sizing of the combustion chamber, including insulation thickness, choice of insulating material, heat transfer through extended surfaces, multi-staging and secondary air injection.

Keywords: CFD, combustion chamber, arc furnace, energy recovery

Procedia PDF Downloads 314
1677 A Novel Environmentally Benign Positive Electrode Material with Improved Energy Density for Lithium Ion Batteries

Authors: Wassima El Mofid, Svetlozar Ivanov, Andreas Bund

Abstract:

The increasing requirements for high power and energy lithium ion batteries have led to the development of several classes of positive electrode materials. Among those one promising material is LiNixMnyCo1−x−yO2 due to its high reversible capacity and remarkable cycling performance. Further structural stabilization and improved electrochemical performance of this class of cathode materials can be achieved by cationic substitution to a transition metal such as Al, Mg, Cr, etc. The current study discusses a novel NMC type material obtained by simultaneous cationic substitution of the cobalt which is a toxic element, with aluminum and iron. A compound with the composition LiNi0.6Mn0.2Co0.15Al0.025Fe0.025O2 (NMCAF) was synthesized by the self-combustion method using sucrose as fuel. The material has a layered α-NaFeO2 type structure with a good hexagonal ordering. Rietveld refinement analysis of the XRD patterns revealed a very low cationic mixing compared to the non-substituted material LiNi0.6Mn0,2Co0.2O2 suggesting a structural stabilization. Galvanostatic cycling measurements indicate improved electrochemical performance after the metal substitution. An initial discharge capacity of about 190 mAh.g−1 at slow rate (C/20), and a good cycling stability even at moderately faster rates (C/5 and C) have been observed. The long term cycling displayed a capacity retention of about 90% after 10 cycles.

Keywords: cationic substitution, lithium ion batteries, positive electrode material, self-combustion synthesis method

Procedia PDF Downloads 405
1676 Performance Comparison of Resource Allocation without Feedback in Wireless Body Area Networks by Various Pseudo Orthogonal Sequences

Authors: Ojin Kwon, Yong-Jin Yoon, Liu Xin, Zhang Hongbao

Abstract:

Wireless Body Area Network (WBAN) is a short-range wireless communication around human body for various applications such as wearable devices, entertainment, military, and especially medical devices. WBAN attracts the attention of continuous health monitoring system including diagnostic procedure, early detection of abnormal conditions, and prevention of emergency situations. Compared to cellular network, WBAN system is more difficult to control inter- and inner-cell interference due to the limited power, limited calculation capability, mobility of patient, and non-cooperation among WBANs. In this paper, we compare the performance of resource allocation scheme based on several Pseudo Orthogonal Codewords (POCs) to mitigate inter-WBAN interference. Previously, the POCs are widely exploited for a protocol sequence and optical orthogonal code. Each POCs have different properties of auto- and cross-correlation and spectral efficiency according to its construction of POCs. To identify different WBANs, several different pseudo orthogonal patterns based on POCs exploits for resource allocation of WBANs. By simulating these pseudo orthogonal resource allocations of WBANs on MATLAB, we obtain the performance of WBANs according to different POCs and can analyze and evaluate the suitability of POCs for the resource allocation in the WBANs system.

Keywords: wireless body area network, body sensor network, resource allocation without feedback, interference mitigation, pseudo orthogonal pattern

Procedia PDF Downloads 347