Search results for: wireless performance analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 37063

Search results for: wireless performance analysis

29803 Stock Price Prediction Using Time Series Algorithms

Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava

Abstract:

This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.

Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series

Procedia PDF Downloads 147
29802 Effect of TERGITOL NP-9 and PEG-10 Oleyl Phosphate as Surfactant and Corrosion Inhibitor on Tribo-Corrosion Performance of Carbon Steel in Emulsion-Based Drilling Fluids

Authors: Mohammadjavad Palimi, D. Y. Li, E. Kuru

Abstract:

Emulsion-based drilling fluids containing mineral oil are commonly used for drilling operations, which generate a lubricating film to prevent direct contact between moving metal parts, thus reducing friction, wear, and corrosion. For long-lasting lubrication, the thin lubricating film formed on the metal surface should possess good anti-wear and anti-corrosion capabilities. This study aims to investigate the effects of two additives, TERGITOL NP-9 and PEG-10 oleyl phosphate, acting as surfactant and corrosion inhibitor, respectively, on the tribo-corrosion behavior of 1018 carbon steel immersed in 5% KCl solution at room temperature. A pin-on-disc tribometer attached to an electrochemical system was used to investigate the corrosive wear of the steel immersed in emulsion-based fluids containing the surfactant and corrosion inhibitor. The wear track, surface chemistry and composition of the protective film formed on the steel surface were analyzed with an optical profilometer, SEM, and SEM-EDX. Results of the study demonstrate that the performance of the emulsion-based drilling fluids was significantly improved by the corrosion inhibitor by a remarkable reduction in corrosion, coefficient of friction (COF) and wear.

Keywords: corrosion inhibitor, emulsion-based drilling fluid, tribo-corrosion, friction, wear

Procedia PDF Downloads 76
29801 Improved Image Retrieval for Efficient Localization in Urban Areas Using Location Uncertainty Data

Authors: Mahdi Salarian, Xi Xu, Rashid Ansari

Abstract:

Accurate localization of mobile devices based on camera-acquired visual media information usually requires a search over a very large GPS-referenced image database. This paper proposes an efficient method for limiting the search space for image retrieval engine by extracting and leveraging additional media information about Estimated Positional Error (EP E) to address complexity and accuracy issues in the search, especially to be used for compensating GPS location inaccuracy in dense urban areas. The improved performance is achieved by up to a hundred-fold reduction in the search area used in available reference methods while providing improved accuracy. To test our procedure we created a database by acquiring Google Street View (GSV) images for down town of Chicago. Other available databases are not suitable for our approach due to lack of EP E for the query images. We tested the procedure using more than 200 query images along with EP E acquired mostly in the densest areas of Chicago with different phones and in different conditions such as low illumination and from under rail tracks. The effectiveness of our approach and the effect of size and sector angle of the search area are discussed and experimental results demonstrate how our proposed method can improve performance just by utilizing a data that is available for mobile systems such as smart phones.

Keywords: localization, retrieval, GPS uncertainty, bag of word

Procedia PDF Downloads 285
29800 Properties of Bacterial Nanocellulose for Scenic Arts

Authors: Beatriz Suárez López, Gabriela Forman

Abstract:

Kombucha (a symbiotic culture of bacteria and yeast) produces material capable of acquiring multiple shapes and textures that change significantly under different environment or temperature variations (e.g., when it is exposed to wet conditions), properties that may be explored in the scenic industry. This paper presents an analysis of its specific characteristics, exploring them as a non-conventional material for arts and performance. Costume Design uses surfaces as a powerful way of expression to represent concepts and stories; it may apply the unique features of nano bacterial cellulose (NBC) as assets in this artistic context. A mix of qualitative and quantitative (interventionist) methodology approaches were used -review of relevant literature to deepen knowledge on the research topic (crossing bibliography from different fields of studies: Biology, Art, Costume Design, etc.); as well as descriptive methods: laboratorial experiments, document quantities, observation to identify material properties and possibilities used to express a multiple narrative ideas, concepts and feelings. The results confirmed that NBC is an interactive and versatile material viable to be used in an alternative scenic context; its unique aesthetic and performative qualities, which change in contact to moisture, is a resource that can be used to show a visual and poetic impact on stage.

Keywords: biotechnological materials, contemporary dance, costume design, nano bacterial cellulose, performing arts

Procedia PDF Downloads 103
29799 Seismic Analysis of Adjacent Buildings Connected with Dampers

Authors: Devyani D. Samarth, Sachin V. Bakre, Ratnesh Kumar

Abstract:

This work deals with two buildings adjacent to each other connected with dampers. The “Imperial Valley Earthquake - El Centro", "May 18, 1940 earthquake time history is used for dynamic analysis of the system in the time domain. The effectiveness of fluid joint dampers is then investigated in terms of the reduction of displacement, acceleration and base shear responses of adjacent buildings. Finally, an extensive parametric study is carried out to find optimum damper properties like stiffness (Kd) and damping coefficient (Cd) for adjacent buildings. Results show that using fluid dampers to connect the adjacent buildings of different fundamental frequencies can effectively reduce earthquake-induced responses of either building if damper optimum properties are selected.

Keywords: energy dissipation devices, time history analysis, viscous damper, optimum parameters

Procedia PDF Downloads 495
29798 A Knee Modular Orthosis Design Based on Kinematic Considerations

Authors: C. Copilusi, C. Ploscaru

Abstract:

This paper addresses attention to a research regarding the design of a knee orthosis in a modular form used on children walking rehabilitation. This research is focused on the human lower limb kinematic analysis which will be used as input data on virtual simulations and prototype validation. From this analysis, important data will be obtained and used as input for virtual simulations of the knee modular orthosis. Thus, a knee orthosis concept was obtained and validated through virtual simulations by using MSC Adams software. Based on the obtained results, the modular orthosis prototype will be manufactured and presented in this article.

Keywords: human lower limb, children orthoses, kinematic analysis, knee orthosis

Procedia PDF Downloads 290
29797 Optimal Rotor Design of an 150kW-Class IPMSM through the 3D Voltage-Inductance Map Analysis Method

Authors: Eung-Seok Park, Tae-Chul Jeong, Hyun-Jong Park, Hyun-Woo Jun, Dong-Woo Kang, Ju Lee

Abstract:

This presents a methodology to determine detail design directions of an 150kW-class IPMSM (interior permanent magnet synchronous motor) and its detail design. The basic design of the stator and rotor was conducted. After dividing the designed models into the best cases and the worst cases based on rotor shape parameters, Sensitivity analysis and 3D Voltage-Inductance Map (3D EL-Map) parameters were analyzed. Then, the design direction for the final model was predicted. Based on the prediction, the final model was extracted with Trend analysis. Lastly, the final model was validated with experiments.

Keywords: PMSM, optimal design, rotor design, voltage-inductance map

Procedia PDF Downloads 679
29796 Effects of Knitting Variables for Pressure Controlling of Tubular Compression Fabrics

Authors: Shi Yu, Rong Liu, Jingyun Lv

Abstract:

Compression textiles with ergonomic-fit and controllable pressure performance have demonstrated positive effect on prevention and treatment of chronic venous insufficiency (CVI). Well-designed compression textile products contribute to improving user compliance in their daily application. This study explored the effects of multiple knitting variables (yarn-machinery settings) on the physical-mechanical properties and the produced pressure magnitudes of tubular compression fabrics (TCFs) through experimental testing and multiple regression modeling. The results indicated that fabric physical (stitch densities and circumference) and mechanical (tensile) properties were affected by the linear density (yarn diameters) of inlay yarns, which, to some extent, influenced pressure magnitudes of the TCFs. Knitting variables (e.g., feeding velocity of inlay yarns and loop size settings) can alter circumferences and tensile properties of tubular fabrics, respectively, and significantly varied pressure values of the TCFs. This study enhanced the understanding of the effects of knitting factors on pressure controlling of TCFs, thus facilitating dimension and pressure design of compression textiles in future development.

Keywords: laid-in knitted fabric, yarn-machinery settings, pressure magnitudes, quantitative analysis, compression textiles

Procedia PDF Downloads 222
29795 Chinese Early Childhood Parenting Style as a Moderator of the Development of Social Competence Based on Mindreading

Authors: Arkadiusz Gut, Joanna Afek

Abstract:

The first issue that we discuss in this paper is a battery of research demonstrating that culture influences children’s performance in tasks testing their theory of mind, also known as mindreading. We devote special attention to research done within Chinese culture; namely, studies with children speaking Cantonese and Mandarin natively and growing up in an environment dominated by the Chinese model of informal home education. Our attention focuses on the differences in development and functioning of social abilities and competences between children from China and the West. Another matter we turn to is the description of the nature of Chinese early childhood education. We suggest that the differences between the Chinese model and that of the West reveal a set of modifiers responsible for the variation observed in empirical research on children’s theory of mind (mindreading). The modifiers we identify are the following: (1) early socialization – that is, the transformation of the child into a member of the family and society that set special value by the social and physical environment; (2) the Confucian model of education – that is, the Chinese alphabet and tradition that determine a certain way of education in China; (3) the authoritarian style of upbringing – that is, reinforcing conformism, discouraging voicing of private opinions, and respect for elders; (4) the modesty of children and protectiveness of parents – that is, obedience as a desired characteristic in the child, overprotectiveness of parents, especially mothers; and (5) gender differences – that is, different educational styles for girls and boys. In our study, we conduct a thorough meta-analysis of empirical data on the development of mindreading and ToM (children’s theory of mind), as well as a cultural analysis of early childhood education in China. We support our analyses with questionnaire and narrative studies conducted in China that use the ‘Children’s Social Understanding Scale’ questionnaire, conversations based on the so-called ‘Scenarios Presented to Parents’, and questions designed to measure the ‘my child and I’ relation. With our research we aim to identify the factors in early childhood education that serve as moderators explaining the nature of the development and functioning of social cognition based on mind reading in China. Additionally, our study provides a valuable insight for comparative research of social cognition between China and the West.

Keywords: early childhood education, China, mindreading, parenting

Procedia PDF Downloads 388
29794 Modeling and Minimizing the Effects of Ferroresonance for Medium Voltage Transformers

Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Arian Amirnia, Atena Taheri, Mohammadreza Arabi, Mahmud Fotuhi-Firuzabad

Abstract:

Ferroresonance effects cause overvoltage in medium voltage transformers and isolators used in electrical networks. Ferroresonance effects are nonlinear and occur between the network capacitor and the nonlinear inductance of the voltage transformer during saturation. This phenomenon is unwanted for transformers since it causes overheating, introduction of high dynamic forces in primary coils, and rise of voltage in primary coils for the voltage transformer. Furthermore, it results in electrical and thermal failure of the transformer. Expansion of distribution lines, design of the transformer in smaller sizes, and the increase of harmonics in distribution networks result in an increase of ferroresonance. There is limited literature available to improve the effects of ferroresonance; therefore, optimizing its effects for voltage transformers is of great importance. In this study, comprehensive modeling of a medium voltage block-type voltage transformer is performed. In addition, a recent model is proposed to improve the performance of voltage transformers during the occurrence of ferroresonance using damping oscillations. Also, transformer design optimization is presented in this study to show further improvements in the performance of the voltage transformer. The recently proposed model is experimentally tested and verified on a medium voltage transformer in the laboratory, and simulation results show a large reduction of the effects of ferroresonance.

Keywords: optimization, voltage transformer, ferroresonance, modeling, damper

Procedia PDF Downloads 105
29793 Experimental Characterization of the Thermal Behavior of a Sawdust Mortar

Authors: F. Taouche-Kheloui, O. Fedaoui-Akmoussi, K. Ait tahar, Li. Alex

Abstract:

Currently, the reduction of energy consumption, through the use of abundant and recyclable natural materials, for better thermal insulation represents an important area of research. To this end, the use of bio-sourced materials has been identified as one of the green sectors with a very high economic development potential for the future. Because of its role in reducing the consumption of fossil-based raw materials, it contributes significantly to the storage of atmospheric carbon, limits greenhouse gas emissions and creates new economic opportunities. This study constitutes a contribution to the elaboration and the experimental characterization of the thermal behavior of a sawdust-reduced mortar matrix. We have taken into account the influence of the size of the grain fibers of sawdust, hence the use of three different ranges and also different percentage in the different confections. The intended practical application consists of producing a light weight compound at a lower cost to ensure a better thermal and acoustic behavior compared to that existing in the field, in addition to the desired resistances. Improving energy performance, while reducing greenhouse gas emissions from the building sector, is amongst the objectives to be achieved. The results are very encouraging and highlight the value of the proposed design of organic-source mortar panels which have specific mechanical properties acceptable for their use, low densities, lower cost of manufacture and labor, and above all a positive impact on the environment.

Keywords: mortar, sawdust waste, thermal, experimental, analysis

Procedia PDF Downloads 88
29792 The Influence of Environment Characteristics in the Distribution of Vegetation Communities in Rawdhat Salasil, Saudi Arabia

Authors: Suliman Mohammed Alghanem

Abstract:

Ecological and botanical surveys were conducted on Rawdhat Salasil, Al-Qassim region, Saudi Arabia. The survey also includes the study of the plant communities in the study area by sampling the associated species in each community using the List Count Quadrant method to study the density, frequency, and plant cover. The present study has shown an account of the under-mentioned five different communities: Haloxylonpersicum community is a dominant perennial shrub with an important value of 47.88%. This community is represented by 20 associated species. The chemical analysis of the soil of this habitat exhibits more alkalinity with low salinity. Tamarixnilotica communityis a perennial shrub with an important value of 60.48%. This community is represented by 14 associated species. The chemical analysis of the soil of this habitat demonstrates richness in alkalis with high salinity.Salsolaimbricata communityis a perennial herb with an important value of 60.18%. This community is represented by 17 associated species. The chemical analysis of the soil of this habitat exhibits richness in alkalis with low salinity.Panicumturgidum is a perennial herb with an important value of 65.1%. This community is represented by 11 associated species. The chemical analysis of the soil of this habitat exhibits richness in alkalis and the absence of salinity. Pulicariaundulata community is predominantly an annual shrub with an important value of 91.79%. This community is represented by 16 species. The chemical analysis of the soil of this habitat exhibits richness in alkalis, and the absence of salinity.

Keywords: rangelands, plant communities, Rawdhat Salasil, edaphic factors

Procedia PDF Downloads 303
29791 Microbial Load of Fecal Material of Broiler Birds Administered with Lagenaria Breviflora Extract

Authors: Adeleye O. O., T. M. Obuotor, A. O. Kolawole, I. O. Opowoye, M. I. Olasoju, L. T. Egbeyale, R. A. Ajadi

Abstract:

This study investigated the effect of Lagenaria breviflora on broiler poultry birds, including its effect on the microbial count of the poultry droppings. A total of 240-day-old broiler chicks were randomly assigned to six groups, with four replicates per group. The first group was the control, while the other four groups were fed water containing 300g/L and 500g/L concentrations of Lagenaria breviflora twice and thrice daily. The microbial load was determined using the plate count method. The results showed that the administration of Lagenaria breviflora in the water of broiler birds significantly improved their growth performance with an average weight gain range of 1.845g - 2.241g. Mortality rate was at 0%. The study also found that Lagenaria breviflora had a significant effect on the microbial count of the poultry droppings with colony count values from 3.5 x 10-7 - 9.9 x10-7CFU/ml, The total coliforms (Escherichia coli, and Salmonella sp.) was obtained as 1 x 10 -5CFU/ml. The reduction in microbial counts of the poultry droppings could be attributed to the antimicrobial properties of Lagenaria breviflora, which contain phytochemicals reported to possess antimicrobial activity. Therefore, the inclusion of Lagenaria breviflora in the diets of broiler poultry could be an effective strategy for improving growth performance and immune function and reducing the microbial load of poultry droppings, which can help to mitigate the risk of disease transmission to humans and other animals.

Keywords: gut microbes, bacterial count, lagenaria breviflora, coliforms

Procedia PDF Downloads 105
29790 Landslide and Liquefaction Vulnerability Analysis Using Risk Assessment Analysis and Analytic Hierarchy Process Implication: Suitability of the New Capital of the Republic of Indonesia on Borneo Island

Authors: Rifaldy, Misbahudin, Khalid Rizky, Ricky Aryanto, M. Alfiyan Bagus, Fahri Septianto, Firman Najib Wibisana, Excobar Arman

Abstract:

Indonesia is a country that has a high level of disaster because it is on the ring of fire, and there are several regions with three major plates meeting in the world. So that disaster analysis must always be done to see the potential disasters that might always occur, especially in this research are landslides and liquefaction. This research was conducted to analyze areas that are vulnerable to landslides and liquefaction hazards and their relationship with the assessment of the issue of moving the new capital of the Republic of Indonesia to the island of Kalimantan with a total area of 612,267.22 km². The method in this analysis uses the Analytical Hierarchy Process and consistency ratio testing as a complex and unstructured problem-solving process into several parameters by providing values. The parameters used in this analysis are the slope, land cover, lithology distribution, wetness index, earthquake data, peak ground acceleration. Weighted overlay was carried out from all these parameters using the percentage value obtained from the Analytical Hierarchy Process and confirmed its accuracy with a consistency ratio so that a percentage of the area obtained with different vulnerability classification values was obtained. Based on the analysis results obtained vulnerability classification from very high to low vulnerability. There are (0.15%) 918.40083 km² of highly vulnerable, medium (20.75%) 127,045,44815 km², low (56.54%) 346,175.886188 km², very low (22.56%) 138,127.484832 km². This research is expected to be able to map landslides and liquefaction disasters on the island of Kalimantan and provide consideration of the suitability of regional development of the new capital of the Republic of Indonesia. Also, this research is expected to provide input or can be applied to all regions that are analyzing the vulnerability of landslides and liquefaction or the suitability of the development of certain regions.

Keywords: analytic hierarchy process, Borneo Island, landslide and liquefaction, vulnerability analysis

Procedia PDF Downloads 183
29789 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman

Abstract:

With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.

Keywords: band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation

Procedia PDF Downloads 356
29788 Seismic Behavior of Masonry Reinforced Concrete Composite Columns

Authors: Hassane Ousalem, Hideki Kimura, Akitoshi Hamada, Masuda Hiroyuki

Abstract:

To provide tall unreinforced brick masonry walls of a century-old existing building with sufficient resistance against earthquake loading actions, additional reinforced concrete columns were integrated into the building at some designated locations and jointed to the existing masonry walls through dowel shear steel bars, resulting in composite structural elements. As conditions at the interface between the existing masonry and newly added reinforced concrete parts were not well grasped and the behavior of such composite elements would be complex, the experimental investigation was carried out. Three relatively large specimens were tested to investigate the overall behavior of brick masonry-reinforced concrete composite elements under lateral cyclic loadings. Confining the brick walls on only one side or on two opposite sides, as well as providing different amounts of dowel shear steel bars at the interface were the main parameters of the investigation. Test results showed that such strengthening provide a good seismic performance even at very large lateral drifts and the investigated amount of shear dowel lead to a good performance level that would result in a considerable cost reduction of the strengthening.

Keywords: unreinforced masonry, reinforced concrete, composite column, seismic strengthening, structural testing

Procedia PDF Downloads 221
29787 Determination of Foaming Behavior in thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world, with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of material is gradually growing, especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent, and a thermal process was applied to obtain a porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 241
29786 Signal Processing Approach to Study Multifractality and Singularity of Solar Wind Speed Time Series

Authors: Tushnik Sarkar, Mofazzal H. Khondekar, Subrata Banerjee

Abstract:

This paper investigates the nature of the fluctuation of the daily average Solar wind speed time series collected over a period of 2492 days, from 1st January, 1997 to 28th October, 2003. The degree of self-similarity and scalability of the Solar Wind Speed signal has been explored to characterise the signal fluctuation. Multi-fractal Detrended Fluctuation Analysis (MFDFA) method has been implemented on the signal which is under investigation to perform this task. Furthermore, the singularity spectra of the signals have been also obtained to gauge the extent of the multifractality of the time series signal.

Keywords: detrended fluctuation analysis, generalized hurst exponent, holder exponents, multifractal exponent, multifractal spectrum, singularity spectrum, time series analysis

Procedia PDF Downloads 395
29785 Estimating 3D-Position of a Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals

Authors: Katsumi Hirata

Abstract:

To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.

Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position

Procedia PDF Downloads 362
29784 Facial Recognition and Landmark Detection in Fitness Assessment and Performance Improvement

Authors: Brittany Richardson, Ying Wang

Abstract:

For physical therapy, exercise prescription, athlete training, and regular fitness training, it is crucial to perform health assessments or fitness assessments periodically. An accurate assessment is propitious for tracking recovery progress, preventing potential injury and making long-range training plans. Assessments include necessary measurements, height, weight, blood pressure, heart rate, body fat, etc. and advanced evaluation, muscle group strength, stability-mobility, and movement evaluation, etc. In the current standard assessment procedures, the accuracy of assessments, especially advanced evaluations, largely depends on the experience of physicians, coaches, and personal trainers. And it is challenging to track clients’ progress in the current assessment. Unlike the tradition assessment, in this paper, we present a deep learning based face recognition algorithm for accurate, comprehensive and trackable assessment. Based on the result from our assessment, physicians, coaches, and personal trainers are able to adjust the training targets and methods. The system categorizes the difficulty levels of the current activity for the client or user, furthermore make more comprehensive assessments based on tracking muscle group over time using a designed landmark detection method. The system also includes the function of grading and correcting the form of the clients during exercise. Experienced coaches and personal trainer can tell the clients' limit based on their facial expression and muscle group movements, even during the first several sessions. Similar to this, using a convolution neural network, the system is trained with people’s facial expression to differentiate challenge levels for clients. It uses landmark detection for subtle changes in muscle groups movements. It measures the proximal mobility of the hips and thoracic spine, the proximal stability of the scapulothoracic region and distal mobility of the glenohumeral joint, as well as distal mobility, and its effect on the kinetic chain. This system integrates data from other fitness assistant devices, including but not limited to Apple Watch, Fitbit, etc. for a improved training and testing performance. The system itself doesn’t require history data for an individual client, but the history data of a client can be used to create a more effective exercise plan. In order to validate the performance of the proposed work, an experimental design is presented. The results show that the proposed work contributes towards improving the quality of exercise plan, execution, progress tracking, and performance.

Keywords: exercise prescription, facial recognition, landmark detection, fitness assessments

Procedia PDF Downloads 136
29783 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States

Authors: Angela Meyer

Abstract:

The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.

Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines

Procedia PDF Downloads 170
29782 Optimised Path Recommendation for a Real Time Process

Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa

Abstract:

Traditional execution process follows the path of execution drawn by the process analyst without observing the behaviour of resource and other real-time constraints. Identifying process model, predicting the behaviour of resource and recommending the optimal path of execution for a real time process is challenging. The proposed AlfyMiner: αyM iner gives a new dimension in process execution with the novel techniques Process Model Analyser: PMAMiner and Resource behaviour Analyser: RBAMiner for recommending the probable path of execution. PMAMiner discovers next probable activity for currently executing activity in an online process using variant matching technique to identify the set of next probable activity, among which the next probable activity is discovered using decision tree model. RBAMiner identifies the resource suitable for performing the discovered next probable activity and observe the behaviour based on; load and performance using polynomial regression model, and waiting time using queueing theory. Based on the observed behaviour αyM iner recommend the probable path of execution with; next probable activity and the best suitable resource for performing it. Experiments were conducted on process logs of CoSeLoG Project1 and 72% of accuracy is obtained in identifying and recommending next probable activity and the efficiency of resource performance was optimised by 59% by decreasing their load.

Keywords: cross-organization process mining, process behaviour, path of execution, polynomial regression model

Procedia PDF Downloads 338
29781 Tree-Based Inference for Regionalization: A Comparative Study of Global Topological Perturbation Methods

Authors: Orhun Aydin, Mark V. Janikas, Rodrigo Alves, Renato Assuncao

Abstract:

In this paper, a tree-based perturbation methodology for regionalization inference is presented. Regionalization is a constrained optimization problem that aims to create groups with similar attributes while satisfying spatial contiguity constraints. Similar to any constrained optimization problem, the spatial constraint may hinder convergence to some global minima, resulting in spatially contiguous members of a group with dissimilar attributes. This paper presents a general methodology for rigorously perturbing spatial constraints through the use of random spanning trees. The general framework presented can be used to quantify the effect of the spatial constraints in the overall regionalization result. We compare several types of stochastic spanning trees used in inference problems such as fuzzy regionalization and determining the number of regions. Performance of stochastic spanning trees is juxtaposed against the traditional permutation-based hypothesis testing frequently used in spatial statistics. Inference results for fuzzy regionalization and determining the number of regions is presented on the Local Area Personal Incomes for Texas Counties provided by the Bureau of Economic Analysis.

Keywords: regionalization, constrained clustering, probabilistic inference, fuzzy clustering

Procedia PDF Downloads 232
29780 Modeling of Diurnal Pattern of Air Temperature in a Tropical Environment: Ile-Ife and Ibadan, Nigeria

Authors: Rufus Temidayo Akinnubi, M. O. Adeniyi

Abstract:

Existing diurnal air temperature models simulate night time air temperature over Nigeria with high biases. An improved parameterization is presented for modeling the diurnal pattern of air temperature (Ta) which is applicable in the calculation of turbulent heat fluxes in Global climate models, based on Nigeria Micrometeorological Experimental site (NIMEX) surface layer observations. Five diurnal Ta models for estimating hourly Ta from daily maximum, daily minimum, and daily mean air temperature were validated using root-mean-square error (RMSE), Mean Error Bias (MBE) and scatter graphs. The original Fourier series model showed better performance for unstable air temperature parameterizations while the stable Ta was strongly overestimated with a large error. The model was improved with the inclusion of the atmospheric cooling rate that accounts for the temperature inversion that occurs during the nocturnal boundary layer condition. The MBE and RMSE estimated by the modified Fourier series model reduced by 4.45 oC and 3.12 oC during the transitional period from dry to wet stable atmospheric conditions. The modified Fourier series model gave good estimation of the diurnal weather patterns of Ta when compared with other existing models for a tropical environment.

Keywords: air temperature, mean bias error, Fourier series analysis, surface energy balance,

Procedia PDF Downloads 232
29779 The Effect of Post-Acute Stroke Inpatient Rehabilitation under per Diem Payment: A Pilot Study

Authors: Chung-Yuan Wang, Kai-Chun Lee, Min-Hung Wang, Yu-Ren Chen, Hung-Sheng Lin, Sen-Shan Fan

Abstract:

Taiwan National Health Insurance (NHI) was launched in 1995. It is an important social welfare policy in Taiwan. Regardless of the diversified social and economic status, universal coverage of NHI was assured. In order to regain better self-care performance, stroke people received in-patient and out-patient rehabilitation. Though NHI limited the rehabilitation frequency to one per day, the cost of rehabilitation still increased rapidly. Through the intensive rehabilitation during the post-stroke rehabilitation golden period, stroke patients might decrease their disability and shorten the rehabilitation period. Therefore, the aim of this study was to investigate the effect of intensive post-acute stroke rehabilitation in hospital under per diem payment. This study was started from 2014/03/01. The stroke patients who were admitted to our hospital or medical center were indicated to the study. The neurologists would check his modified Rankin Scale (mRS). Only patients with their mRS score between 2 and 4 were included to the study. Patients with unclear consciousness, unstable medical condition, unclear stroke onset date and no willing for 3 weeks in-patient intensive rehabilitation were excluded. After the physiatrist’s systemic evaluation, the subjects received intensive rehabilitation programs. The frequency of rehabilitation was thrice per day. Physical therapy, occupational therapy and speech/swallowing therapy were included in the programs for the needs of the stroke patients. Activity daily life performance (Barthel Index) and functional balance ability (Berg Balance Scale) were used to measure the training effect. During 3/1 to 5/31, thirteen subjects (five male and eight female) were included. Seven subjects were aged below 60. Three subjects were aged over 70. Most of the subjects (seven subjects) received intensive post-stroke rehabilitation for three weeks. Three subjects drop out from the programs and went back home respectively after receiving only 7, 10, and 13 days rehabilitation. Among these 13 subjects, nine of them got improvement in activity daily life performance (Barthel Index score). Ten of them got improvement in functional balance ability (Berg Balance Scale). The intensive post-acute stroke rehabilitation did help stroke patients promote their health in our study. Not only their functional performance improved, but also their self-confidence improved. Furthermore, their family also got better health status. Stroke rehabilitation under per diem payment was noted in long-term care institution in developed countries. Over 95% populations in Taiwan were supported under the Taiwan's National Health Insurance system, but there was no national long-term care insurance system. Most of the stroke patients in Taiwan live with his family and continue their rehabilitation programs from out-patient department. This pilot study revealed the effect of intensive post-acute stroke rehabilitation in hospital under per diem payment. The number of the subjects and the study period were limited. Thus, further study will be needed.

Keywords: rehabilitation, post-acute stroke, per diem payment, NHI

Procedia PDF Downloads 314
29778 Photocatalytic Degradation of Phenolic Compounds in Wastewater Using Magnetically Recoverable Catalyst

Authors: Ahmed K. Sharaby, Ahmed S. El-Gendy

Abstract:

Phenolic compounds (PCs) exist in the wastewater effluents of some industries such as oil refinery, pharmaceutical and cosmetics. Phenolic compounds are extremely hazardous pollutants that can cause severe problems to the aquatic life and human beings if disposed of without treatment. One of the most efficient treatment methods of PCs is photocatalytic degradation. The current work studies the performance of composite nanomaterial of titanium dioxide with magnetite as a photo-catalyst in the degradation of PCs. The current work aims at optimizing the synthesized photocatalyst dosage and contact time as part of the operational parameters at different initial concentrations of PCs and pH values in the wastewater. The study was performed in a lab-scale batch reactor under fixed conditions of light intensity and aeration rate. The initial concentrations of PCs and the pH values were in the range of (10-200 mg/l) and (3-9), respectively. Results of the study indicate that the dosage of the catalyst and contact time for total mineralization is proportional to the initial concentrations of PCs, while the optimum pH conditions for highly efficient degradation is at pH 3. Exceeding the concentration levels of the catalyst beyond certain limits leads to the decrease in the degradation efficiency due to the dissipation of light. The performance of the catalyst for degradation was also investigated in comparison to the pure TiO2 Degussa (P-25). The dosage required for the synthesized catalyst for photocatalytic degradation was approximately 1.5 times that needed from the pure titania.

Keywords: industrial, optimization, phenolic compounds, photocatalysis, wastewater

Procedia PDF Downloads 321
29777 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges

Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars

Abstract:

In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.

Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting

Procedia PDF Downloads 156
29776 Scenario Analysis to Assess the Competitiveness of Hydrogen in Securing the Italian Energy System

Authors: Gianvito Colucci, Valeria Di Cosmo, Matteo Nicoli, Orsola Maria Robasto, Laura Savoldi

Abstract:

The hydrogen value chain deployment is likely to be boosted in the near term by the energy security measures planned by European countries to face the recent energy crisis. In this context, some countries are recognized to have a crucial role in the geopolitics of hydrogen as importers, consumers and exporters. According to the European Hydrogen Backbone Initiative, Italy would be part of one of the 5 corridors that will shape the European hydrogen market. However, the set targets are very ambitious and require large investments to rapidly develop effective hydrogen policies: in this regard, scenario analysis is becoming increasingly important to support energy planning, and energy system optimization models appear to be suitable tools to quantitively carry on that kind of analysis. The work aims to assess the competitiveness of hydrogen in contributing to the Italian energy security in the coming years, under different price and import conditions, using the energy system model TEMOA-Italy. A wide spectrum of hydrogen technologies is included in the analysis, covering the production, storage, delivery, and end-uses stages. National production from fossil fuels with and without CCS, as well as electrolysis and import of low-carbon hydrogen from North Africa, are the supply solutions that would compete with other ones, such as natural gas, biomethane and electricity value chains, to satisfy sectoral energy needs (transport, industry, buildings, agriculture). Scenario analysis is then used to study the competition under different price and import conditions. The use of TEMOA-Italy allows the work to catch the interaction between the economy and technological detail, which is much needed in the energy policies assessment, while the transparency of the analysis and of the results is ensured by the full accessibility of the TEMOA open-source modeling framework.

Keywords: energy security, energy system optimization models, hydrogen, natural gas, open-source modeling, scenario analysis, TEMOA

Procedia PDF Downloads 121
29775 Using SMS Mobile Technology to Assess the Mastery of Subject Content Knowledge of Science and Mathematics Teachers of Secondary Schools in Tanzania

Authors: Joel S. Mtebe, Aron Kondoro, Mussa M. Kissaka, Elia Kibga

Abstract:

Sub-Saharan Africa is described as the second fastest growing mobile phone penetration in the world more than in the United States or the European Union. Mobile phones have been used to provide a lot of opportunities to improve people’s lives in the region such as in banking, marketing, entertainment, and paying various bills such as water, TV, and electricity. However, the potential of using mobile phones to enhance teaching and learning has not been explored. This study presents an experience of developing and delivering SMS quizzes questions that were used to assess mastery of the subject content knowledge of science and mathematics secondary school teachers in Tanzania. The SMS quizzes were used as a follow up support mechanism to 500 teachers who participated in a project to upgrade subject content knowledge of science and mathematics subjects. Quizzes of 10-15 questions were sent to teachers each week for 8 weeks and the results were analyzed using SPSS. The results showed that chemistry and biology had better performance compared to mathematics and physics. Teachers reported some challenges that led to poor performance, invalid answers, and non-responses and they are presented. This research has several practical implications for those who are implementing or planning to use mobile phones for teaching and learning especially in rural secondary schools in sub-Saharan Africa.

Keywords: mobile learning, elearning, educational technolgies, SMS, secondary education, assessment

Procedia PDF Downloads 287
29774 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy

Procedia PDF Downloads 444