Search results for: performance standard
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16564

Search results for: performance standard

9304 Drying Kinects of Soybean Seeds

Authors: Amanda Rithieli Pereira Dos Santos, Rute Quelvia De Faria, Álvaro De Oliveira Cardoso, Anderson Rodrigo Da Silva, Érica Leão Fernandes Araújo

Abstract:

The study of the kinetics of drying has great importance for the mathematical modeling, allowing to know about the processes of transference of heat and mass between the products and to adjust dryers managing new technologies for these processes. The present work had the objective of studying the kinetics of drying of soybean seeds and adjusting different statistical models to the experimental data varying cultivar and temperature. Soybean seeds were pre-dried in a natural environment in order to reduce and homogenize the water content to the level of 14% (b.s.). Then, drying was carried out in a forced air circulation oven at controlled temperatures of 38, 43, 48, 53 and 58 ± 1 ° C, using two soybean cultivars, BRS 8780 and Sambaíba, until reaching a hygroscopic equilibrium. The experimental design was completely randomized in factorial 5 x 2 (temperature x cultivar) with 3 replicates. To the experimental data were adjusted eleven statistical models used to explain the drying process of agricultural products. Regression analysis was performed using the least squares Gauss-Newton algorithm to estimate the parameters. The degree of adjustment was evaluated from the analysis of the coefficient of determination (R²), the adjusted coefficient of determination (R² Aj.) And the standard error (S.E). The models that best represent the drying kinetics of soybean seeds are those of Midilli and Logarítmico.

Keywords: curve of drying seeds, Glycine max L., moisture ratio, statistical models

Procedia PDF Downloads 607
9303 Combined PV Cooling and Nighttime Power Generation through Smart Thermal Management of Photovoltaic–Thermoelectric Hybrid Systems

Authors: Abdulrahman M. Alajlan, Saichao Dang, Qiaoqiang Gan

Abstract:

Photovoltaic (PV) cells, while pivotal for solar energy harnessing, confront a challenge due to the presence of persistent residual heat. This thermal energy poses significant obstacles to the performance and longevity of PV cells. Mitigating this thermal issue is imperative, particularly in tropical regions where solar abundance coexists with elevated ambient temperatures. In response, a sustainable and economically viable solution has been devised, incorporating water-passive cooling within a Photovoltaic-Thermoelectric (PV-TEG) hybrid system to address PV cell overheating. The implemented system has significantly reduced the operating temperatures of PV cells, achieving a notable reduction of up to 15 °C below the temperature observed in standalone PV systems. In addition, a thermoelectric generator (TEG) integrated into the system significantly enhances power generation, particularly during nighttime operation. The developed hybrid system demonstrates its capability to generate power at a density of 0.5 Wm⁻² during nighttime, which is sufficient to concurrently power multiple light-emitting diodes, demonstrating practical applications for nighttime power generation. Key findings from this research include a consistent temperature reduction exceeding 10 °C for PV cells, translating to a 5% average enhancement in PV output power compared to standalone PV systems. Experimental demonstrations underscore nighttime power generation of 0.5 Wm⁻², with the potential to achieve 0.8 Wm⁻² through simple geometric optimizations. The optimal cooling of PV cells is determined by the volume of water in the heat storage unit, exhibiting an inverse relationship with the optimal performance for nighttime power generation. Furthermore, the TEG output effectively powers a lighting system with up to 5 LEDs during the night. This research not only proposes a practical solution for maximizing solar radiation utilization but also charts a course for future advancements in energy harvesting technologies.

Keywords: photovoltaic-thermoelectric systems, nighttime power generation, PV thermal management, PV cooling

Procedia PDF Downloads 67
9302 Evaluating the Implementation of Machine Learning Techniques in the South African Built Environment

Authors: Peter Adekunle, Clinton Aigbavboa, Matthew Ikuabe, Opeoluwa Akinradewo

Abstract:

The future of machine learning (ML) in building may seem like a distant idea that will take decades to materialize, but it is actually far closer than previously believed. In reality, the built environment has been progressively increasing interest in machine learning. Although it could appear to be a very technical, impersonal approach, it can really make things more personable. Instead of eliminating humans out of the equation, machine learning allows people do their real work more efficiently. It is therefore vital to evaluate the factors influencing the implementation and challenges of implementing machine learning techniques in the South African built environment. The study's design was one of a survey. In South Africa, construction workers and professionals were given a total of one hundred fifty (150) questionnaires, of which one hundred and twenty-four (124) were returned and deemed eligible for study. Utilizing percentage, mean item scores, standard deviation, and Kruskal-Wallis, the collected data was analyzed. The results demonstrate that the top factors influencing the adoption of machine learning are knowledge level and a lack of understanding of its potential benefits. While lack of collaboration among stakeholders and lack of tools and services are the key hurdles to the deployment of machine learning within the South African built environment. The study came to the conclusion that ML adoption should be promoted in order to increase safety, productivity, and service quality within the built environment.

Keywords: machine learning, implementation, built environment, construction stakeholders

Procedia PDF Downloads 114
9301 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange

Authors: Abdul Qader Melhem, Hacene Badache

Abstract:

This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.

Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors

Procedia PDF Downloads 212
9300 Comparision of Statistical Variables for Vaccinated and Unvaccinated Children in Measles Cases in Khyber Pukhtun Khwa

Authors: Inayatullah Khan, Afzal Khan, Hamzullah Khan, Afzal Khan

Abstract:

Objectives: The objective of this study was to compare different statistical variables for vaccinated and unvaccinated children in measles cases. Material and Methods: This cross sectional comparative study was conducted at Isolation ward, Department of Paediatrics, Lady Reading Hospital (LRH), Peshawar, from April 2012 to March 2013. A total of 566 admitted cases of measles were enrolled. Data regarding age, sex, address, vaccination status, measles contact, hospital stay and outcome was collected and recorded on a proforma. History of measles vaccination was ascertained either by checking the vaccination cards or on parental recall. Result: In 566 cases of measles, 211(39%) were vaccinated and 345 (61%) were unvaccinated. Three hundred and ten (54.80%) patients were males and 256 (45.20%) were females with a male to female ratio of 1.2:1.The age range was from 1 year to 14 years with mean age with SD of 3.2 +2 years. Majority (371, 65.5%) of the patients were 1-3 years old. Mean hospital stay was 3.08 days with a range of 1-10 days and a standard deviation of ± 1.15. History of measles contact was present in 393 (69.4%) cases. Fourty eight patients were expired with a mortality rate of 8.5%. Conclusion: Majority of the children in Khyber Pukhtunkhwa are unvaccinated and unprotected against measles. Among vaccinated children, 39% of children attracted measles which indicate measles vaccine failure. This figure is clearly higher than that accepted for measles vaccine (2-10%).

Keywords: measles, vaccination, immunity, population

Procedia PDF Downloads 429
9299 Sportband: An Idea for Workout Monitoring in Amateur and Recreational Sports

Authors: Kamila Mazur-Oleszczuk, Rafal Banasiuk, Dawid Krasnowski, Maciej Pek, Marcin Podgorski, Krzysztof Rykaczewski, Sabina Zoledowska, Dawid Nidzworski

Abstract:

Workout safety is one of the most significant challenges of recreational sports. Loss of water and electrolytes is a consequence of thermoregulatory sweating during exercise. The rate of sweat loss and its chemical composition can fluctuate within and among individuals. That is why we propose our sportband 'Flow' as a device for monitoring these parameters. 'Flow' consists of two parts: an intelligent module and a mobile application. The application allows verifying the training progress and data archiving. The sportband intelligent module includes temperature, heart rate and pulse measurement (non-invasive, continuous methods of workout monitoring). Apart from the standard components, the device will consist of a sweat composition analyzer situated in sportband intelligent module. Sweat is a water solution of numerous compounds such as ions (sodium up to 1609 µg/ml, potassium up to 274 µg/ml), lactic acid (skin pH is between 4.5 - 6) and a small amount of glucose. Awareness of sweat composition allows personalizing electrolyte intake after training. A comprehensive workout monitoring (sweat composition, heart rate, blood oxygen level) will provide improvement in the training routine and time management, which is our goal for the development of the sweat composition analyzer.

Keywords: flow, sportband, sweat, workout monitoring

Procedia PDF Downloads 138
9298 Phenolic Composition and Antioxidant Activity of Sorbus L. Fruits and Leaves

Authors: Raudone Lina, Raudonis Raimondas, Gaivelyte Kristina, Pukalskas Audrius, Janulis Valdimaras, Viskelis Pranas

Abstract:

Sorbus L. species are widely distributed in the Northern hemisphere and have been used for medicinal purposes in various traditional medicine systems and as food ingredients. Various Sorbus L. raw materials, fruits, leaves, inflorescences, barks, possess diuretic, anti-inflammatory, hypoglycemic, anti-diarrheal and vasoprotective activities. Phenolics, to whom main pharmacological activities are attributed, are compounds of interest due to their notable antioxidant activity. The aim of this study was to determine the antioxidant profiles of fruits and leaves of selected Sorbus L. species (S. anglica, S. aria f. latifolia, S. arranensis, S. aucuparia, S. austriaca, S. caucasica, S. commixta, S. discolor, S. gracilis, S. hostii, S. semi-incisa, S. tianschanica) and to identify the phenolic compounds with potent contribution to antioxidant activity. Twenty two constituents were identified in Sorbus L. species using ultra high performance liquid chromatography coupled to quadruple and time-of-flight mass spectrometers (UPLC–QTOF–MS). Reducing activity of individual constituents was determined using high performance liquid chromatography (HPLC) coupled to post-column FRAP assay. Signicantly greatest trolox equivalent values corresponding up to 45% of contribution to antioxidant activity were assessed for neochlorogenic and chlorogenic acids, which were determined as markers of antioxidant activity in samples of leaves and fruits. Characteristic patterns of antioxidant profiles obtained using HPLC post-column FRAP assay significantly depend on specific Sorbus L. species and raw materials and are suitable for equivalency research of Sorbus L. fruits and leaves. Selecting species and target plant organs with richest phenolic composition and strongly expressed antioxidant power is the first step in further research of standardized extracts.

Keywords: FRAP, antioxidant, phenolic, Sorbus L., chlorogenic acid, neochlorogenic acid

Procedia PDF Downloads 437
9297 Generalized Vortex Lattice Method for Predicting Characteristics of Wings with Flap and Aileron Deflection

Authors: Mondher Yahyaoui

Abstract:

A generalized vortex lattice method for complex lifting surfaces with flap and aileron deflection is formulated. The method is not restricted by the linearized theory assumption and accounts for all standard geometric lifting surface parameters: camber, taper, sweep, washout, dihedral, in addition to flap and aileron deflection. Thickness is not accounted for since the physical lifting body is replaced by a lattice of panels located on the mean camber surface. This panel lattice setup and the treatment of different wake geometries is what distinguish the present work form the overwhelming majority of previous solutions based on the vortex lattice method. A MATLAB code implementing the proposed formulation is developed and validated by comparing our results to existing experimental and numerical ones and good agreement is demonstrated. It is then used to study the accuracy of the widely used classical vortex-lattice method. It is shown that the classical approach gives good agreement in the clean configuration but is off by as much as 30% when a flap or aileron deflection of 30° is imposed. This discrepancy is mainly due the linearized theory assumption associated with the conventional method. A comparison of the effect of four different wake geometries on the values of aerodynamic coefficients was also carried out and it is found that the choice of the wake shape had very little effect on the results.

Keywords: aileron deflection, camber-surface-bound vortices, classical VLM, generalized VLM, flap deflection

Procedia PDF Downloads 423
9296 Assessment and Prediction of Vehicular Emissions in Commonwealth Avenue, Quezon City at Various Policy and Technology Scenarios Using Simple Interactive Model (SIM-Air)

Authors: Ria M. Caramoan, Analiza P. Rollon, Karl N. Vergel

Abstract:

The Simple Interactive Models for Better Air Quality (SIM-air) is an integrated approach model that allows the available information to support the integrated urban air quality management. This study utilized the vehicular air pollution information system module of SIM-air for the assessment of vehicular emissions in Commonwealth Avenue, Quezon City, Philippines. The main objective of the study is to assess and predict the contribution of different types of vehicles to the vehicular emissions in terms of PM₁₀, SOₓ, and NOₓ at different policy and technology scenarios. For the base year 2017, the results show vehicular emissions of 735.46 tons of PM₁₀, 108.90 tons of SOₓ, and 2,101.11 tons of NOₓ. Motorcycle is the major source of particulates contributing about 52% of the PM₁₀ emissions. Meanwhile, Public Utility Jeepneys contribute 27% of SOₓ emissions and private cars using gasoline contribute 39% of NOₓ emissions. Ambient air quality monitoring was also conducted in the study area for the standard parameters of PM₁₀, S0₂, and NO₂. Results show an average of 88.11 µg/Ncm, 47.41 µg/Ncm and 22.54 µg/Ncm for PM₁₀, N0₂, and SO₂, respectively, all were within the DENR National Ambient Air Quality Guideline Values. Future emissions of PM₁₀, NOₓ, and SOₓ are estimated at different scenarios. Results show that in the year 2030, PM₁₀ emissions will be increased by 186.2%. NOₓ emissions and SOₓ emissions will also be increased by 38.9% and 5.5%, without the implementation of the scenarios.

Keywords: ambient air quality, emissions inventory, mobile air pollution, vehicular emissions

Procedia PDF Downloads 121
9295 Identification Strategies for Unknown Victims from Mass Disasters and Unknown Perpetrators from Violent Crime or Terrorist Attacks

Authors: Michael Josef Schwerer

Abstract:

Background: The identification of unknown victims from mass disasters, violent crimes, or terrorist attacks is frequently facilitated through information from missing persons lists, portrait photos, old or recent pictures showing unique characteristics of a person such as scars or tattoos, or simply reference samples from blood relatives for DNA analysis. In contrast, the identification or at least the characterization of an unknown perpetrator from criminal or terrorist actions remains challenging, particularly in the absence of material or data for comparison, such as fingerprints, which had been previously stored in criminal records. In scenarios that result in high levels of destruction of the perpetrator’s corpse, for instance, blast or fire events, the chance for a positive identification using standard techniques is further impaired. Objectives: This study shows the forensic genetic procedures in the Legal Medicine Service of the German Air Force for the identification of unknown individuals, including such cases in which reference samples are not available. Scenarios requiring such efforts predominantly involve aircraft crash investigations, which are routinely carried out by the German Air Force Centre of Aerospace Medicine as one of the Institution’s essential missions. Further, casework by military police or military intelligence is supported based on administrative cooperation. In the talk, data from study projects, as well as examples from real casework, will be demonstrated and discussed with the audience. Methods: Forensic genetic identification in our laboratories involves the analysis of Short Tandem Repeats and Single Nucleotide Polymorphisms in nuclear DNA along with mitochondrial DNA haplotyping. Extended DNA analysis involves phenotypic markers for skin, hair, and eye color together with the investigation of a person’s biogeographic ancestry. Assessment of the biological age of an individual employs CpG-island methylation analysis using bisulfite-converted DNA. Forensic Investigative Genealogy assessment allows the detection of an unknown person’s blood relatives in reference databases. Technically, end-point-PCR, real-time PCR, capillary electrophoresis, pyrosequencing as well as next generation sequencing using flow-cell-based and chip-based systems are used. Results and Discussion: Optimization of DNA extraction from various sources, including difficult matrixes like formalin-fixed, paraffin-embedded tissues, degraded specimens from decomposed bodies or from decedents exposed to blast or fire events, provides soil for successful PCR amplification and subsequent genetic profiling. For cases with extremely low yields of extracted DNA, whole genome preamplification protocols are successfully used, particularly regarding genetic phenotyping. Improved primer design for CpG-methylation analysis, together with validated sampling strategies for the analyzed substrates from, e.g., lymphocyte-rich organs, allows successful biological age estimation even in bodies with highly degraded tissue material. Conclusions: Successful identification of unknown individuals or at least their phenotypic characterization using pigmentation markers together with age-informative methylation profiles, possibly supplemented by family tree search employing Forensic Investigative Genealogy, can be provided in specialized laboratories. However, standard laboratory procedures must be adapted to work with difficult and highly degraded sample materials.

Keywords: identification, forensic genetics, phenotypic markers, CPG methylation, biological age estimation, forensic investigative genealogy

Procedia PDF Downloads 35
9294 Democratic Political Culture of the 5th and 6th Graders under the Authority of Dusit District Office, Bangkok

Authors: Vilasinee Jintalikhitdee, Phusit Phukamchanoad, Sakapas Saengchai

Abstract:

This research aims to study the level of democratic political culture and the factors that affect the democratic political culture of 5th and 6th graders under the authority of Dusit District Office, Bangkok by using stratified sampling for probability sampling and using purposive sampling for non-probability sampling to collect data toward the distribution of questionnaires to 300 respondents. This covers all of the schools under the authority of Dusit District Office. The researcher analyzed the data by using descriptive statistics which include arithmetic mean, standard deviation, and inferential statistics which are Independent Samples T-test (T-test) and One-Way ANOVA (F-test). The researcher also collected data by interviewing the target groups, and then analyzed the data by the use of descriptive analysis. The result shows that 5th and 6th graders under the authority of Dusit District Office, Bangkok have exposed to democratic political culture at high level in overall. When considering each part, it found out that the part that has highest mean is “the constitutional democratic governmental system is suitable for Thailand” statement. The part with the lowest mean is “corruption (cheat and defraud) is normal in Thai society” statement. The factor that affects democratic political culture is grade levels, occupations of mothers, and attention in news and political movements.

Keywords: democratic, political culture, political movements, democratic governmental system

Procedia PDF Downloads 252
9293 Mobility and Speciation of Iron in the Alluvial Sheet of Nil River (North-Eastern Algerian)

Authors: S. Benessam, T. H. Debieche, S. Amiour, A. Chine, S. Khelili

Abstract:

Iron is naturally present in groundwater, it comes from the dissolution of the geological formations (clay, schist, mica-schist, gneiss…). Its chemical form and mobility in water are controlled mainly by two physicochemical parameters (Eh and pH). In order to determine its spatiotemporal evolution in groundwater, a two-monthly monitoring of the physicochemical parameters and major elements in the water of the alluvial sheet of Nil river (North-eastern Algerian) was carried out during the period from November 2013 to January 2015. The results show that iron is present in weak concentrations in the upstream part of the alluvial sheet and with raised concentrations, which can exceed the standard of potable drinking water (0.2 mg/L), in the central and downstream parts of the alluvial sheet. This variation of the concentrations is related to the important variation of Eh between the upstream part (200 mV) where the aquiver is unconfined (oxidizing medium) and the central and downstream parts (-100 mV) where the aquifer is confined (reducing medium). Iron in the oxidizing part is presented with the complexes form, where it precipitates or/and adsorbed by the geological formations. On the other hand in the reducing parts, it is released in water. In this study, one will discuss also the mobility and the chemical forms of iron according to the rains and pumping.

Keywords: groundwater, iron, mobility, speciation

Procedia PDF Downloads 322
9292 Financial Markets Performance: From COVID-19 Crisis to Hopes of Recovery with the Containment Polices

Authors: Engy Eissa, Dina M. Yousri

Abstract:

COVID-19 has hit massively the world economy, financial markets and even societies’ livelihood. The infectious disease caused by the most recently discovered coronavirus was claimed responsible for a shrink in the global economy by 4.4% in 2020. Shortly after the first case in Wuhan was identified, a quick surge in the number of confirmed cases in China was evident and a vast spread worldwide is recorded with cases surpassing the 500,000 cases. Irrespective of the disease’s trajectory in each country, a call for immediate action and prompt government intervention was needed. Given that there is no one-size-fits-all approach across the world, a number of containment and adoption policies were embraced. It was starting by enforcing complete lockdown like China to even stricter policies targeted containing the spread of the virus, augmenting the efficiency of health systems, and controlling the economic outcomes arising from this crisis. Hence, this paper has three folds; first, it examines the impact of containment policies taken by governments on controlling the number of cases and deaths in the given countries. Second, to assess the ramifications of COVID-19 on financial markets measured by stock returns. Third, to study the impact of containment policies measured by the government response index, the stringency index, the containment health index, and the economic support index on financial markets performance. Using a sample of daily data covering the period 31st of January 2020 to 15th of April 2021 for the 10 most hit countries in wave one by COVID-19 namely; Brazil, India, Turkey, Russia, UK, USA, France, Germany, Spain, and Italy. The aforementioned relationships were tested using Panel VAR Regression. The preliminary results showed that the number of daily deaths had an impact on the stock returns; moreover, the health containment policies and the economic support provided by the governments had a significant effect on lowering the impact of COVID-19 on stock returns.

Keywords: COVID-19, government policies, stock returns, VAR

Procedia PDF Downloads 170
9291 Spatial Development of Muslim Cemetery in Kuala Lumpur Metropolitan: A Focus on Sustainable Design Practice

Authors: Mohamad Reza Mohamed Afla, Putri Haryati Ibrahim, Azila Ahmad Sarkawi

Abstract:

This study examines the standard procedure involved in terms of planning and management at selected Muslim cemeteries within the Kuala Lumpur Metropolitan Area. It focuses on sustainable design practice for the provision of burial infrastructures at public cemeteries, which emphasizes the inclusion of society, economy, and environment. The escalating issues of overcrowding, lack of space, and land shortage for full-body burial in the urbanized area of Kuala Lumpur have raised a concern to this alarming situation. There is a necessity to address these problems through the incorporation of sustainable development in the making of urban cemeteries to ensure a holistic approach. Recorded site observation of cemeteries’ area has been employed as a means of data collection and interpreted by conducting spatial analysis. The spatial analysis entails the assessment of form and function in accordance with sustainable design principles. The finding exhibits the dimensional layout of Muslim cemeteries were problematics due to the tension that exists between ritual practices and space organization set-up by the local authorities. This article concludes by providing conceptual guidelines for the purpose of Muslim cemetery development in the future.

Keywords: cemetery, metropolitan, spatial analysis, sustainable design practice

Procedia PDF Downloads 107
9290 Analysis of Spatial Disparities of Population for Delicate Configuration of Public Service Facilities:Case of Gongshu District, Hangzhou, China

Authors: Ruan Yi-Chen, Li Wang-Ming, Fang Yuan

Abstract:

With the rapid growth of urbanization in China in recent years, public services are in short supply because of expanding population and limitation of financial support, which makes delicate configuration of public service facilities to become a trend in urban planning. Besides, the facility configuration standard implemented in China is equal to the whole the urban area without considering internal differences in it. Therefore, this article focuses on population Spatial disparities analysis in order to optimize facility configuration in communities of main city district. The used data, including population of 93 communities during 2010 to 2015, comes from GongShu district, Hangzhou city, PRC. Through the analysis of population data, especially the age structure of those communities, the communities finally divided into 3 types. Obviously, urban public service facilities allocation situation directly affect the quality of residents common lives, which turns out that deferent kinds of communities with deferent groups of citizens will have divergences in facility demanding. So in the end of the article, strategies of facility configuration will be proposed based on the population analysis in order to optimize the quantity and location of facilities with delicacy.

Keywords: delicacy, facility configuration, population spatial disparities, urban area

Procedia PDF Downloads 369
9289 Human Factors Interventions for Risk and Reliability Management of Defence Systems

Authors: Chitra Rajagopal, Indra Deo Kumar, Ila Chauhan, Ruchi Joshi, Binoy Bhargavan

Abstract:

Reliability and safety are essential for the success of mission-critical and safety-critical defense systems. Humans are part of the entire life cycle of defense systems development and deployment. The majority of industrial accidents or disasters are attributed to human errors. Therefore, considerations of human performance and human reliability are critical in all complex systems, including defense systems. Defense systems are operating from the ground, naval and aerial platforms in diverse conditions impose unique physical and psychological challenges to the human operators. Some of the safety and mission-critical defense systems with human-machine interactions are fighter planes, submarines, warships, combat vehicles, aerial and naval platforms based missiles, etc. Human roles and responsibilities are also going through a transition due to the infusion of artificial intelligence and cyber technologies. Human operators, not accustomed to such challenges, are more likely to commit errors, which may lead to accidents or loss events. In such a scenario, it is imperative to understand the human factors in defense systems for better systems performance, safety, and cost-effectiveness. A case study using Task Analysis (TA) based methodology for assessment and reduction of human errors in the Air and Missile Defense System in the context of emerging technologies were presented. Action-oriented task analysis techniques such as Hierarchical Task Analysis (HTA) and Operator Action Event Tree (OAET) along with Critical Action and Decision Event Tree (CADET) for cognitive task analysis was used. Human factors assessment based on the task analysis helps in realizing safe and reliable defense systems. These techniques helped in the identification of human errors during different phases of Air and Missile Defence operations, leading to meet the requirement of a safe, reliable and cost-effective mission.

Keywords: defence systems, reliability, risk, safety

Procedia PDF Downloads 120
9288 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network

Authors: Ashima Anurag Sharma

Abstract:

Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 512
9287 The Mineral and Petroleum Sectors of Papua New Guinea: An Overview

Authors: James Wapyer, Simon A. Kawagle

Abstract:

The current downturn in the metal and oil prices has significantly affected the mineral and petroleum sectors of Papua New Guinea. The sectors have not grown substantially in the last three years compared to previous years. Resources of several projects have not been proved up as well as feasibility studies not undertaken on advanced projects. In the 2012-2015 periods, however, development licences for four projects have been granted - the Solwara-1 project in the Manus Basin, the Woodlark project, the Crater Mountains project and the Stanley gas-condensate project. There has been some progress on three advanced projects – Frieda River copper-gold porphyry, Mount Kare gold, and the Wafi-Golpu projects. The oilfields are small by world standard but have been high rates of production. The developments of liquefied natural gas projects are progressing well and the first LNG project with ExxonMobil and partners shipped its first cargo in May 2014, the second with Total and partners involving Elk-Antelope gas-condensate fields is in its development stage, and the third with Horizon Oil and partners involving gas fields in the western Papuan basin is in the planning stage. Significantly, in the years 2012-2015, the country has exported liquefied natural gas, nickel, cobalt and chromium, and has granted exploration licences for iron-sands and coal measures for the first time.

Keywords: exploration, mineral, Papua New Guinea, petroleum

Procedia PDF Downloads 257
9286 A Low Cost Non-Destructive Grain Moisture Embedded System for Food Safety and Quality

Authors: Ritula Thakur, Babankumar S. Bansod, Puneet Mehta, S. Chatterji

Abstract:

Moisture plays an important role in storage, harvesting and processing of food grains and related agricultural products. It is an important characteristic of most agricultural products for maintenance of quality. Accurate knowledge of the moisture content can be of significant value in maintaining quality and preventing contamination of cereal grains. The present work reports the design and development of microcontroller based low cost non-destructive moisture meter, which uses complex impedance measurement method for moisture measurement of wheat using parallel plate capacitor arrangement. Moisture can conveniently be sensed by measuring the complex impedance using a small parallel-plate capacitor sensor filled with the kernels in-between the two plates of sensor, exciting the sensor at 30 KHz and 100 KHz frequencies. The effects of density and temperature variations were compensated by providing suitable compensations in the developed algorithm. The results were compared with standard dry oven technique and the developed method was found to be highly accurate with less than 1% error. The developed moisture meter is low cost, highly accurate, non-destructible method for determining the moisture of grains utilizing the fast computing capabilities of microcontroller.

Keywords: complex impedance, moisture content, electrical properties, safety of food

Procedia PDF Downloads 451
9285 Design and Development of an Innovative MR Damper Based on Intelligent Active Suspension Control of a Malaysia's Model Vehicle

Authors: L. Wei Sheng, M. T. Noor Syazwanee, C. J. Carolyna, M. Amiruddin, M. Pauziah

Abstract:

This paper exhibits the alternatives towards active suspension systems revised based on the classical passive suspension system to improve comfort and handling performance. An active Magneto rheological (MR) suspension system is proposed as to explore the active based suspension system to enhance performance given its freedom to independently specify the characteristics of load carrying, handling, and ride quality. Malaysian quarter car with two degrees of freedom (2DOF) system is designed and constructed to simulate the actions of an active vehicle suspension system. The structure of a conventional twin-tube shock absorber is modified both internally and externally to comprehend with the active suspension system. The shock absorber peripheral structure is altered to enable the assembling and disassembling of the damper through a non-permanent joint whereby the stress analysis of the designed joint is simulated using Finite Element Analysis. Simulation on the internal part where an electrified copper coil of 24AWG is winded is done using Finite Element Method Magnetics to measure the magnetic flux density inside the MR damper. The primary purpose of this approach is to reduce the vibration transmitted from the effects of road surface irregularities while maintaining solid manoeuvrability. The aim of this research is to develop an intelligent control system of a consecutive damping automotive suspension system. The ride quality is improved by means of the reduction of the vertical body acceleration caused by the car body when it experiences disturbances from speed bump and random road roughness. Findings from this research are expected to enhance the quality of ride which in return can prevent the deteriorating effect of vibration on the vehicle condition as well as the passengers’ well-being.

Keywords: active suspension, FEA, magneto rheological damper, Malaysian quarter car model, vibration control

Procedia PDF Downloads 198
9284 Lifelong Education for Teachers: A Tool for Achieving Effective Teaching and Learning in Secondary Schools in Benue State, Nigeria

Authors: Adzongo Philomena Ibuh, Aloga O. Austin

Abstract:

The purpose of the study was to examine lifelong education for teachers as a tool for achieving effective teaching and learning. Lifelong education enhances social inclusion, personal development, citizenship, employability, teaching and learning, community and the nation, and the challenges of lifelong education were also discussed. Descriptive survey design was adopted for the study. A simple random sampling technique was used to select 80 teachers as sample from a population of 105 senior secondary school teachers in Makurdi local government area of Benue state. A 20-item self designed questionnaire subjected to expert validation and reliability was used to collect data. The reliability Alpha coefficient of 0.87 was established using Crombach Alpha technique, mean scores and standard deviation were used to answer the 2 research questions while chi-square was used to analyze data for the 2 hypotheses. The findings of the study revealed that, lifelong education for teachers can be used to achieve as a tool for achieving effective teaching and learning, and the study recommended among others that government, organizations and individuals should in collaboration put lifelong education programmes for teachers on the priority list. The paper concluded that the strategic position of lifelong education for teachers towards enhanced teaching and learning makes it imperative for all hands to be on deck to support the programme financially and otherwise.

Keywords: effective teaching and learning, lifelong education, teachers, tool

Procedia PDF Downloads 463
9283 Design of Ultra-Light and Ultra-Stiff Lattice Structure for Performance Improvement of Robotic Knee Exoskeleton

Authors: Bing Chen, Xiang Ni, Eric Li

Abstract:

With the population ageing, the number of patients suffering from chronic diseases is increasing, among which stroke is a high incidence for the elderly. In addition, there is a gradual increase in the number of patients with orthopedic or neurological conditions such as spinal cord injuries, nerve injuries, and other knee injuries. These diseases are chronic, with high recurrence and complications, and normal walking is difficult for such patients. Nowadays, robotic knee exoskeletons have been developed for individuals with knee impairments. However, the currently available robotic knee exoskeletons are generally developed with heavyweight, which makes the patients uncomfortable to wear, prone to wearing fatigue, shortening the wearing time, and reducing the efficiency of exoskeletons. Some lightweight materials, such as carbon fiber and titanium alloy, have been used for the development of robotic knee exoskeletons. However, this increases the cost of the exoskeletons. This paper illustrates the design of a new ultra-light and ultra-stiff truss type of lattice structure. The lattice structures are arranged in a fan shape, which can fit well with circular arc surfaces such as circular holes, and it can be utilized in the design of rods, brackets, and other parts of a robotic knee exoskeleton to reduce the weight. The metamaterial is formed by continuous arrangement and combination of small truss structure unit cells, which changes the diameter of the pillar section, geometrical size, and relative density of each unit cell. It can be made quickly through additive manufacturing techniques such as metal 3D printing. The unit cell of the truss structure is small, and the machined parts of the robotic knee exoskeleton, such as connectors, rods, and bearing brackets, can be filled and replaced by gradient arrangement and non-uniform distribution. Under the condition of satisfying the mechanical properties of the robotic knee exoskeleton, the weight of the exoskeleton is reduced, and hence, the patient’s wearing fatigue is relaxed, and the wearing time of the exoskeleton is increased. Thus, the efficiency and wearing comfort, and safety of the exoskeleton can be improved. In this paper, a brief description of the hardware design of the prototype of the robotic knee exoskeleton is first presented. Next, the design of the ultra-light and ultra-stiff truss type of lattice structures is proposed, and the mechanical analysis of the single-cell unit is performed by establishing the theoretical model. Additionally, simulations are performed to evaluate the maximum stress-bearing capacity and compressive performance of the uniform arrangement and gradient arrangement of the cells. Finally, the static analysis is performed for the cell-filled rod and the unmodified rod, respectively, and the simulation results demonstrate the effectiveness and feasibility of the designed ultra-light and ultra-stiff truss type of lattice structures. In future studies, experiments will be conducted to further evaluate the performance of the designed lattice structures.

Keywords: additive manufacturing, lattice structures, metamaterial, robotic knee exoskeleton

Procedia PDF Downloads 93
9282 A Case Study on the Numerical-Probability Approach for Deep Excavation Analysis

Authors: Komeil Valipourian

Abstract:

Urban advances and the growing need for developing infrastructures has increased the importance of deep excavations. In this study, after the introducing probability analysis as an important issue, an attempt has been made to apply it for the deep excavation project of Bangkok’s Metro as a case study. For this, the numerical probability model has been developed based on the Finite Difference Method and Monte Carlo sampling approach. The results indicate that disregarding the issue of probability in this project will result in an inappropriate design of the retaining structure. Therefore, probabilistic redesign of the support is proposed and carried out as one of the applications of probability analysis. A 50% reduction in the flexural strength of the structure increases the failure probability just by 8% in the allowable range and helps improve economic conditions, while maintaining mechanical efficiency. With regard to the lack of efficient design in most deep excavations, by considering geometrical and geotechnical variability, an attempt was made to develop an optimum practical design standard for deep excavations based on failure probability. On this basis, a practical relationship is presented for estimating the maximum allowable horizontal displacement, which can help improve design conditions without developing the probability analysis.

Keywords: numerical probability modeling, deep excavation, allowable maximum displacement, finite difference method (FDM)

Procedia PDF Downloads 110
9281 Tailoring Polythiophene Nanocomposites with MnS/CoS Nanoparticles for Enhanced Surface-Enhanced Raman Spectroscopy (SERS) Detection of Mercury Ions in Water

Authors: Temesgen Geremew

Abstract:

The excessive emission of heavy metal ions from industrial processes poses a serious threat to both the environment and human health. This study presents a distinct approach utilizing (PTh-MnS/CoS NPs) for the highly selective and sensitive detection of Hg²⁺ ions in water. Such detection is crucial for safeguarding human health, protecting the environment, and accurately assessing toxicity. The fabrication method employs a simple and efficient chemical precipitation technique, harmoniously combining polythiophene, MnS, and CoS NPs to create highly active substrates for SERS. The MnS@Hg²⁺ exhibits a distinct Raman shift at 1666 cm⁻¹, enabling specific identification and demonstrating the highest responsiveness among the studied semiconductor substrates with a detection limit of only 1 nM. This investigation demonstrates reliable and practical SERS detection for Hg²⁺ ions. Relative standard deviation (RSD) ranged from 0.49% to 9.8%, and recovery rates varied from 96% to 102%, indicating selective adsorption of Hg²⁺ ions on the synthesized substrate. Furthermore, this research led to the development of a remarkable set of substrates, including (MnS, CoS, MnS/CoS, and PTh-MnS/CoS) nanoparticles were created right there on SiO₂/Si substrate, all exhibiting sensitive, robust, and selective SERS for Hg²⁺ ion detection. These platforms effectively monitor Hg²⁺ concentrations in real environmental samples.

Keywords: surface-enhanced raman spectroscopy (SERS), sensor, mercury ions, nanoparticles, and polythiophene.

Procedia PDF Downloads 47
9280 Musical Instruments Classification Using Machine Learning Techniques

Authors: Bhalke D. G., Bormane D. S., Kharate G. K.

Abstract:

This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.

Keywords: feature extraction, SVM, KNN, musical instruments

Procedia PDF Downloads 468
9279 Performance and Damage Detection of Composite Structural Insulated Panels Subjected to Shock Wave Loading

Authors: Anupoju Rajeev, Joanne Mathew, Amit Shelke

Abstract:

In the current study, a new type of Composite Structural Insulated Panels (CSIPs) is developed and investigated its performance against shock loading which can replace the conventional wooden structural materials. The CSIPs is made of Fibre Cement Board (FCB)/aluminum as the facesheet and the expanded polystyrene foam as the core material. As tornadoes are very often in the western countries, it is suggestable to monitor the health of the CSIPs during its lifetime. So, the composite structure is installed with three smart sensors located randomly at definite locations. Each smart sensor is fabricated with an embedded half stainless phononic crystal sensor attached to both ends of the nylon shaft that can resist the shock and impact on facesheet as well as polystyrene foam core and safeguards the system. In addition to the granular crystal sensors, the accelerometers are used in the horizontal spanning and vertical spanning with a definite offset distance. To estimate the health and damage of the CSIP panel using granular crystal sensor, shock wave loading experiments are conducted. During the experiments, the time of flight response from the granular sensors is measured. The main objective of conducting shock wave loading experiments on the CSIP panels is to study the effect and the sustaining capacity of the CSIP panels in the extreme hazardous situations like tornados and hurricanes which are very common in western countries. The effects have been replicated using a shock tube, an instrument that can be used to create the same wind and pressure intensity of tornado for the experimental study. Numerous experiments have been conducted to investigate the flexural strength of the CSIP. Furthermore, the study includes the damage detection using three smart sensors embedded in the CSIPs during the shock wave loading.

Keywords: composite structural insulated panels, damage detection, flexural strength, sandwich structures, shock wave loading

Procedia PDF Downloads 134
9278 Accessing Properties of Alkali Activated Ground Granulated Blast Furnace Slag Based Self Compacting Geopolymer Concrete Incorporating Nano Silica

Authors: Guneet Saini, Uthej Vattipalli

Abstract:

In a world with increased demand for sustainable construction, waste product of one industry could be a boon to the other in reducing the carbon footprint. Usage of industrial waste such as fly ash and ground granulated blast furnace slag have become the epicenter of curbing the use of cement, one of the major contributors of greenhouse gases. In this paper, empirical studies have been done to develop alkali activated self-compacting geopolymer concrete (GPC) using ground granulated blast furnace slag (GGBS), incorporated with 2% nano-silica by weight, through evaluation of its fresh and hardening properties. Experimental investigation on 6 mix designs of varying molarity of 10M, 12M and 16M of the alkaline solution and a binder content of 450 kg/m³ and 500 kg/m³ has been done and juxtaposed with GPC mix design composed of 16M alkaline solution concentration and 500 kg/m³ binder content without nano-silica. The sodium silicate to sodium hydroxide ratio (SS/SH), alkaline activator liquid to binder ratio (AAL/B) and water to binder ratio (W/B), which significantly affect the performance and mechanical properties of GPC, were fixed at 2.5, 0.45 and 0.4 respectively. To catalyze the early stage geopolymerisation, oven curing is done maintaining the temperature at 60˚C. This paper also elucidates the test results for fresh self-compacting concrete (SCC) done as per EFNARC guidelines. The mechanical properties tests conducted were: compressive strength test after 7 days, 28 days, 56 days and 90 days; flexure test; split tensile strength test after 28 days, 56 days and 90 days; X-ray diffraction test to analyze the mechanical performance and sorptivity test for testing of permeability. The study revealed that the sample of 16M concentration of alkaline solution with 500 Kg/m³ binder content containing 2% nano silica produced the highest compressive, flexural and split tensile strength of 81.33 MPa, 7.875 MPa, and 6.398 MPa respectively, at the end of 90 days.

Keywords: alkaline activator liquid, geopolymer concrete, ground granulated blast furnace slag, nano silica, self compacting

Procedia PDF Downloads 130
9277 A Quasi-Experimental Study of the Impact of 5Es Instructional Model on Students' Mathematics Achievement in Northern Province, Rwanda

Authors: Emmanuel Iyamuremye, Jean François Maniriho, Irenee Ndayambaje

Abstract:

Mathematics is the foundational enabling discipline that underpins science, technology, and engineering disciplines. Science, technology, engineering, and mathematics (STEM) subjects are foreseen as the engine for socio-economic transformation. Rwanda has done reforms in education aiming at empowering and preparing students for the real world job by providing career pathways in science, technology, engineering, and mathematics related fields. While that considered so, the performance in mathematics has remained deplorable in both formative and national examinations. Therefore, this paper aims at exploring the extent to which the engage, explore, explain, elaborate and evaluate (5Es) instructional model contributing towards students’ achievement in mathematics. The present study adopted the pre-test, post-test non-equivalent control group quasi-experimental design. The 5Es instructional model was applied to the experimental group while the control group received instruction with the conventional teaching method for eight weeks. One research-made instrument, mathematics achievement test (MAT), was used for data collection. A pre-test was given to students before the intervention to make sure that both groups have equivalent characteristics. At the end of the experimental period, the two groups have undergone a post-test to ascertain the contribution of the 5Es instructional model. Descriptive statistics and analysis of covariance (ANCOVA) were used for the analysis of the study. For determining the improvement in mathematics, Hakes methods of calculating gain were used to analyze the pre-test and post-test scores. Results showed that students exposed to 5Es instructional model achieved significantly better performance in mathematics than students instructed using the conventional teaching method. It was also found that 5Es instructional model made lessons more interesting, easy and created friendship among students. Thus, 5Es instructional model was recommended to be adopted as a close substitute to the conventional teaching method in teaching mathematics in lower secondary schools in Rwanda.

Keywords: 5Es instructional model, achievement, conventional teaching method, mathematics

Procedia PDF Downloads 93
9276 Degradation of Emerging Pharmaceuticals by Gamma Irradiation Process

Authors: W. Jahouach-Rabai, J. Aribi, Z. Azzouz-Berriche, R. Lahsni, F. Hosni

Abstract:

Gamma irradiation applied in removing pharmaceutical contaminants from wastewater is an effective advanced oxidation process (AOP), considered as an alternative to conventional water treatment technologies. In this purpose, the degradation efficiency of several detected contaminants under gamma irradiation was evaluated. In fact, radiolysis of organic pollutants in aqueous solutions produces powerful reactive species, essentially hydroxyl radical ( ·OH), able to destroy recalcitrant pollutants in water. Pharmaceuticals considered in this study are aqueous solutions of paracetamol, ibuprofen, and diclofenac at different concentrations 0.1-1 mmol/L, which were treated with irradiation doses from 3 to 15 kGy. The catalytic oxidation of these compounds by gamma irradiation was investigated using hydrogen peroxide (H₂O₂) as a convenient oxidant. Optimization of the main parameters influencing irradiation process, namely irradiation doses, initial concentration and oxidant volume (H₂O₂) were investigated, in the aim to release high degradation efficiency of considered pharmaceuticals. Significant modifications attributed to these parameters appeared in the variation of degradation efficiency, chemical oxygen demand removal (COD) and concentration of radio-induced radicals, confirming them synergistic effect to attempt total mineralization. Pseudo-first-order reaction kinetics could be used to depict the degradation process of these compounds. A sophisticated analytical study was released to quantify the detected radio-induced radicals (electron paramagnetic resonance spectroscopy (EPR) and high performance liquid chromatography (HPLC)). All results showed that this process is effective for the degradation of many pharmaceutical products in aqueous solutions due to strong oxidative properties of generated radicals mainly hydroxyl radical. Furthermore, the addition of an optimal amount of H₂O₂ was efficient to improve the oxidative degradation and contribute to the high performance of this process at very low doses (0.5 and 1 kGy).

Keywords: AOP, COD, hydroxyl radical, EPR, gamma irradiation, HPLC, pharmaceuticals

Procedia PDF Downloads 159
9275 A Combined Fiber-Optic Surface Plasmon Resonance and Ta2O5: rGO Nanocomposite Synergistic Scheme for Trace Detection of Insecticide Fenitrothion

Authors: Ravi Kant, Banshi D. Gupta

Abstract:

The unbridled application of insecticides to enhance agricultural yield has become a matter of grave concern to both the environment and the human health and, thus pose a potential threat to sustainable development. Fenitrothion is an extensively used organophosphate insecticide whose residues are reported to be extremely toxic for birds, humans and aquatic life. A sensitive, swift and accurate detection protocol for fenitrothion is, thus, highly demanded. In this work, we report an SPR based fiber optic sensor for the detection of fenitrothion, where a nanocomposite arrangement of Ta2O5 and reduced graphene oxide (rGO) (Ta₂O₅: rGO) decorated on silver coated unclad core region of an optical fiber forms the sensing channel. A nanocomposite arrangement synergistically integrates the properties of involved components and consequently furnishes a conducive framework for sensing applications. The modification of the dielectric function of the sensing layer on exposure to fenitrothion solutions of diverse concentration forms the sensing mechanism. This modification is reflected in terms of the shift in resonance wavelength. Experimental variables such as the concentration of rGO in the nanocomposite configuration, dip time of silver coated fiber optic probe for deposition of sensing layer and influence of pH on the performance of the sensor have been optimized to extract the best performance of the sensor. SPR studies on the optimized sensing probe reveal the high sensitivity, wide operating range and good reproducibility of the fabricated sensor, which unveil the promising utility of Ta₂O₅: rGO nanocomposite framework for developing an efficient detection methodology for fenitrothion. FOSPR approach in cooperation with nanomaterials projects the present work as a beneficial approach for fenitrothion detection by imparting numerous useful advantages such as sensitivity, selectivity, compactness and cost-effectiveness.

Keywords: surface plasmon resonance, optical fiber, sensor, fenitrothion

Procedia PDF Downloads 193