Search results for: efficiency improvement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10221

Search results for: efficiency improvement

2961 Ice Load Measurements on Known Structures Using Image Processing Methods

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.

Keywords: camera calibration, ice detection, ice load measurements, image processing

Procedia PDF Downloads 363
2960 Degradation of Neonicotinoid Insecticides (Acetamiprid and Imidacloprid) Using Biochar of Rice Husk and Fruit Peels

Authors: Mateen Abbas, Abdul Muqeet Khan, Sadia Bashir, Muhammad Awais Khalid, Aamir Ghafoor, Zara Hussain, Mashal Shahid

Abstract:

The irrational use of insecticides in everyday life has drawn attention worldwide towards its harmful effects. To mitigate the toxic effects of insecticides to humans, present study was planned on the degradation/detoxification of the neonicotinoid insecticides including imidacloprid and acetamiprid. Biocarbon of fruit peels (Banana & Watermelon) and biochar (activated or non-activated) of rice husk was utilized as adsorbents for degradation of selected pesticides. Both activated and non-activated biochar were prepared for treatment and then applied in different concentrations (0.5 to 2.0 ppm) and dosage (1.0 to 2.5g) to insecticides (Acetamiprid & Imidacloprid) as well as studied at different times (30-120 minutes). Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) coupled with Photodiode array detector was used to quantify the insecticides. Results depicted that activated biochar of rice husk minimized the 73% concentrations of both insecticides however, watermelon activated biocarbon degraded 72% of imidacloprid and 56% of acetamiprid. Results proved the efficiency of the method employed and it was also inferred that high concentration of biocarbon resulted in larger percentage of degradation. The applied method is cheaper, easy and accessible that can be used to minimize the pesticide residues in animal feed. Degradation using biochar proved significant degradation, eco-friendly and economic method to reduce toxicity of insecticides.

Keywords: insecticides, acetamiprid, imidacloprid, biochar, HPLC

Procedia PDF Downloads 144
2959 Substitution of Fish Meal by Local Vegetable Raw Materials in the Feed of Juvenile Nile Tilapia (Oreochromis Niloticus, Linne, 1758) in Senegal

Authors: Mamadou Sileye Niang

Abstract:

The study is a contribution to the development of a feed for juvenile tilapia Oreochromis niloticus, from local raw materials in order to reduce the cost of feeding farmed tilapia in Senegal. Three feeds were formulated from local raw materials. The basic composition of the tested feeds is as follows: A1 (peanut meal, rice bran, millet bran, maize meal and no fish meal); A2 (peanut meal, rice bran, millet bran, maize meal and 10% fish meal) and A3 (peanut meal, rice bran, millet bran, maize meal and 25% fish meal). All feeds contain 31% protein. The trial compared three batches, in 2 replicates, with different diets. The initial weight of the juveniles was 0.37± 0.5g. The daily ration was distributed at 9 am and 4 pm. After 90 days of the experiment, the final mean weights were 2.45 ± 0.5g; 2.75±0.5g; and 4.67 ± 0.5g for A1, A2, and A3, respectively. A performance test, of which the objective was to compare growth parameters, was conducted. The results of the growth parameters of juveniles fed A3 were significantly higher (p < 0.05) than those fed A1 and A2. The weight growth study shows similar growth during the first month. However, from this date onwards, juveniles fed A3 show a faster growth, which is maintained throughout the experiment. On the other hand, the Protein Efficiency Coefficient and the Survival Rate showed no significant difference. The zootechnical parameters are not significantly different (p > 0.05) between the two tanks for the same feed treatment.

Keywords: nutrition, feed, fingerlings, Oreochromis, local raw materials, feed cost

Procedia PDF Downloads 63
2958 Assessment of the Impact of Family Care Team in the District Health System of Regional Health, Thailand

Authors: Nithra Kitreerawutiwong, Sunsanee Mekrungrongwong, Artitaya Wongwonsin, Chakkraphan Phetphoom, Buaploy Phromjang

Abstract:

Background: Thailand has implemented a district health system based on the concept of primary health care. Since 2014, Family Care Team (FCT) was launched to improve the quality of care through a multidisciplinary team include not only the health sector but also social sector work together. FCT classified into 3 levels: district, sub-district, and community. This system now consists of 66,353 teams, including 3,890 teams at district level, 12,237 teams at the sub-district level, and 50,326 teams at the community level. There is a report regarding assessment the situation and perception on FCT, however, relatively few examined the operationality of this policy. This study aimed to explore the perception of district manager on the process of the implementation of FCT policy and the factors associating to implement FCT in the district health system. Methods/Results: Forty in-depth interviews were performed: 5 of primary care manager at the provincial medical health office, 5 of community hospital director, 5 of district administrative health office, 10 of sub-district health promoting hospital, and 10 of local organization. Semi-structure interview guidelines were used in the discussions. The data was analyzed by thematic analysis. This policy was formulated based on the demographic change and epidemiology transition to serve a long term care for elderly. Facilitator factors are social capital in district health systems such as family health leader and multidisciplinary team. Barrier factors are communication to the frontline provider and local organization. The output of this policy in relation to the structure of FCT is well-defined. Unanticipated effects include training of FCT in community level. Conclusion: Early feedback from healthcare manager is valuable information for the improvement of FCT to function optimally. Moreover, in the long term, health outcome need to be evaluated.

Keywords: family care team, district health system, primary care, qualitative study

Procedia PDF Downloads 403
2957 Wheat Yield and Yield Components under Raised Bed Planting System

Authors: Hamidreza Miri, Farahnaz Momtazi

Abstract:

Wheat is one of the most important crops in Fars province, and because of water shortage, there is a great emphasis on its water use efficiency in the production field. A field experiment was conducted in 2021 and 2022 in order to evaluate wheat yield and its components in raised planting system in Arsanjan, Fars province. The experiment was conducted as a split plot with three irrigation treatments (irrigation equal to evapotranspiration, 80% of evapotranspiration irrigation (moderate drought stress), and 60% of evapotranspiration irrigation (severe drought stress)) as the main plot and three planting methods (conventional flat planting, 60 cm raised bed planting and 120 cm raised bed planting) as a subplot. The results indicated that drought stress significantly decreased traits such as plant height, grain yield, ear number, seed number, and biological yield while increasing seed protein. Raised bed planting significantly increased the traits in comparison with conventional flat planting. So that plating with a 120 cm raised bed increased grain yield by 22.1% and 25.9% in the first and second years, respectively. This increase was 17% for biological, 75 for ear number, and 21% for seed number. Planting in raised bed system reduced the adverse effect of drought stress on wheat traits. In conclusion, based on the observed results planting in raised bed system can be adopted as an appropriate planting pattern for improving yield and water productivity in experimental regions and similar climates.

Keywords: wheat, raised bed planting, drought stress, yield, water use

Procedia PDF Downloads 58
2956 Effect of Al Addition on Microstructure and Properties of NbTiZrCrAl Refractory High Entropy Alloys

Authors: Xiping Guo, Fanglin Ge, Ping Guan

Abstract:

Refractory high entropy alloys are alternative materials expected to be employed at high temperatures. The comprehensive changes of microstructure and properties of NbTiZrCrAl refractory high entropy alloys are systematically studied by adjusting Al content. Five kinds of button alloy ingots with different contents of Al in NbTiZrCrAlX (X=0, 0.2, 0.5, 0.75, 1.0) were prepared by vacuum non-consumable arc melting technology. The microstructure analysis results show that the five alloys are composed of BCC solid solution phase rich in Nb and Ti and Laves phase rich in Cr, Zr, and Al. The addition of Al changes the structure from hypoeutectic to hypereutectic, increases the proportion of Laves phase, and changes the structure from cubic C15 to hexagonal C14. The hardness and fracture toughness of the five alloys were tested at room temperature, and the compressive mechanical properties were tested at 1000℃. The results showed that the addition of Al increased the proportion of Laves phase and decreased the proportion of the BCC phase, thus increasing the hardness and decreasing the fracture toughness at room temperature. However, at 1000℃, the strength of 0.5Al and 0.75Al alloys whose composition is close to the eutectic point is the best, which indicates that the eutectic structure is of great significance for the improvement of high temperature strength of NbTiZrCrAl refractory high entropy alloys. The five alloys were oxidized for 1 h and 20 h in static air at 1000℃. The results show that only the oxide film of 0Al alloy falls off after oxidizing for 1 h at 1000℃. After 20h, the oxide film of all the alloys fell off, but the oxide film of alloys containing Al was more dense and complete. By producing protective oxide Al₂O₃, inhibiting the preferential oxidation of Zr, promoting the preferential oxidation of Ti, and combination of Cr₂O₃ and Nb₂O₅ to form CrNbO₄, Al significantly improves the high temperature oxidation resistance of NbTiZrCrAl refractory high entropy alloys.

Keywords: NbTiZrCrAl, refractory high entropy alloy, al content, microstructural evolution, room temperature mechanical properties, high temperature compressive strength, oxidation resistance

Procedia PDF Downloads 80
2955 Concepts in the Design of Lateral-Load Systems in High Rise Buildings to Reduce Operational Energy Consumption

Authors: Mohamed Ali MiladKrem Salem, Sergio F.Breña, Sanjay R. Arwade, Simi T. Hoque

Abstract:

The location of the main lateral‐load resisting system in high-rise buildings may have positive impacts on sustainability through a reduction in operational energy consumption, and this paper describes an assessment of the accompanying effects on structural performance. It is found that there is a strong influence of design for environmental performance on the structural performance the building, and that systems selected primarily with an eye towards energy use reduction may require substantial additional structural stiffening to meet safety and serviceability limits under lateral load cases. We present a framework for incorporating the environmental costs of meeting structural design requirements through the embodied energy of the core structural materials and also address the issue of economic cost brought on by incorporation of environmental concerns into the selection of the structural system. We address these issues through four case study high-rise buildings with differing structural morphologies (floor plan and core arrangement) and assess each of these building models for cost and embodied energy when the base structural system, which has been suggested by architect Kenneth Yeang based on environmental concerns, is augmented to meet lateral drift requirements under the wind loads prescribed by ASCE 7-10.

Keywords: sustainable, embodied, Outrigger, skyscraper, morphology, efficiency

Procedia PDF Downloads 466
2954 The Effects of Garlic (Allium sativum) in the Diet on Some Serum Biochemical Parameters of Oscar Fish (Astronotus ocellatus)

Authors: Ali Saghaei, Negar Ghotbeddin, Ebrahim Rajabzadeh Ghatrami, Milad Maniat

Abstract:

The use of herbs as natural additives in fish diets are used to enhance the efficiency and safety systems. The use of herbs, garlic, due to the structure and composition of it has beneficial role in human nutrition and animal nutrition. This study was conducted evaluate the effect different levels of garlic (Allium sativum) powder on the some serum biochemical parameters of Oscar fish (Astronotus ocellatus). Fish were divided into four groups fed on diets containing garlic in different levels; 5 g kg˗1, 10 g kg-1, 20 g kg-1, 30 g kg-1 diet and the control group diet was without garlic. A total number of 300 fish was used and Triplicate groups of Oscar fish with initial weight of 12.43±0.24 g were hand-fed to visual satiation at three meals per day. The experiment extended for two months. Total Protein (TP), Albumin (ALB), Globulin (GLB) and Albumin/Globulin (A/G) ratio, were determined. Based on the results, no significant differences were seen among treatments and control groups during the experimental period for TP, ALB, GLB, and A/G ratio (p > 0.05). Although, the highest amount of serum total protein and globulin levels were observed in diet containing 10 g kg-1 of garlic. Also, the highest value of albumin and A/G were observed in diet containing 20 g kg-1 of garlic, but there were no significant difference with other treatments. The results of this study show that addition of garlic Allium sativum to fish diet can improve fish health.

Keywords: garlic (Allium sativum), serum, Oscar fish (Astronotus ocellatus), iran

Procedia PDF Downloads 474
2953 Review of Affected Parameters on Flexural Behavior of Hollow Concrete Beams Reinforced by Steel/GFRP Rebars

Authors: Shahrad Ebrahimzadeh

Abstract:

Nowadays, the main efforts of the researchers aim to constantly evolve new, optimized and efficient construction materials and methods related to reinforced concrete beams. Due to the fewer applied materials and offering a higher structural efficiency compared to solid concrete beams with the same concrete area, hollow reinforced concrete beams (HRCB) internally reinforced with steel rebars have been employed extensively for bridge structural members and high-rise buildings. Many experimental studies have been conducted to investigate the behavior of hollow beams subjected to bending loading and found that the structural performance of HRCBs is critically affected by many design parameters. While the proper design of the HRCBs demonstrated comparable behavior to solid sections, inappropriate design leads beams to be extremely prone to brittle failure. Another potential issue that needs to be further investigated is the replacement of steel bars with suitable materials due to their susceptibility to corrosion. Hence, to develop a reliable construction system, the application of GFRP bars as a non-corroding material has been utilized. Furthermore, this study aims to critically review the different design parameters that affect the flexural performance of the HRCBs and recognize the gaps of knowledge in the better design and more effective use of this construction system.

Keywords: design parameters, experimental investigations, hollow reinforced concrete beams, steel, GFRP, flexural strength

Procedia PDF Downloads 190
2952 Monitoring and Evaluation in Community-Based Tourism: An Analysis and Model

Authors: Ivan Gunass Govender, Andrea Giampiccoli

Abstract:

A developmental state should use community engagement to facilitate socio-economic development for disadvantaged groups and individual members of society through empowerment, social justice, sustainability, and self-reliance. In this regard, community-based tourism (CBT) as a growing market should be an indigenous effort aided by external facilitation. Since this form of tourism presents its own preconditions, characteristics, and challenges, it could be guided by higher education institutions engagement. In particular, the facilitation should not only serve to assist the community members to reach their own goals; but rather also focus on learning through knowledge creation and sharing with the engagement of higher education institutions. While the increased relevance of CBT has produced various CBT manuals (or handbooks/guidelines) documents aimed to ‘teach’ and assist various entities in CBT development, this research aims to analyse the current monitoring & evaluation (M&E) manuals and thereafter, propose an M&E model for CBT. It is important to mention that all too often effective monitoring is seldom carried out thus risking the long-term sustainability and improvement of the CBT ventures. Therefore, the proposed model will also consider some inputs external to the tourism field, but in relation to local economic development (LED) matters from the previously proposed development monitoring and evaluation system framework. M&E should be seen as fundamental components of any CBT initiative, and the whole CBT intervention should be evaluated. In this context, M&E in CBT should go beyond strict ‘numerical’ economic matters and should be understood in a holistic development. In addition, M&E in CBT should not consider issues in various ‘compartments’ such as tourists, tourism attractions, CBT owners/participants, and stakeholder engagement but as interdependent components of a macro-ecosystem. Finally, the external facilitation process should be structured in a way to promote community self-reliance in both the intervention and the M&E process. The research will attempt to propose an M&E model for CBT so as to enhance the CBT possibilities of long-term growth and success through effective collaborations with key stakeholders.

Keywords: community-based tourism, community-engagement, monitoring and evaluation, stakeholders

Procedia PDF Downloads 297
2951 Performance Evaluation of Adsorption Refrigerating Systems

Authors: Nadia Allouache, Omar Rahli

Abstract:

Many promising technologies have been developed to harness the sun's energy. These technologies help in economizing energy and environmental protection. The solar refrigerating systems are one of these important technologies. In addition to environmental benefits and energy saving, adsorption refrigerating systems have many advantages such as lack of moving parts, simplicity of construction and low operating costs. The work aimed to establish the main factors that affect the performances of an adsorption refrigerating system using different geometries of adsorbers and different adsorbent-adsorbate pairs. The numerical modeling of the heat and mass transfer in the system, using various working pairs, such as: activated carbon-ammonia, calcium chlorid-ammonia, activated carbon fiber- methanol and activated carbon AC35-methanol, show that the adsorber design can influence the system performances; The thermal performances of system are better in the annular configuration case. An optimal value of generating temperature is observed in annular adsorber case for which the thermal performance of the cooling system is maximal. While in the plate adsorber, above a certain value of generating temperature, the performance of the system remains almost constant. The environmental conditions such as solar radiation and pressure have a great influence in the system efficiency, and the choice of the working pair depends on the environmental conditions and the geometry of the adsorber.

Keywords: adsorber geometry, numerical modeling, optimal environmental conditions, working pairs.

Procedia PDF Downloads 75
2950 Suitability Evaluation of Human Settlements Using a Global Sensitivity Analysis Method: A Case Study in of China

Authors: Feifei Wu, Pius Babuna, Xiaohua Yang

Abstract:

The suitability evaluation of human settlements over time and space is essential to track potential challenges towards suitable human settlements and provide references for policy-makers. This study established a theoretical framework of human settlements based on the nature, human, economy, society and residence subsystems. Evaluation indicators were determined with the consideration of the coupling effect among subsystems. Based on the extended Fourier amplitude sensitivity test algorithm, the global sensitivity analysis that considered the coupling effect among indicators was used to determine the weights of indicators. The human settlement suitability was evaluated at both subsystems and comprehensive system levels in 30 provinces of China between 2000 and 2016. The findings were as follows: (1) human settlements suitability index (HSSI) values increased significantly in all 30 provinces from 2000 to 2016. Among the five subsystems, the suitability index of the residence subsystem in China exhibited the fastest growinggrowth, fol-lowed by the society and economy subsystems. (2) HSSI in eastern provinces with a developed economy was higher than that in western provinces with an underdeveloped economy. In con-trast, the growing rate of HSSI in eastern provinces was significantly higher than that in western provinces. (3) The inter-provincial difference of in HSSI decreased from 2000 to 2016. For sub-systems, it decreased for the residence system, whereas it increased for the economy system. (4) The suitability of the natural subsystem has become a limiting factor for the improvement of human settlements suitability, especially in economically developed provinces such as Beijing, Shanghai, and Guangdong. The results can be helpful to support decision-making and policy for improving the quality of human settlements in a broad nature, human, economy, society and residence context.

Keywords: human settlements, suitability evaluation, extended fourier amplitude, human settlement suitability

Procedia PDF Downloads 76
2949 Comparison of Water Curing and Carbonation Curing on Mortar Mix Incorporating Cement Kiln Dust

Authors: Devender Sharma, Shweta Goyal

Abstract:

Sustainable development is a key to protect the environment for a secure future. Accelerated carbonation curing is a comparatively new technique for curing of concrete which involves sequestration of carbon dioxide gas into the precast concrete, resulting in improvement of the properties of concrete. This paper presents the results of a study to evaluate the effect of carbonation curing on cement mortars incorporating cement kiln dust (CKD) as partial replacement of cement. The mortar specimens were prepared by replacing cement with CKD in varying percentages of 0-50% by the weight of cement. The specimens were subjected to 12 hour carbonation curing, followed by sealed packing till testing age. The results were compared with the normal curing procedure, in which the specimens were water cured till the testing age. Compressive strength and microstructure of the mix were studied. It was noted that on increasing the percentage of CKD up to 10% by the weight of the cement, no considerable change was observed in the compressive strength. But as the percentage of CKD was further increased, there was a decrease in compressive strength, with strength decreasing up to 40% when 50% of the cement was replaced with CKD. The decrease in strength is due to the lesser lime content in CKD as compared to cement. High ettringite formation was observed in mixes with high percentages of CKD, thus indicating a decrease in the compressive strength. With carbonation curing, an early age strength gain was observed in mortars, even with higher percentages of CKD. The early strength of the carbonation cured mixes was found to be greater than water cured mixes irrespective of the percentage of CKD. 7 days and 28 days compressive strength of the mix was comparable for both the carbonation cured and water cured specimen. The increase in compressive strength can be attributed to the conversion of unstable Ca(OH)2 into stable CaCO3, which causes densification of the mix. CaCO3 precipitation and greater CSH gel formation was clearly observed in the SEM images of carbonation cured specimen, indicating higher compressive strength. Thus, carbonation curing can be used as an efficient method to enhance the properties of concrete.

Keywords: carbonation, cement kiln dust, compressive strength, microstructure

Procedia PDF Downloads 224
2948 Energy Efficient Building Design in Nigeria: An Assessment of the Effect of the Sun on Energy Consumption in Residential Buildings

Authors: Ekele T. Ochedi, Ahmad H. Taki, Birgit Painter

Abstract:

The effect of the sun and its path on thermal comfort and energy consumption in residential buildings in tropical climates constitute a serious concern for designers, building owners, and users. Passive design approaches based on the sun and its path have been identified as a means of reducing energy consumption as well as enhancing thermal comfort in buildings worldwide. Hence, a thorough understanding regarding the sun path is key to achieving this. This is necessary due to energy need, poor energy supply, and distribution, energy poverty, and over-dependence on electric generators for power supply in Nigeria. These challenges call for a change in the approach to energy-related issues, especially in terms of buildings. The aim of this study is to explore the influence of building orientation, glazing and the use of shading devices on residential buildings in Nigeria. This is intended to provide data that will guide designers in the design of energy-efficient residential buildings. The paper used EnergyPlus to analyze a typical semi-detached residential building in Lokoja, Nigeria using hourly weather data for a period of 10 years. Building performance was studied as well as possible improvement regarding different orientations, glazing types and shading devices. The simulation results show some reductions in energy consumption in response to changes in building orientation, types of glazing and the use of shading devices. The results indicate 29.45% reduction in solar gains and 1.90% in annual operative temperature using natural ventilation only. This shows a huge potential to reduce energy consumption and improve people’s well-being through the use of proper building orientation, glazing and appropriate shading devices on building envelope. The study concludes that for a significant reduction in total energy consumption by residential buildings, the design should focus on multiple design options rather than concentrating on one or few building elements. Moreover, the investigation confirms that energy performance modeling can be used by building designers to take advantage of the sun and to evaluate various design options.

Keywords: energy consumption, energy-efficient buildings, glazing, thermal comfort, shading devices, solar gains

Procedia PDF Downloads 205
2947 Achieving Process Stability through Automation and Process Optimization at H Blast Furnace Tata Steel, Jamshedpur

Authors: Krishnendu Mukhopadhyay, Subhashis Kundu, Mayank Tiwari, Sameeran Pani, Padmapal, Uttam Singh

Abstract:

Blast Furnace is a counter current process where burden descends from top and hot gases ascend from bottom and chemically reduce iron oxides into liquid hot metal. One of the major problems of blast furnace operation is the erratic burden descent inside furnace. Sometimes this problem is so acute that burden descent stops resulting in Hanging and instability of the furnace. This problem is very frequent in blast furnaces worldwide and results in huge production losses. This situation becomes more adverse when blast furnaces are operated at low coke rate and high coal injection rate with adverse raw materials like high alumina ore and high coke ash. For last three years, H-Blast Furnace Tata Steel was able to reduce coke rate from 450 kg/thm to 350 kg/thm with an increase in coal injection to 200 kg/thm which are close to world benchmarks and expand profitability. To sustain this regime, elimination of irregularities of blast furnace like hanging, channeling, and scaffolding is very essential. In this paper, sustaining of zero hanging spell for consecutive three years with low coke rate operation by improvement in burden characteristics, burden distribution, changes in slag regime, casting practices and adequate automation of the furnace operation has been illustrated. Models have been created to comprehend and upgrade the blast furnace process understanding. A model has been developed to predict the process of maintaining slag viscosity in desired range to attain proper burden permeability. A channeling prediction model has also been developed to understand channeling symptoms so that early actions can be initiated. The models have helped to a great extent in standardizing the control decisions of operators at H-Blast Furnace of Tata Steel, Jamshedpur and thus achieving process stability for last three years.

Keywords: hanging, channelling, blast furnace, coke

Procedia PDF Downloads 189
2946 Aspects on the Problems of Road Asset Management and Maintenance in Albania

Authors: Diana Bardhi

Abstract:

Road safety is an essential part of the economic and social development of any industrialized country. Decisions to maintain and improve the reliability, functionality of infrastructure structures can only be achieved through integrated road life cycle planning and management. There has always been a tendency to review road maintenance strategies, but there is still no serious and reliable administration due to not only insufficient funds but also problems in the proper reorganization of this system. The safety and performance of the road system depend on the ongoing activity of road maintenance management. For it to be effective, it is necessary to intervene before the degradation has caused irreparable damage or damage with a high economic cost of repairs. Investments in road infrastructure during 2006-2014 show that the life of these projects presents problems related to the maintenance and management of life cycle performance in a wide range of constituent elements. Maintenance planning includes various problems that depend on the degree of degradation of asphalt layers, the degree of damage to road structures (bridges, tunnels, culverts, and the economic planning of resources for their repair). The purpose of this study is first to provide a brief overview of the problems in the field of maintenance and life cycle management of road infrastructure investments, proposing ways to reorganize the sector of administration and maintenance of ongoing roads and secondly testing and evaluating the work and nature of standards of different types of road infrastructure projects, through a methodology consisting of a) development, b) data collection, and c) analysis.

Keywords: infrastructure, maintenance, depreciation, efficiency

Procedia PDF Downloads 148
2945 Effect of Different Commercial Diets and Temperature on the Growth Performance, Feed Intake and Feed Conversion Ratio of Sobaity Seabream Sparidentex hasta

Authors: Seemab Zehra, A. H. W. Mohammed, E. Pantanella, J. L. Q. Laranja, P. H. De Mello, R. Saleh, A. A. Siddik, A. Al Shaikhi, A. M. Al-Suwailem

Abstract:

Two separate feeding trials were conducted to determine the effects of using different commercial diets and water temperatures on the growth performance, feed intake, feed conversion ratio (FCR) and condition factor of sobaity seabream Sparidentex hasta. In experiment I, growth performance, feed intake, protein efficiency ratio (PER), feed conversion ratio (FCR) and survival (%) of sobaity seabream Sparidentex hasta (330.5±2.6 g; 26.9±1.0 cm) were evaluated by four different commercial diets (1, 2, 3 and 4) for 80 days. The daily weight gain was around 3.2 g day-1 with an SGR of 0.7% day-1. Both the FCR and PER in the fish were significantly better in diet 2 that contained 46.36% crude protein and 12.54% crude fat. In experiment II, (99±2.6 g; 17.1±1.0 cm). The fish were cultured in 1m3 tanks supplied with seawater from the Red Sea wherein three different rearing temperatures were set as treatments (24, 28 and 32°C). Fish were fed with a commercial diet based on the results of experiment I (46.4% protein; 20.1 MJ kg-1 energy) to satiation for 96 days. Total weight gain was significantly higher for the fish reared in the 32°C group (158.57 g) followed by the 28°C group (138.25 g), while the lowest weight gain was observed in the 24°C group (116.98 g). The FCR was significantly lower in the 32°C group (1.62) as compared to 28 (1.8) and 24°C (1.85) groups. Based on the results obtained from these preliminary studies (experiment I and II), sobaity seabream can attain better growth performance, FCR and PER at 32°C in the Red Sea by feeding commercial diet 2.

Keywords: Sparidentex hasta, nutrition, FCR, Red Sea, growth performance

Procedia PDF Downloads 73
2944 A Study of Barriers and Challenges Associated with Agriculture E-commerce in Afghanistan

Authors: Khwaja Bahman Qaderi, Noorullah Rafiqee

Abstract:

Background: With today's increasing Internet users, e-commerce has become a viable model for strengthening relationships between sellers, entrepreneurs, and consumers due to its speed, efficiency, and cost reduction. Agriculture is the economic backbone for 80 percent of the Afghan population. According to MCIT statistics, there are currently around 10 million internet users in Afghanistan. With this data, it was expected that Afghan people should have utilized e-commerce in their agricultural aspects, although it appears to be less used. Objective: This study examines the scope of e-commerce in Afghanistan's agriculture enterprises, how they harness the potential of internet users, and what obstacles they face in implementing e-commerce in their businesses. Method: The study distributed a 39-question questionnaire to agribusinesses in five different zones of Afghanistan. After extracting the responses and excluding the incomplete questionnaires, 280 were included in the analysis step to perform a non-parametric sign test. Result: E-commerce in Afghanistan faces four major political, economic, Internet, and technological obstacles, and no company in the country has implemented e-commerce. In addition, e-commerce is still in its infancy among agricultural companies in the country. Internet use is still primarily limited to email and sharing product images on Facebook & Instagram for advertising purposes. There are no companies that conduct international transactions via the Internet. Conclusion: This study contributes to knowing the challenges and barriers that the agriculture e-commerce faces in Afghanistan to find the effective solutions to use the capacity of internet users in the country and increase the sales rate of agricultural products through the Internet.

Keywords: E-commerce, barriers and challenges, agriculture companies, Afghanistan

Procedia PDF Downloads 87
2943 Evaluation of Student Satisfaction Level Towards Anadolu University E-Services through E-Government Model and Importance Performance Analysis Method

Authors: Emrah Ayhan, Puspa Saananta Irfani, Ömer Doğukan Şahin

Abstract:

Public services, which are important for the order and continuity of social life, have begun to transform into electronic services (E-service) with the development of information and communication technologies in recent years. In particular, as a result of the widespread use of the internet and the increase in citizen demands, it has become necessary to provide public services electronically. In addition to facilitating traditional public services, new types of e-services strengthen the interaction, cooperation, accessibility, transparency, citizen participation (e-governance) and accountability between citizens and the state. In this context, the factors in the literature that are considered to influence the citizens’ satisfaction towards e-services will be examined through the example of student satisfaction with the e-services (Anasis, Mergen, E-mail, library, cafeteria and other transactions) offered by Anadolu University (Eskişehir, Türkiye) through university website and mobile application. The data for the analysis will be obtained from the survey research that will be used to measure user satisfaction with university e-services of 1,000 students studying at 9 different faculties and graduate schools of Anadolu University. These data will be analyzed with a unique methodology that uses the E-GovQual model and Importance Performance Analysis (IPA) methods together. The e-GovQual model serves as a framework for evaluating the quality of e-services, allowing a detailed understanding of students' perceptions. On the other hand, the IPA method will be used to determine the performance level of Anadolu University in the provision of e-services and to understand the areas that require improvement and student expectations. Strategic goals and suggestions will be made to decision-makers, students, and researchers in line with the findings obtained in the research. Thus, it is planned to contribute to e-governance and user satisfaction in educational institutions and to reveal practical implications for optimizing online platforms to better serve student needs.

Keywords: e-service, Anadolu university, student satisfaction, e-governance, e-govqual, importance performance analysis

Procedia PDF Downloads 45
2942 Climate Change Impact Due to Timber Product Imports in the UK

Authors: Juan A. Ferriz-Papi, Allan L. Nantel, Talib E. Butt

Abstract:

Buildings are thought to consume about 50% of the total energy in the UK. The use stage in a building life cycle has the largest energy consumption, although different assessments are showing that the construction can equal several years of maintenance and operations. The selection of materials with lower embodied energy is very important to reduce this consumption. For this reason, timber is one adequate material due to its low embodied energy and the capacity to be used as carbon storage. The use of timber in the construction industry is very significant. Sawn wood, for example, is one of the top 5 construction materials consumed in the UK according to National Statistics. Embodied energy for building products considers the energy consumed in extraction and production stages. However, it is not the same consideration if this product is produced locally as when considering the resource produced further afield. Transport is a very relevant matter that profoundly influences in the results of embodied energy. The case of timber use in the UK is important because the balance between imports and exports is far negative, industry consuming more imported timber than produced. Nearly 80% of sawn softwood used in construction is imported. The imports-exports deficit for sawn wood accounted for more than 180 million pounds during the first four-month period of 2016. More than 85% of these imports come from Europe (83% from the EU). The aim of this study is to analyze climate change impact due to transport for timber products consumed in the UK. An approximate estimation of energy consumed and carbon emissions are calculated considering the timber product’s import origin. The results are compared to the total consumption of each product, estimating the impact of transport on the final embodied energy and carbon emissions. The analysis of these results can help deduce that one big challenge for climate change is the reduction of external dependency, with the associated improvement of internal production of timber products. A study of different types of timber products produced in the UK and abroad is developed to understand the possibilities for this country to improve sustainability and self-management. Reuse and recycle possibilities are also considered.

Keywords: embodied energy, climate change, CO2 emissions, timber, transport

Procedia PDF Downloads 337
2941 Design, Construction, Technical and Economic Evaluation of a Solar Water Desalination Device with Two Heat Exchangers and a Photovoltaic System

Authors: Mehdi Bakhtiarzadeh, Reza Efatnejad, Kambiz Rezapour Rezapour

Abstract:

Due to the limited resources of fossil fuels and their harmful effects on the environment and human health, research on renewable energy applications in industrial and scientific communities has become particularly important. Only one percent of freshwater resources are available for use in the domestic, agricultural, and industrial sectors. On the other hand, the rapid growth of industry and the increase of population in most countries of the world, including Iran, have led to an increase in demand for freshwater. Among renewable energies, there is the potential of solar energy in Iran. As a result, solar distillation systems can be used as a solution to supply fresh water in remote rural areas. Therefore, in the present study, a solar water desalination device was designed and manufactured using two heat exchangers and a photovoltaic system. Its evaluation was done during September and October of 2020. During the evaluation of the device, environmental variables such as total solar radiation, ambient temperature and cooling tower temperature were recorded at intervals of one hour from 9 am to 5 pm. The effect of these variables on solar concentrator performance, heat exchanger, and daily freshwater production was evaluated. The results showed that using two heat exchangers and a photovoltaic system has led to the daily production of 5 liters of fresh water and 46% economic efficiency.

Keywords: solar water desalination, heat exchanger, photovoltaic system, technical and economic evaluation

Procedia PDF Downloads 162
2940 Optimal Consume of NaOH in Starches Gelatinization for Froth Flotation

Authors: André C. Silva, Débora N. Sousa, Elenice M. S. Silva, Thales P. Fontes, Raphael S. Tomaz

Abstract:

Starches are widely used as depressant in froth flotation operations in Brazil due to their efficiency, increasing the selectivity in the inverse flotation of quartz depressing iron ore. Starches market have been growing and improving in recent years, leading to better products attending the requirements of the mineral industry. The major source of starch used for iron ore is corn starch, which needs to be gelatinized with sodium hydroxide (NaOH) prior to use. This stage has a direct impact on industrials costs, once the lowest consumption of NaOH in gelatinization provides better control of the pH in the froth flotation and reduces the amount of electrolytes present in the pulp. In order to evaluate the gelatinization degree of different starches and flour were subjected to the addiction of NaOH and temperature variation experiments. Samples of starch (corn, cassava, HIPIX 100, HIPIX 101 and HIPIX 102 commercialized by Ingredion) and flour (cassava and potato) were tested. The starch samples were characterized through Scanning Electronic Microscopy and the amylose content were determined through spectrometry, swelling and solubility tests. The gelatinization was carried out through titration with NaOH, keeping the solution temperature constant at 40 oC. At the end of the tests, the optimal amount of NaOH consumed to gelatinize the starch or flour from different botanical sources was established and a correlation between the content of amylopectin in the starch and the starch/NaOH ratio needed for its gelatinization.

Keywords: froth flotation, gelatinization, sodium hydroxide, starches and flours

Procedia PDF Downloads 362
2939 PAPR Reduction of FBMC Using Sliding Window Tone Reservation Active Constellation Extension Technique

Authors: S. Anuradha, V. Sandeep Kumar

Abstract:

The high Peak to Average Power Ratio (PAR) in Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) can significantly reduce power efficiency and performance. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems using Tone Reservation (TR) technique. Due to the overlapping structure of FBMCOQAM signals, directly applying TR schemes of OFDM systems to FBMC-OQAM systems is not effective. We improve the tone reservation (TR) technique by employing sliding window with Active Constellation Extension for the PAPR reduction of FBMC-OQAM signals, called sliding window tone reservation Active Constellation Extension (SW-TRACE) technique. The proposed SW-TRACE technique uses the peak reduction tones (PRTs) of several consecutive data blocks to cancel the peaks of the FBMC-OQAM signal inside a window, with dynamically extending outer constellation points in active(data-carrying) channels, within margin-preserving constraints, in order to minimize the peak magnitude. Analysis and simulation results compared to the existing Tone Reservation (TR) technique for FBMC/OQAM system. The proposed method SW-TRACE has better PAPR performance and lower computational complexity.

Keywords: FBMC-OQAM, peak-to-average power ratio, sliding window, tone reservation Active Constellation Extension

Procedia PDF Downloads 437
2938 Chatter Prediction of Curved Thin-walled Parts Considering Variation of Dynamic Characteristics Based on Acoustic Signals Acquisition

Authors: Damous Mohamed, Zeroudi Nasredine

Abstract:

High-speed milling of thin-walled parts with complex curvilinear profiles often encounters machining instability, commonly referred to as chatter. This phenomenon arises due to the dynamic interaction between the cutting tool and the part, exacerbated by the part's low rigidity and varying dynamic characteristics along the tool path. This research presents a dynamic model specifically developed to predict machining stability for such curved thin-walled components. The model employs the semi-discretization method, segmenting the tool trajectory into small, straight elements to locally approximate the behavior of an inclined plane. Dynamic characteristics for each segment are extracted through experimental modal analysis and incorporated into the simulation model to generate global stability lobe diagrams. Validation of the model is conducted through cutting tests where acoustic intensity is measured to detect instabilities. The experimental data align closely with the predicted stability limits, confirming the model's accuracy and effectiveness. This work provides a comprehensive approach to enhancing machining stability predictions, thereby improving the efficiency and quality of high-speed milling operations for thin-walled parts.

Keywords: chatter, curved thin-walled part, semi-discretization method, stability lobe diagrams

Procedia PDF Downloads 12
2937 Numerical Modeling and Prediction of Nanoscale Transport Phenomena in Vertically Aligned Carbon Nanotube Catalyst Layers by the Lattice Boltzmann Simulation

Authors: Seungho Shin, Keunwoo Choi, Ali Akbar, Sukkee Um

Abstract:

In this study, the nanoscale transport properties and catalyst utilization of vertically aligned carbon nanotube (VACNT) catalyst layers are computationally predicted by the three-dimensional lattice Boltzmann simulation based on the quasi-random nanostructural model in pursuance of fuel cell catalyst performance improvement. A series of catalyst layers are randomly generated with statistical significance at the 95% confidence level to reflect the heterogeneity of the catalyst layer nanostructures. The nanoscale gas transport phenomena inside the catalyst layers are simulated by the D3Q19 (i.e., three-dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics are mathematically modeled in terms of structural properties. Considering the nanoscale reactant transport phenomena, a transport-based effective catalyst utilization factor is defined and statistically analyzed to determine the structure-transport influence on catalyst utilization. The tortuosity of the reactant mass transport path of VACNT catalyst layers is directly calculated from the streaklines. Subsequently, the corresponding effective mass diffusion coefficient is statistically predicted by applying the pre-estimated tortuosity factors to the Knudsen diffusion coefficient in the VACNT catalyst layers. The statistical estimation results clearly indicate that the morphological structures of VACNT catalyst layers reduce the tortuosity of reactant mass transport path when compared to conventional catalyst layer and significantly improve consequential effective mass diffusion coefficient of VACNT catalyst layer. Furthermore, catalyst utilization of the VACNT catalyst layer is substantially improved by enhanced mass diffusion and electric current paths despite the relatively poor interconnections of the ion transport paths.

Keywords: Lattice Boltzmann method, nano transport phenomena, polymer electrolyte fuel cells, vertically aligned carbon nanotube

Procedia PDF Downloads 193
2936 The Need for Implementing Building Information Modelling (BIM) and Integrated Project Delivery (IPD) in the Construction Project: A Case Study in UAE

Authors: C. W. F. Che Wan Putra, M. Alshawi, M. S. Al Ahbabi, M. Jabakhanji

Abstract:

Much of the waste that is generated throughout the life-cycle of a building is mainly related to project stakeholders not having access to information that others have created. This results in waste and high costs. Over the past decade, however, the industry reacted to these challenges by adopting effective procurement approaches, such as partnering and design and build, to improve collaboration and communication among projects’ stakeholders. Most recently, there is a focus on creating and reusing digital project information of stakeholders throughout the life-cycle to facilitate the exchange of information among partners. This shift is based around BIM (Building Information Modelling) and collaborative environment (IPD). The power of collaborative BIM goes beyond improving efficiency. Sustainability, perhaps the most important challenge for the design and construction community, is at the intersection of BIM and collaborative project delivery, drawing strength from both. Due to these benefits, a research study has been carried out to investigate the need of BIM and IPD, on a large scale construction project which is procured on a traditional approach, i.e. design-bid-build. A qualitative research work including a semi-structured interview with project partners was conducted on a typical project in the UAE, whereby the selected project suffered from severe delays and cost overrun. This paper aims to bring about clear evidence to what most likely to happen to a typical construction project in spite of employing very good consultants, project manager and contractors and how these problems could have been avoided if BIM and IPD were deployed.

Keywords: building information modelling (BIM), integrated project delivery (IPD), collaborative environment, case study

Procedia PDF Downloads 397
2935 Optimal Design of Linear Generator to Recharge the Smartphone Battery

Authors: Jin Ho Kim, Yujeong Shin, Seong-Jin Cho, Dong-Jin Kim, U-Syn Ha

Abstract:

Due to the development of the information industry and technologies, cellular phones have must not only function to communicate, but also have functions such as the Internet, e-banking, entertainment, etc. These phones are called smartphones. The performance of smartphones has improved, because of the various functions of smartphones, and the capacity of the battery has been increased gradually. Recently, linear generators have been embedded in smartphones in order to recharge the smartphone's battery. In this study, optimization is performed and an array change of permanent magnets is examined in order to increase efficiency. We propose an optimal design using design of experiments (DOE) to maximize the generated induced voltage. The thickness of the poleshoe and permanent magnet (PM), the height of the poleshoe and PM, and the thickness of the coil are determined to be design variables. We made 25 sampling points using an orthogonal array according to four design variables. We performed electromagnetic finite element analysis to predict the generated induced voltage using the commercial electromagnetic analysis software ANSYS Maxwell. Then, we made an approximate model using the Kriging algorithm, and derived optimal values of the design variables using an evolutionary algorithm. The commercial optimization software PIAnO (Process Integration, Automation, and Optimization) was used with these algorithms. The result of the optimization shows that the generated induced voltage is improved.

Keywords: smartphone, linear generator, design of experiment, approximate model, optimal design

Procedia PDF Downloads 341
2934 Performance Evaluations of Lap Spliced Joint of Decked Bulb-Tee Type Modular Bridge

Authors: Sang-Yoon Lee, Jae-Joon Song

Abstract:

Precast decked bulb-tee girder or precast deck generally adopts in-situ connections of loop joints. Loop joint could be an effective method to connect precast concrete members where the width of joint is not wide sufficiently to allow the lap splice length of reinforcing bars. However, the regulation for the minimum bend diameter of looped rebar gives limitation not to reduce the thickness of precast concrete member; thus, in-situ connection adopting loop joint place a constraint on improving the structural efficiency of precast concrete member. Ultra high strength concrete (UHSC) is effective on reduce the development and lap splice length of reinforcing bar. In-situ connection with UHSC gives a merit to reduce connection width. This study intends to investigate the details of the longitudinal joint to be applied in the precast modular bridge using decked bulb-tee girder that has been recently developed in Korea. This paper presents the details applying UHSC and lap splices of straight reinforcement and results of tests. Several tests were performed on flexural specimens with longitudinal joints to verify the length of the lap splices and amount of transverse reinforcement, and to examine the flexural strength of the longitudinal joint.

Keywords: precast structure, decked bulb-tee girder, in-situ connection, UHSC, modular bridge

Procedia PDF Downloads 454
2933 Comparative Syudy Of Heat Transfer Capacity Limits of Heat Pipe

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also observed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 365
2932 Educating the Education Student: Technology as the Link between Theory and Praxis

Authors: Rochelle Botha-Marais

Abstract:

When lecturing future educators in South Africa, praxis is an indispensable aspect that is often neglected. Without properly understanding how the theory taught in lecture halls relates to their future position as educators, we can not expect these students to be fully equipped future teachers. To enable education students at the Vaal Campus of the North West University - who have the Afrikaans language as major - to discover the link between theory and practice, the author created an assignment on phonetics in which the use of technology was incorporated. In the past, students had to submit an assignment or worksheet and they did not get the opportunity to apply their newly found knowledge in a practical manner. For potential future teachers, this application is essential. This paper will demonstrate how technology is used in the second year Afrikaans education module to promote student engagement and self-directed learning. Students were introduced to innovative new technologies alongside more familiar applications to shape a 21st century learning environment where students can think, communicate, solve problems, collaborate and take responsibility for their own teaching and learning. The paper will also reflect on student feedback pertaining the use and efficiency of technology in the Afrikaans module and the possible impact thereof on their own teaching and learning landscape. The aim of this paper is to showcase how technology can be used to maximize the students learning experience and equip future education students with the tools and knowledge to introduce technology-enhanced learning in their own teaching practice.

Keywords: education students, theory and practice, self-directed learning, student engagement, technology

Procedia PDF Downloads 282