Search results for: I. Made Joni
44 Role of Dedicated Medical Social Worker in Fund Mobilisation and Economic Evaluation in Ovarian Cancer: Experience from a Tertiary Referral Centre in Eastern India
Authors: Aparajita Bhattacharya, Mousumi Dutta, Zakir Husain, Dionne Sequeira, Asima Mukhopadhyay
Abstract:
Background: Tata Medical Centre (TMC), Kolkata is a major cancer referral centre in Eastern India and neighbouring countries providing state of the art facilities; however, it is a non-profit organisation with patients requiring to pay at subsidised rates. Although a system for social assessment and applying for governmental/ non-governmental (NGO) funds is in place, access is challenging. Amongst gynaecological cancers (GC), ovarian cancer (OC) is associated with the highest treatment cost; majority of which is required at the beginning when complex surgery is performed and funding arrangements cannot be made in time. We therefore appointed a dedicated Medical Social Worker (MSW) in 2016, supported by NGO for GC patients in order to assist patients/family members to access/avail these funds more readily and assist in economic evaluation for both direct and opportunity costs. Objectives: To reflect on our experience and challenges in collecting data on economic evaluation of cancer patients and compare success rates in achieving fund mobilization after introduction of MSW. Methods: A Retrospective survey. Patients with OC and their relatives were seen by the MSW during the initial outpatients department visit and followed though till discharge from the hospital and during follow-up visits. Assistance was provided in preparing the essential documents/paperwork/contacts for the funding agencies including both governmental (Chief-Minister/Prime-Minister/President) and NGO sources. In addition, a detailed questionnaire was filled up for economic assessment of direct/opportunity costs during the entire treatment and 12 months follow up period which forms a part of the study called HEPTROC (Health economic evaluation of primary treatment for ovarian cancer) developed in collaboration with economics departments of Universities. Results: In 2015, 102 patients were operated for OC; only 16 patients (15.68 %) had availed funding of a total sum of INR 1640000 through the hospital system for social assessment. Following challenges were faced by majority of the relatives: 1. Gathering important documents/proper contact details for governmental funding bodies and difficulty in following up the current status 3. Late arrival of funds. In contrast in 2016, 104 OC patients underwent surgery; the direct cost of treatment was significantly higher (median, INR 300000- 400000) compared to other GCs (n=274). 98/104 (94.23%) OC patients could be helped to apply for funds and 90/104(86.56%) patients received funding amounting to a total of INR 10897000. There has been a tenfold increase in funds mobilized in 2016 after the introduction of dedicated MSW in GC. So far, in 2017 (till June), 46/54(85.18%) OC patients applied for funds and 37/54(68.51%) patients have received funding. In a qualitative survey, all patients appreciated the role of the MSW who subsequently became the key worker for patient follow up and the chief portal for patient reported outcome monitoring. Data collection quality for the HEPTROC study was improved when questionnaires were administered by the MSW compared to researchers. Conclusion: Introduction of cancer specific MSW can expedite the availability of funds required for cancer patients and it can positively impact on patient satisfaction and outcome reporting. The economic assessment will influence fund allocation and decision for policymaking in ovarian cancer. Acknowledgement: Jivdaya Foundation Dallas, Texas.Keywords: economic evaluation, funding, medical social worker, ovarian cancer
Procedia PDF Downloads 15443 An Innovation Decision Process View in an Adoption of Total Laboratory Automation
Authors: Chia-Jung Chen, Yu-Chi Hsu, June-Dong Lin, Kun-Chen Chan, Chieh-Tien Wang, Li-Ching Wu, Chung-Feng Liu
Abstract:
With fast advances in healthcare technology, various total laboratory automation (TLA) processes have been proposed. However, adopting TLA needs quite high funding. This study explores an early adoption experience by Taiwan’s large-scale hospital group, the Chimei Hospital Group (CMG), which owns three branch hospitals (Yongkang, Liouying and Chiali, in order by service scale), based on the five stages of Everett Rogers’ Diffusion Decision Process. 1.Knowledge stage: Over the years, two weaknesses exists in laboratory department of CMG: 1) only a few examination categories (e.g., sugar testing and HbA1c) can now be completed and reported within a day during an outpatient clinical visit; 2) the Yongkang Hospital laboratory space is dispersed across three buildings, resulting in duplicated investment in analysis instruments and inconvenient artificial specimen transportation. Thus, the senior management of the department raised a crucial question, was it time to process the redesign of the laboratory department? 2.Persuasion stage: At the end of 2013, Yongkang Hospital’s new building and restructuring project created a great opportunity for the redesign of the laboratory department. However, not all laboratory colleagues had the consensus for change. Thus, the top managers arranged a series of benchmark visits to stimulate colleagues into being aware of and accepting TLA. Later, the director of the department proposed a formal report to the top management of CMG with the results of the benchmark visits, preliminary feasibility analysis, potential benefits and so on. 3.Decision stage: This TLA suggestion was well-supported by the top management of CMG and, finally, they made a decision to carry out the project with an instrument-leasing strategy. After the announcement of a request for proposal and several vendor briefings, CMG confirmed their laboratory automation architecture and finally completed the contracts. At the same time, a cross-department project team was formed and the laboratory department assigned a section leader to the National Taiwan University Hospital for one month of relevant training. 4.Implementation stage: During the implementation, the project team called for regular meetings to review the results of the operations and to offer an immediate response to the adjustment. The main project tasks included: 1) completion of the preparatory work for beginning the automation procedures; 2) ensuring information security and privacy protection; 3) formulating automated examination process protocols; 4) evaluating the performance of new instruments and the instrument connectivity; 5)ensuring good integration with hospital information systems (HIS)/laboratory information systems (LIS); and 6) ensuring continued compliance with ISO 15189 certification. 5.Confirmation stage: In short, the core process changes include: 1) cancellation of signature seals on the specimen tubes; 2) transfer of daily examination reports to a data warehouse; 3) routine pre-admission blood drawing and formal inpatient morning blood drawing can be incorporated into an automatically-prepared tube mechanism. The study summarizes below the continuous improvement orientations: (1) Flexible reference range set-up for new instruments in LIS. (2) Restructure of the specimen category. (3) Continuous review and improvements to the examination process. (4) Whether installing the tube (specimen) delivery tracks need further evaluation.Keywords: innovation decision process, total laboratory automation, health care
Procedia PDF Downloads 41942 Solid State Fermentation: A Technological Alternative for Enriching Bioavailability of Underutilized Crops
Authors: Vipin Bhandari, Anupama Singh, Kopal Gupta
Abstract:
Solid state fermentation, an eminent bioconversion technique for converting many biological substrates into a value-added product, has proven its role in the biotransformation of crops by nutritionally enriching them. Hence, an effort was made for nutritional enhancement of underutilized crops viz. barnyard millet, amaranthus and horse gram based composite flour using SSF. The grains were given pre-treatments before fermentation and these pre-treatments proved quite effective in diminishing the level of antinutrients in grains and in improving their nutritional characteristics. The present study deals with the enhancement of nutritional characteristics of underutilized crops viz. barnyard millet, amaranthus and horsegram based composite flour using solid state fermentation (SSF) as the principle bioconversion technique to convert the composite flour substrate into a nutritionally enriched value added product. Response surface methodology was used to design the experiments. The variables selected for the fermentation experiments were substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content having three levels of each. Seventeen designed experiments were conducted randomly to find the effect of these variables on microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index. The data from all experiments were analyzed using Design Expert 8.0.6 and the response functions were developed using multiple regression analysis and second order models were fitted for each response. Results revealed that pretreatments proved quite handful in diminishing the level of antinutrients and thus enhancing the nutritional value of the grains appreciably, for instance, there was about 23% reduction in phytic acid levels after decortication of barnyard millet. The carbohydrate content of the decorticated barnyard millet increased to 81.5% from initial value of 65.2%. Similarly popping and puffing of horsegram and amaranthus respectively greatly reduced the trypsin inhibitor activity. Puffing of amaranthus also reduced the tannin content appreciably. Bacillus subtilis was used as the inoculating specie since it is known to produce phytases in solid state fermentation systems. These phytases remarkably reduce the phytic acid content which acts as a major antinutritional factor in food grains. Results of solid state fermentation experiments revealed that phytic acid levels reduced appreciably when fermentation was allowed to continue for 72 hours at a temperature of 35°C. Particle size and substrate blend ratio also affected the responses positively. All the parameters viz. substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content affected the responses namely microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index but the effect of fermentation time was found to be most significant on all the responses. Statistical analysis resulted in the optimum conditions (particle size 355µ, substrate blend ratio 50:20:30 of barnyard millet, amaranthus and horsegram respectively, fermentation time 68 hrs, fermentation temperature 35°C and moisture content 47%) for maximum reduction in phytic acid. The model F- value was found to be highly significant at 1% level of significance in case of all the responses. Hence, second order model could be fitted to predict all the dependent parameters. The effect of fermentation time was found to be most significant as compared to other variables.Keywords: composite flour, solid state fermentation, underutilized crops, cereals, fermentation technology, food processing
Procedia PDF Downloads 32741 Interpretable Deep Learning Models for Medical Condition Identification
Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji
Abstract:
Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.Keywords: deep learning, interpretability, attention, big data, medical conditions
Procedia PDF Downloads 9140 Nanocarriers Made of Amino Acid Based Biodegradable Polymers: Poly(Ester Amide) and Related Cationic and PEGylating Polymers
Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava
Abstract:
Polymeric nanoparticles-based drug delivery systems and therapeutics have a great potential in the treatment of a numerous diseases, due to they are characterizing the flexible properties which is giving possibility to modify their structures with a complex definition over their structures, compositions and properties. Important characteristics of the polymeric nanoparticles (PNPs) used as drug carriers are high particle’s stability, high carrier capacity, feasibility of encapsulation of both hydrophilic and hydrophobic drugs, and feasibility of variable routes of administration, including oral application and inhalation; NPs are especially effective for intracellular drug delivery since they penetrate into the cells’ interior though endocytosis. A variety of PNPs based drug delivery systems including charged and neutral, degradable and non-degradable polymers of both natural and synthetic origin have been developed. Among these huge varieties the biodegradable PNPs which can be cleared from the body after the fulfillment of their function could be considered as one of the most promising. For intracellular uptake it is highly desirable to have positively charged PNPs since they can penetrate deep into cell membranes. For long-lasting circulation of PNPs in the body it is important they have so called “stealth coatings” to protect them from the attack of immune system of the organism. One of the effective ways to render the PNPs “invisible” for immune system is their PEGylation which represent the process of pretreatment of polyethylene glycol (PEG) on the surface of PNPs. The present work deals with constructing PNPs from amino acid based biodegradable polymers – regular poly(ester amide) (PEA) composed of sebacic acid, leucine and 1,6-hexandiol (labeled as 8L6), cationic PEA composed of sebacic acid, arginine and 1,6-hexandiol (labeled as 8R6), and comb-like co-PEA composed of sebacic acid, malic acid, leucine and 1,6-hexandiol (labeled as PEG-PEA). The PNPs were fabricated using the polymer deposition/solvent displacement (nanoprecipitation) method. The regular PEA 8L6 form stable negatively charged (zeta-potential within 2-12 mV) PNPs of desired size (within 150-200 nm) in the presence of various surfactants (Tween 20, Tween 80, Brij 010, etc.). Blending the PEAs 8L6 and 8R6 gave the 130-140 nm sized positively charged PNPs having zeta-potential within +20 ÷ +28 mV depending 8L6/8R6 ratio. The PEGylating PEA PEG-PEA was synthesized by interaction of epoxy-co-PEA [8L6]0,5-[tES-L6]0,5 with mPEG-amine-2000 The stable and positively charged PNPs were fabricated using pure PEG-PEA as a surfactant. A firm anchoring of the PEG-PEA with 8L6/8R6 based PNPs (owing to a high afinity of the backbones of all three PEAs) provided good stabilization of the NPs. In vitro biocompatibility study of the new PNPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed they are biocompatible. Considering high stability and cell compatibility of the elaborated PNPs one can conclude that they are promising for subsequent therapeutic applications. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 “New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications”.Keywords: biodegradable poly(ester amide)s, cationic poly(ester amide), pegylating poly(ester amide), nanoparticles
Procedia PDF Downloads 12139 Sinhala Sign Language to Grammatically Correct Sentences using NLP
Authors: Anjalika Fernando, Banuka Athuraliya
Abstract:
This paper presents a comprehensive approach for converting Sinhala Sign Language (SSL) into grammatically correct sentences using Natural Language Processing (NLP) techniques in real-time. While previous studies have explored various aspects of SSL translation, the research gap lies in the absence of grammar checking for SSL. This work aims to bridge this gap by proposing a two-stage methodology that leverages deep learning models to detect signs and translate them into coherent sentences, ensuring grammatical accuracy. The first stage of the approach involves the utilization of a Long Short-Term Memory (LSTM) deep learning model to recognize and interpret SSL signs. By training the LSTM model on a dataset of SSL gestures, it learns to accurately classify and translate these signs into textual representations. The LSTM model achieves a commendable accuracy rate of 94%, demonstrating its effectiveness in accurately recognizing and translating SSL gestures. Building upon the successful recognition and translation of SSL signs, the second stage of the methodology focuses on improving the grammatical correctness of the translated sentences. The project employs a Neural Machine Translation (NMT) architecture, consisting of an encoder and decoder with LSTM components, to enhance the syntactical structure of the generated sentences. By training the NMT model on a parallel corpus of Sinhala wrong sentences and their corresponding grammatically correct translations, it learns to generate coherent and grammatically accurate sentences. The NMT model achieves an impressive accuracy rate of 98%, affirming its capability to produce linguistically sound translations. The proposed approach offers significant contributions to the field of SSL translation and grammar correction. Addressing the critical issue of grammar checking, it enhances the usability and reliability of SSL translation systems, facilitating effective communication between hearing-impaired and non-sign language users. Furthermore, the integration of deep learning techniques, such as LSTM and NMT, ensures the accuracy and robustness of the translation process. This research holds great potential for practical applications, including educational platforms, accessibility tools, and communication aids for the hearing-impaired. Furthermore, it lays the foundation for future advancements in SSL translation systems, fostering inclusive and equal opportunities for the deaf community. Future work includes expanding the existing datasets to further improve the accuracy and generalization of the SSL translation system. Additionally, the development of a dedicated mobile application would enhance the accessibility and convenience of SSL translation on handheld devices. Furthermore, efforts will be made to enhance the current application for educational purposes, enabling individuals to learn and practice SSL more effectively. Another area of future exploration involves enabling two-way communication, allowing seamless interaction between sign-language users and non-sign-language users.In conclusion, this paper presents a novel approach for converting Sinhala Sign Language gestures into grammatically correct sentences using NLP techniques in real time. The two-stage methodology, comprising an LSTM model for sign detection and translation and an NMT model for grammar correction, achieves high accuracy rates of 94% and 98%, respectively. By addressing the lack of grammar checking in existing SSL translation research, this work contributes significantly to the development of more accurate and reliable SSL translation systems, thereby fostering effective communication and inclusivity for the hearing-impaired communityKeywords: Sinhala sign language, sign Language, NLP, LSTM, NMT
Procedia PDF Downloads 10438 Oxidation Behavior of Ferritic Stainless Steel Interconnects Modified Using Nanoparticles of Rare-Earth Elements under Operating Conditions Specific to Solid Oxide Electrolyzer Cells
Authors: Łukasz Mazur, Kamil Domaradzki, Bartosz Kamecki, Justyna Ignaczak, Sebastian Molin, Aleksander Gil, Tomasz Brylewski
Abstract:
The rising global power consumption necessitates the development of new energy storage solutions. Prospective technologies include solid oxide electrolyzer cells (SOECs), which convert surplus electrical energy into hydrogen. An electrolyzer cell consists of a porous anode, and cathode, and a dense electrolyte. Power output is increased by connecting cells into stacks using interconnects. Interconnects are currently made from high-chromium ferritic steels – for example, Crofer 22 APU – which exhibit high oxidation resistance and a thermal expansion coefficient that is similar to that of electrode materials. These materials have one disadvantage – their area-specific resistance (ASR) gradually increases due to the formation of a Cr₂O₃ scale on their surface as a result of oxidation. The chromia in the scale also reacts with the water vapor present in the reaction media, forming volatile chromium oxyhydroxides, which in turn react with electrode materials and cause their deterioration. The electrochemical efficiency of SOECs thus decreases. To mitigate this, the interconnect surface can be modified with protective-conducting coatings of spinel or other materials. The high prices of SOEC components -especially the Crofer 22 APU- have prevented their widespread adoption. More inexpensive counterparts, therefore, need to be found, and their properties need to be enhanced to make them viable. Candidates include the Nirosta 4016/1,4016 low-chromium ferritic steel with a chromium content of just 16.3 wt%. This steel's resistance to high-temperature oxidation was improved by depositing Gd₂O₃ nanoparticles on its surface via either dip coating or electrolysis. Modification with CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles deposited by means of spray pyrolysis was also tested. These methods were selected because of their low cost and simplicity of application. The aim of this study was to investigate the oxidation kinetics of Nirosta 4016/1,4016 modified using the afore-mentioned methods and to subsequently measure the obtained samples' ASR. The samples were oxidized for 100 h in the air as well as air/H₂O and Ar/H₂/H₂O mixtures at 1073 K. Such conditions reflect those found in the anode and cathode operating space during real-life use of SOECs. Phase and chemical composition and the microstructure of oxidation products were determined using XRD and SEM-EDS. ASR was measured over the range of 623-1073 K using a four-point, two-probe DC technique. The results indicate that the applied nanoparticles improve the oxidation resistance and electrical properties of the studied layered systems. The properties of individual systems varied significantly depending on the applied reaction medium. Gd₂O₃ nanoparticles improved oxidation resistance to a greater degree than either CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles. On the other hand, the cerium-containing nanoparticles improved electrical properties regardless of the reaction medium. The ASR values of all surface-modified steel samples were below the 0.1 Ω.cm² threshold set for interconnect materials, which was exceeded in the case of the unmodified reference sample. It can be concluded that the applied modifications increased the oxidation resistance of Nirosta 4016/1.4016 to a level that allows its use as SOEC interconnect material. Acknowledgments: Funding of Research project supported by program "Excellence initiative – research university" for the AGH University of Krakow" is gratefully acknowledged (TB).Keywords: cerium oxide, ferritic stainless steel, gadolinium oxide, interconnect, SOEC
Procedia PDF Downloads 8737 Social Enterprises over Microfinance Institutions: The Challenges of Governance and Management
Authors: Dean Sinković, Tea Golja, Morena Paulišić
Abstract:
Upon the end of the vicious war in former Yugoslavia in 1995, international development community widely promoted microfinance as the key development framework to eradicate poverty, create jobs, increase income. Widespread claims were made that microfinance institutions would play vital role in creating a bedrock for sustainable ‘bottom-up’ economic development trajectory, thus, helping newly formed states to find proper way from economic post-war depression. This uplifting neoliberal narrative has no empirical support in the Republic of Croatia. Firstly, the type of enterprises created via microfinance sector are small, unskilled, labor intensive, no technology and with huge debt burden. This results in extremely high failure rates of microenterprises and poor individuals plunging into even deeper poverty, acute indebtedness and social marginalization. Secondly, evidence shows that microcredit is exact reflection of dangerous and destructive sub-prime lending model with ‘boom-to-bust’ scenarios in which benefits are solely extracted by the tiny financial and political elite working around the microfinance sector. We argue that microcredit providers are not proper financial structures through which developing countries should look way out of underdevelopment and poverty. In order to achieve sustainable long-term growth goals, public policy needs to focus on creating, supporting and facilitating the small and mid-size enterprises development. These enterprises should be technically sophisticated, capable of creating new capabilities and innovations, with managerial expertise (skills formation) and inter-connected with other organizations (i.e. clusters, networks, supply chains, etc.). Evidence from South-East Europe suggest that such structures are not created via microfinance model but can be fostered through various forms of social enterprises. Various legal entities may operate as social enterprises: limited liability private company, limited liability public company, cooperative, associations, foundations, institutions, Mutual Insurances and Credit union. Our main hypothesis is that cooperatives are potential agents of social and economic transformation and community development in the region. Financial cooperatives are structures that can foster more efficient allocation of financial resources involving deeper democratic arrangements and more socially just outcomes. In Croatia, pioneers of the first social enterprises were civil society organizations whilst forming a separated legal entity. (i.e. cooperatives, associations, commercial companies working on the principles of returning the investment to the founder). Ever since 1995 cooperatives in Croatia have not grown by pursuing their own internal growth but mostly by relying on external financial support. The greater part of today’s registered cooperatives tend to be agricultural (39%), followed by war veterans cooperatives (38%) and others. There are no financial cooperatives in Croatia. Due to the above mentioned we look at the historical developments and the prevailing social enterprises forms and discuss their advantages and disadvantages as potential agents for social and economic transformation and community development in the region. There is an evident lack of understanding of this business model and of its potential for social and economic development followed by an unfavorable institutional environment. Thus, we discuss the role of governance and management in the formation of social enterprises in Croatia, stressing the challenges for the governance of the country’s social enterprise movement.Keywords: financial cooperatives, governance and management models, microfinance institutions, social enterprises
Procedia PDF Downloads 27536 A Chemical Perspective to Nineteenth-Century Female Medical Pioneers: Utilizing Mass Spectrometry in the Museum Space
Authors: Elizabeth R. LaFave, Grayson Sink, Anna Vassallo, Samantha Mills, Eli G. Hvastkovs
Abstract:
Throughout history and into modern times, the continuation of male influence over female healthcare has created inadequacies in availability and access to treatments, often further limited in rural communities. The historical plight of women in healthcare can be understood by studying the advancements made by women in the field, both through their career arcs and by delving into the treatments they offer. An early example is the case of Martha Ballard (1735-1812), a midwife in New York who practiced when female practitioners were dismissed in favor of less educated male physicians, which was a well-accepted practice into the twentieth century. In order to overcome these setbacks, a strategy used by some female practitioners was to develop and market their own remedies in an attempt to better serve female patients. By highlighting the compromises and social manipulation of female entrepreneurs, in comparison with the medicines they developed and used, we can map their ability to carve a specific niche for themselves and their targeted customers. The application of modern chemical approaches in a historical context serves to enhance a variety of perspectives within the museum sphere necessary for the comprehension and understanding of the female plight in both medical care and service. In order to further examine the overall bias and scrutiny for women in the medical field, specifically those undertaking entrepreneurial roles, examples of alternative remedies from female founders will be analyzed utilizing these approaches. Modern analytical chemistry techniques, specifically mass spectrometry (MS), have been successful in offering compositional analyses for both labeled and unlabeled ingredients in old medicines. Previously, we have analyzed two forms of alternative treatment options created by male medical professionals to address lingering historical questions of purity and validity. Although primarily sugar based, both Humphreys’ Specifics and Boericke & Tafel remedies also contained unique ingredients, albeit in small quantities, with medicinal properties. Here, we applied the same methodology to study another highly politicized 19th-century debate surrounding the contribution and role of women in the medical profession through analyzing three remedies, each from a different female-led manufacturing company; Mrs. Joe Persons, Lydia Pinkham, and Winslow’s Syrups. Following MS analyses for both labeled and unlabeled ingredients, both Winslow’s and Pinkham’s remedies were similar to their male counterparts in advertisement strategy, targeted customer base, and overall composition of remedy (primarily sugar-based with small amounts of unique ingredients). In effect, these unbiased chemical assessments are used to dissect the rationality of both market and physician criticism for each individual manufacturer through assessment of authenticity, benefaction, and comparison among female entrepreneurs and their aims to enter the medical community (i.e., geographic location, market size). Our work aims to increase collaboration between STEM (Science, Technology, Engineering, Mathematics)-based fields and historical museum studies on a larger scale while also answering questions of potential bias towards females in the medical community as means of comparison to their male counterparts and in-depth historical analyses to unravel individual strategies to overcome the setback.Keywords: nineteenth-century medicine, alternative remedies, female healthcare, chemical analyses, mass spectrometry
Procedia PDF Downloads 8735 Towards Better Integration: Qualitative Study on Perceptions of Russian-Speaking Immigrants in Australia
Authors: Oleg Shovkovyy
Abstract:
This research conducted in response to one of the most pressing questions on the agenda of many public administration offices around the world: “What could be done for better integration and assimilation of immigrants into hosting communities?” In author’s view, the answer could be suggested by immigrants themselves. They, often ‘bogged down in the past,’ snared by own idols and demons, perceive things differently, which, in turn, may result in their inability to integrate smoothly into hosting communities. Brief literature review suggests that perceptions of immigrants are completely neglected or something unsought in the current research on migrants, which, often, based on opinion polls by members of hosting communities themselves or superficial research data by various research organizations. Even those specimens that include voices of immigrants, unlikely to shed any additional light onto the problem simply because certain things are not made to speak out loud, especially to those in whose hands immigrants’ fate is (authorities). In this regard, this qualitative study, conducted by an insider to a few Russian-speaking communities, represents a unique opportunity for all stakeholders to look at the question of integration through the eyes of immigrants, from a different perspective and thus, makes research findings especially valuable for better understanding of the problem. Case study research employed ethnographic methods of gathering data where, approximately 200 Russian-speaking immigrants of first and second generations were closely observed by the Russian-speaking researcher in their usual setting, for eight months, and at different venues. The number of informal interviews with 27 key informants, with whom the researcher managed to establish a good rapport and who were keen enough to share their experiences voluntarily, were conducted. The field notes were taken at 14 locations (study sites) within the Brisbane region of Queensland, Australia. Moreover, all this time, researcher lived in dwelling of one of the immigrants and was an active participant in the social life (worship, picnics, dinners, weekend schools, concerts, cultural events, social gathering, etc.) of observed communities, whose members, to a large extent, belong to various religious lines of the Russian and Protestant Church. It was found that the majority of immigrants had experienced some discrimination in matters of hiring, employment, recognition of educational qualifications from home countries, and simply felt a sort of dislike from society in various everyday situations. Many noted complete absences or very limited state assistance in terms of employment, training, education, and housing. For instance, the Australian Government Department of Human Services not only does not stimulate job search but, on the contrary, encourages to refuse short-term works and employment. On the other hand, offered free courses on adaptation, and the English language proved to be ineffective and unpopular amongst immigrants. Many interviewees have reported overstated requirements for English proficiency and local work experience, whereas it was not critical for the given task or job. Based on the result of long-term monitoring, the researcher also had the courage to assert the negative and decelerating roles of immigrants’ communities, particularly religious communities, on processes of integration and assimilation. The findings suggest that governments should either change current immigration policies in the direction of their toughening or to take more proactive and responsible role in dealing with immigrant-related issues; for instance, increasing assistance and support to all immigrants and probably, paying more attention to and taking stake in managing and organizing lives of immigrants’ communities rather, simply leaving it all to chance.Keywords: Australia, immigration, integration, perceptions
Procedia PDF Downloads 22034 Experimental Proof of Concept for Piezoelectric Flow Harvesting for In-Pipe Metering Systems
Authors: Sherif Keddis, Rafik Mitry, Norbert Schwesinger
Abstract:
Intelligent networking of devices has rapidly been gaining importance over the past years and with recent advances in the fields of microcontrollers, integrated circuits and wireless communication, low power applications have emerged, enabling this trend even more. Connected devices provide a much larger database thus enabling highly intelligent and accurate systems. Ensuring safe drinking water is one of the fields that require constant monitoring and can benefit from an increased accuracy. Monitoring is mainly achieved either through complex measures, such as collecting samples from the points of use, or through metering systems typically distant to the points of use which deliver less accurate assessments of the quality of water. Constant metering near the points of use is complicated due to their inaccessibility; e.g. buried water pipes, locked spaces, which makes system maintenance extremely difficult and often unviable. The research presented here attempts to overcome this challenge by providing these systems with enough energy through a flow harvester inside the pipe thus eliminating the maintenance requirements in terms of battery replacements or containment of leakage resulting from wiring such systems. The proposed flow harvester exploits the piezoelectric properties of polyvinylidene difluoride (PVDF) films to convert turbulence induced oscillations into electrical energy. It is intended to be used in standard water pipes with diameters between 0.5 and 1 inch. The working principle of the harvester uses a ring shaped bluff body inside the pipe to induce pressure fluctuations. Additionally the bluff body houses electronic components such as storage, circuitry and RF-unit. Placing the piezoelectric films downstream of that bluff body causes their oscillation which generates electrical charge. The PVDF-film is placed as a multilayered wrap fixed to the pipe wall leaving the top part to oscillate freely inside the flow. The warp, which allows for a larger active, consists of two layers of 30µm thick and 12mm wide PVDF layered alternately with two centered 6µm thick and 8mm wide aluminum foil electrodes. The length of the layers depends on the number of windings and is part of the investigation. Sealing the harvester against liquid penetration is achieved by wrapping it in a ring-shaped LDPE-film and welding the open ends. The fabrication of the PVDF-wraps is done by hand. After validating the working principle using a wind tunnel, experiments have been conducted in water, placing the harvester inside a 1 inch pipe at water velocities of 0.74m/s. To find a suitable placement of the wrap inside the pipe, two forms of fixation were compared regarding their power output. Further investigations regarding the number of windings required for efficient transduction were made. Best results were achieved using a wrap with 3 windings of the active layers which delivers a constant power output of 0.53µW at a 2.3MΩ load and an effective voltage of 1.1V. Considering the extremely low power requirements of sensor applications, these initial results are promising. For further investigations and optimization, machine designs are currently being developed to automate the fabrication and decrease tolerance of the prototypes.Keywords: maintenance-free sensors, measurements at point of use, piezoelectric flow harvesting, universal micro generator, wireless metering systems
Procedia PDF Downloads 19333 Microfluidic Plasmonic Device for the Sensitive Dual LSPR-Thermal Detection of the Cardiac Troponin Biomarker in Laminal Flow
Authors: Andreea Campu, Ilinica Muresan, Simona Cainap, Simion Astilean, Monica Focsan
Abstract:
Acute myocardial infarction (AMI) is the most severe cardiovascular disease, which has threatened human lives for decades, thus a continuous interest is directed towards the detection of cardiac biomarkers such as cardiac troponin I (cTnI) in order to predict risk and, implicitly, fulfill the early diagnosis requirements in AMI settings. Microfluidics is a major technology involved in the development of efficient sensing devices with real-time fast responses and on-site applicability. Microfluidic devices have gathered a lot of attention recently due to their advantageous features such as high sensitivity and specificity, miniaturization and portability, ease-of-use, low-cost, facile fabrication, and reduced sample manipulation. The integration of gold nanoparticles into the structure of microfluidic sensors has led to the development of highly effective detection systems, considering the unique properties of the metallic nanostructures, specifically the Localized Surface Plasmon Resonance (LSPR), which makes them highly sensitive to their microenvironment. In this scientific context, herein, we propose the implementation of a novel detection device, which successfully combines the efficiency of gold bipyramids (AuBPs) as signal transducers and thermal generators with the sample-driven advantages of the microfluidic channels into a miniaturized, portable, low-cost, specific, and sensitive test for the dual LSPR-thermographic cTnI detection. Specifically, AuBPs with longitudinal LSPR response at 830 nm were chemically synthesized using the seed-mediated growth approach and characterized in terms of optical and morphological properties. Further, the colloidal AuBPs were deposited onto pre-treated silanized glass substrates thus, a uniform nanoparticle coverage of the substrate was obtained and confirmed by extinction measurements showing a 43 nm blue-shift of the LSPR response as a consequence of the refractive index change. The as-obtained plasmonic substrate was then integrated into a microfluidic “Y”-shaped polydimethylsiloxane (PDMS) channel, fabricated using a Laser Cutter system. Both plasmonic and microfluidic elements were plasma treated in order to achieve a permanent bond. The as-developed microfluidic plasmonic chip was further coupled to an automated syringe pump system. The proposed biosensing protocol implicates the successive injection inside the microfluidic channel as follows: p-aminothiophenol and glutaraldehyde, to achieve a covalent bond between the metallic surface and cTnI antibody, anti-cTnI, as a recognition element, and target cTnI biomarker. The successful functionalization and capture of cTnI was monitored by LSPR detection thus, after each step, a red-shift of the optical response was recorded. Furthermore, as an innovative detection technique, thermal determinations were made after each injection by exposing the microfluidic plasmonic chip to 785 nm laser excitation, considering that the AuBPs exhibit high light-to-heat conversion performances. By the analysis of the thermographic images, thermal curves were obtained, showing a decrease in the thermal efficiency after the anti-cTnI-cTnI reaction was realized. Thus, we developed a microfluidic plasmonic chip able to operate as both LSPR and thermal sensor for the detection of the cardiac troponin I biomarker, leading thus to the progress of diagnostic devices.Keywords: gold nanobipyramids, microfluidic device, localized surface plasmon resonance detection, thermographic detection
Procedia PDF Downloads 12932 Drug Reaction with Eosinophilia and Systemic Symptoms (Dress) Syndrome Presenting as Multi-Organ Failure
Authors: Keshari Shrestha, Philip Vatterott
Abstract:
Introduction: Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a rare and potentially fatal drug-related syndrome. DRESS classically presents with a diffuse maculopapular rash, fevers, and eosinophilia more than three weeks after drug exposure. DRESS can present with multi-organ involvement, with liver damage being the most common and severe. Pulmonary involvement is a less common manifestation and is associated with poor clinical outcomes. Chest imaging is often nonspecific, and symptoms can range from mild cough to acute respiratory distress syndrome (ARDS) . This is a case of a 49-year-old female with a history of recent clostridium difficile colitis status post treatment with oral vancomycin who presented with rash, acute liver and kidney failure, as well as diffuse nodular alveolar lung opacities concerning for DRESS syndrome with multi-organ involvement. Clinical Course: This patient initially presented to an outside hospital with clostridium difficile colitis, acute liver injury, and acute kidney injury. She developed a desquamating maculopapular rash in the setting of recent oral vancomycin, meloxicam, and furosemide initiation. She was hospitalized on two additional occasions with worsening altered mental status, liver injury, and acute kidney injury and was initiated on intermittent hemodialysis. Notably, she was found to have systemic eosinophilia (4100 cells/microliter) several weeks prior. She was transferred to this institution for further management where she was found to have encephalopathy, jaundice, lower extremity edema, and diffuse bilateral rhonchorous breath sounds on pulmonary examination. The patient was started on methylprednisolone for suspected DRESS syndrome. She underwent an evaluation for alternative causes of her organ failure. Her workup included a negative infectious, autoimmune, metabolic, toxic, and malignant work-up. Abdominal computed tomography (CT) and ultrasound were remarkable for evidence of hepatic steatosis and possible cirrhotic morphology. Additionally, a chest CT demonstrated diffuse and symmetric nodular alveolar lung opacities with peripheral sparing not consistent with acute respiratory distress syndrome or edema. Ultimately, her condition continued to decline, and she required intubation on several occasions. On hospital day 25 she succumbed to distributive shock in the setting of probable sepsis and multi-organ failure. Discussion: DRESS syndrome occurs in 1 in 1,000 to 10,000 patients with a mortality rate of around 10%. Anti-convulsant, anti-bacterial, anti-viral, and sulfonamide drugs are the most common drugs implicated in the development of DRESS syndrome; however, the list of offending agents is extensive . The diagnosis of DRESS syndrome is made after excluding other causes of disease such as infectious and autoimmune etiologies. The RegiSCAR scoring system is used to diagnose DRESS syndrome with 2-3 points indicating possible disease, 4-5 probable disease, and >5 definite disease. This patient scored a 7 on the RegiSCAR scale for eosinophilia, rash, organ involvement, and exclusion of other causes (infectious and autoimmune). While the pharmacologic trigger in this case is unknown, it is speculated to be caused by vancomycin, meloxicam, or furosemide due to the favorable timeline of initiation. Despite aggressive treatment, DRESS syndrome can often be fatal. Because of this, early diagnosis and treatment of patients with suspected DRESS syndrome is imperative.Keywords: drug reaction with eosinophilia and systemic symptoms, multi-organ failure, pulmonary involvement, renal failure
Procedia PDF Downloads 17131 Design and 3D-Printout of The Stack-Corrugate-Sheel Core Sandwiched Decks for The Bridging System
Authors: K. Kamal
Abstract:
Structural sandwich panels with core of Advanced Composites Laminates l Honeycombs / PU-foams are used in aerospace applications and are also fabricated for use now in some civil engineering applications. An all Advanced Composites Foot Over Bridge (FOB) system, designed and developed for pedestrian traffic is one such application earlier, may be cited as an example here. During development stage of this FoB, a profile of its decks was then spurred as a single corrugate sheet core sandwiched between two Glass Fibre Reinforced Plastics(GFRP) flat laminates. Once successfully fabricated and used, these decks did prove suitable also to form other structure on assembly, such as, erecting temporary shelters. Such corrugated sheet core profile sandwiched panels were then also tried using the construction materials but any conventional method of construction only posed certain difficulties in achieving the required core profile monolithically within the sandwiched slabs and hence it was then abended. Such monolithic construction was, however, subsequently eased out on demonstration by dispensing building materials mix through a suitably designed multi-dispenser system attached to a 3D Printer. This study conducted at lab level was thus reported earlier and it did include the fabrication of a 3D printer in-house first as ‘3DcMP’ as well as on its functional operation, some required sandwich core profiles also been 3D-printed out producing panels hardware. Once a number of these sandwich panels in single corrugated sheet core monolithically printed out, panels were subjected to load test in an experimental set up as also their structural behavior was studied analytically, and subsequently, these results were correlated as reported in the literature. In achieving the required more depths and also to exhibit further the stronger and creating sandwiched decks of better structural and mechanical behavior, further more complex core configuration such as stack corrugate sheets core with a flat mid plane was felt to be the better sandwiched core. Such profile remained as an outcome that turns out merely on stacking of two separately printed out monolithic units of single corrugated sheet core developed earlier as above and bonded them together initially, maintaining a different orientation. For any required sequential understanding of the structural behavior of any such complex profile core sandwiched decks with special emphasis to study of the effect in the variation of corrugation orientation in each distinct tire in this core, it obviously calls for an analytical study first. The rectangular,simply supported decks have therefore been considered for analysis adopting the ‘Advanced Composite Technology(ACT), some numerical results along with some fruitful findings were obtained and these are all presented here in this paper. From this numerical result, it has been observed that a mid flat layer which eventually get created monolethically itself, in addition to eliminating the bonding process in development, has been found to offer more effective bending resistance by such decks subjected to UDL over them. This is understood to have resulted here since the existence of a required shear resistance layer at the mid of the core in this profile, unlike other bending elements. As an addendum to all such efforts made as covered above and was published earlier, this unique stack corrugate sheet core profile sandwiched structural decks, monolithically construction with ease at the site itself, has been printed out from a 3D Printer. On employing 3DcMP and using some innovative building construction materials, holds the future promises of such research & development works since all those several aspects of a 3D printing in construction are now included such as reduction in the required construction time, offering cost effective solutions with freedom in design of any such complex shapes thus can widely now be realized by the modern construction industry.Keywords: advance composite technology(ACT), corrugated laminates, 3DcMP, foot over bridge (FOB), sandwiched deck units
Procedia PDF Downloads 17230 ARGO: An Open Designed Unmanned Surface Vehicle Mapping Autonomous Platform
Authors: Papakonstantinou Apostolos, Argyrios Moustakas, Panagiotis Zervos, Dimitrios Stefanakis, Manolis Tsapakis, Nektarios Spyridakis, Mary Paspaliari, Christos Kontos, Antonis Legakis, Sarantis Houzouris, Konstantinos Topouzelis
Abstract:
For years unmanned and remotely operated robots have been used as tools in industry research and education. The rapid development and miniaturization of sensors that can be attached to remotely operated vehicles in recent years allowed industry leaders and researchers to utilize them as an affordable means for data acquisition in air, land, and sea. Despite the recent developments in the ground and unmanned airborne vehicles, a small number of Unmanned Surface Vehicle (USV) platforms are targeted for mapping and monitoring environmental parameters for research and industry purposes. The ARGO project is developed an open-design USV equipped with multi-level control hardware architecture and state-of-the-art sensors and payloads for the autonomous monitoring of environmental parameters in large sea areas. The proposed USV is a catamaran-type USV controlled over a wireless radio link (5G) for long-range mapping capabilities and control for a ground-based control station. The ARGO USV has a propulsion control using 2x fully redundant electric trolling motors with active vector thrust for omnidirectional movement, navigation with opensource autopilot system with high accuracy GNSS device, and communication with the 2.4Ghz digital link able to provide 20km of Line of Sight (Los) range distance. The 3-meter dual hull design and composite structure offer well above 80kg of usable payload capacity. Furthermore, sun and friction energy harvesting methods provide clean energy to the propulsion system. The design is highly modular, where each component or payload can be replaced or modified according to the desired task (industrial or research). The system can be equipped with Multiparameter Sonde, measuring up to 20 water parameters simultaneously, such as conductivity, salinity, turbidity, dissolved oxygen, etc. Furthermore, a high-end multibeam echo sounder can be installed in a specific boat datum for shallow water high-resolution seabed mapping. The system is designed to operate in the Aegean Sea. The developed USV is planned to be utilized as a system for autonomous data acquisition, mapping, and monitoring bathymetry and various environmental parameters. ARGO USV can operate in small or large ports with high maneuverability and endurance to map large geographical extends at sea. The system presents state of the art solutions in the following areas i) the on-board/real-time data processing/analysis capabilities, ii) the energy-independent and environmentally friendly platform entirely made using the latest aeronautical and marine materials, iii) the integration of advanced technology sensors, all in one system (photogrammetric and radiometric footprint, as well as its connection with various environmental and inertial sensors) and iv) the information management application. The ARGO web-based application enables the system to depict the results of the data acquisition process in near real-time. All the recorded environmental variables and indices are presented, allowing users to remotely access all the raw and processed information using the implemented web-based GIS application.Keywords: monitor marine environment, unmanned surface vehicle, mapping bythometry, sea environmental monitoring
Procedia PDF Downloads 13929 Analysis of Composite Health Risk Indicators Built at a Regional Scale and Fine Resolution to Detect Hotspot Areas
Authors: Julien Caudeville, Muriel Ismert
Abstract:
Analyzing the relationship between environment and health has become a major preoccupation for public health as evidenced by the emergence of the French national plans for health and environment. These plans have identified the following two priorities: (1) to identify and manage geographic areas, where hotspot exposures are suspected to generate a potential hazard to human health; (2) to reduce exposure inequalities. At a regional scale and fine resolution of exposure outcome prerequisite, environmental monitoring networks are not sufficient to characterize the multidimensionality of the exposure concept. In an attempt to increase representativeness of spatial exposure assessment approaches, risk composite indicators could be built using additional available databases and theoretical framework approaches to combine factor risks. To achieve those objectives, combining data process and transfer modeling with a spatial approach is a fundamental prerequisite that implies the need to first overcome different scientific limitations: to define interest variables and indicators that could be built to associate and describe the global source-effect chain; to link and process data from different sources and different spatial supports; to develop adapted methods in order to improve spatial data representativeness and resolution. A GIS-based modeling platform for quantifying human exposure to chemical substances (PLAINE: environmental inequalities analysis platform) was used to build health risk indicators within the Lorraine region (France). Those indicators combined chemical substances (in soil, air and water) and noise risk factors. Tools have been developed using modeling, spatial analysis and geostatistic methods to build and discretize interest variables from different supports and resolutions on a 1 km2 regular grid within the Lorraine region. By example, surface soil concentrations have been estimated by developing a Kriging method able to integrate surface and point spatial supports. Then, an exposure model developed by INERIS was used to assess the transfer from soil to individual exposure through ingestion pathways. We used distance from polluted soil site to build a proxy for contaminated site. Air indicator combined modeled concentrations and estimated emissions to take in account 30 polluants in the analysis. For water, drinking water concentrations were compared to drinking water standards to build a score spatialized using a distribution unit serve map. The Lden (day-evening-night) indicator was used to map noise around road infrastructures. Aggregation of the different factor risks was made using different methodologies to discuss weighting and aggregation procedures impact on the effectiveness of risk maps to take decisions for safeguarding citizen health. Results permit to identify pollutant sources, determinants of exposure, and potential hotspots areas. A diagnostic tool was developed for stakeholders to visualize and analyze the composite indicators in an operational and accurate manner. The designed support system will be used in many applications and contexts: (1) mapping environmental disparities throughout the Lorraine region; (2) identifying vulnerable population and determinants of exposure to set priorities and target for pollution prevention, regulation and remediation; (3) providing exposure database to quantify relationships between environmental indicators and cancer mortality data provided by French Regional Health Observatories.Keywords: health risk, environment, composite indicator, hotspot areas
Procedia PDF Downloads 24728 Case Study Hyperbaric Oxygen Therapy for Idiopathic Sudden Sensorineural Hearing Loss
Authors: Magdy I. A. Alshourbagi
Abstract:
Background: The National Institute for Deafness and Communication Disorders defines idiopathic sudden sensorineural hearing loss as the idiopathic loss of hearing of at least 30 dB across 3 contiguous frequencies occurring within 3 days.The most common clinical presentation involves an individual experiencing a sudden unilateral hearing loss, tinnitus, a sensation of aural fullness and vertigo. The etiologies and pathologies of ISSNHL remain unclear. Several pathophysiological mechanisms have been described including: vascular occlusion, viral infections, labyrinthine membrane breaks, immune associated disease, abnormal cochlear stress response, trauma, abnormal tissue growth, toxins, ototoxic drugs and cochlear membrane damage. The rationale for the use of hyperbaric oxygen to treat ISSHL is supported by an understanding of the high metabolism and paucity of vascularity to the cochlea. The cochlea and the structures within it require a high oxygen supply. The direct vascular supply, particularly to the organ of Corti, is minimal. Tissue oxygenation to the structures within the cochlea occurs via oxygen diffusion from cochlear capillary networks into the perilymph and the cortilymph. . The perilymph is the primary oxygen source for these intracochlear structures. Unfortunately, perilymph oxygen tension is decreased significantly in patients with ISSHL. To achieve a consistent rise of perilymph oxygen content, the arterial-perilymphatic oxygen concentration difference must be extremely high. This can be restored with hyperbaric oxygen therapy. Subject and Methods: A 37 year old man was presented at the clinic with a five days history of muffled hearing and tinnitus of the right ear. Symptoms were sudden onset, with no associated pain, dizziness or otorrhea and no past history of hearing problems or medical illness. Family history was negative. Physical examination was normal. Otologic examination revealed normal tympanic membranes bilaterally, with no evidence of cerumen or middle ear effusion. Tuning fork examination showed positive Rinne test bilaterally but with lateralization of Weber test to the left side, indicating right ear sensorineural hearing loss. Audiometric analysis confirmed sensorineural hearing loss across all frequencies of about 70- dB in the right ear. Routine lab work were all within normal limits. Clinical diagnosis of idiopathic sudden sensorineural hearing loss of the right ear was made and the patient began a medical treatment (corticosteroid, vasodilator and HBO therapy). The recommended treatment profile consists of 100% O2 at 2.5 atmospheres absolute for 60 minutes daily (six days per week) for 40 treatments .The optimal number of HBOT treatments will vary, depending on the severity and duration of symptomatology and the response to treatment. Results: As HBOT is not yet a standard for idiopathic sudden sensorineural hearing loss, it was introduced to this patient as an adjuvant therapy. The HBOT program was scheduled for 40 sessions, we used a 12-seat multi place chamber for the HBOT, which was started at day seven after the hearing loss onset. After the tenth session of HBOT, improvement of both hearing (by audiogram) and tinnitus was obtained in the affected ear (right). Conclusions: In conclusion, HBOT may be used for idiopathic sudden sensorineural hearing loss as an adjuvant therapy. It may promote oxygenation to the inner ear apparatus and revive hearing ability. Patients who fail to respond to oral and intratympanic steroids may benefit from this treatment. Further investigation is warranted, including animal studies to understand the molecular and histopathological aspects of HBOT and randomized control clinical studies.Keywords: idiopathic sudden sensorineural hearing loss (issnhl), hyperbaric oxygen therapy (hbot), the decibel (db), oxygen (o2)
Procedia PDF Downloads 43127 The Impact of Right to Repair Initiatives on Environmental and Financial Performance in European Consumer Electronics Firms: An Econometric Analysis
Authors: Daniel Stabler, Anne-Laure Mention, Henri Hakala, Ahmad Alaassar
Abstract:
In Europe, 2.2 billion tons of waste annually generate severe environmental damage and economic burdens, and negatively impact human health. A stark illustration of the problem is found within the consumer electronics industry, which reflects one of the most complex global waste streams. Of the 5.3 billion globally discarded mobile phones in 2022, only 17% were properly recycled. To address these pressing issues, Europe has made significant strides in developing waste management strategies, Circular Economy initiatives, and Right to Repair policies. These endeavors aim to make product repair and maintenance more accessible, extend product lifespans, reduce waste, and promote sustainable resource use. European countries have introduced Right to Repair policies, often in conjunction with extended producer responsibility legislation, repair subsidies, and consumer repair indices, to varying degrees of regulatory rigor. Changing societal trends emphasizing sustainability and environmental responsibility have driven consumer demand for more sustainable and repairable products, benefiting repair-focused consumer electronics businesses. In academic research, much of the literature in Management studies has examined the European Circular Economy and the Right to Repair from firm-level perspectives. These studies frequently employ a business-model lens, emphasizing innovation and strategy frameworks. However, this study takes an institutional perspective, aiming to understand the adoption of Circular Economy and repair-focused business models within the European consumer electronics market. The concepts of the Circular Economy and the Right to Repair align with institutionalism as they reflect evolving societal norms favoring sustainability and consumer empowerment. Regulatory institutions play a pivotal role in shaping and enforcing these concepts through legislation, influencing the behavior of businesses and individuals. Compliance and enforcement mechanisms are essential for their success, compelling actors to adopt sustainable practices and consider product life extension. Over time, these mechanisms create a path for more sustainable choices, underscoring the influence of institutions and societal values on behavior and decision-making. Institutionalism, particularly 'neo-institutionalism,' provides valuable insights into the factors driving the adoption of Circular and repair-focused business models. Neo-institutional pressures can manifest through coercive regulatory initiatives or normative standards shaped by socio-cultural trends. The Right to Repair movement has emerged as a prominent and influential idea within academic discourse and sustainable development initiatives. Therefore, understanding how macro-level societal shifts toward the Circular Economy and the Right to Repair trigger firm-level responses is imperative. This study aims to answer a crucial question about the impact of European Right to Repair initiatives had on the financial and environmental performance of European consumer electronics companies at the firm level. A quantitative and statistical research design will be employed. The study will encompass an extensive sample of consumer electronics firms in Northern and Western Europe, analyzing their financial and environmental performance in relation to the implementation of Right to Repair mechanisms. The study's findings are expected to provide valuable insights into the broader implications of the Right to Repair and Circular Economy initiatives on the European consumer electronics industry.Keywords: circular economy, right to repair, institutionalism, environmental management, european union
Procedia PDF Downloads 8226 Catastrophic Health Expenditures: Evaluating the Effectiveness of Nepal's National Health Insurance Program Using Propensity Score Matching and Doubly Robust Methodology
Authors: Simrin Kafle, Ulrika Enemark
Abstract:
Catastrophic health expenditure (CHE) is a critical issue in low- and middle-income countries like Nepal, exacerbating financial hardship among vulnerable households. This study assesses the effectiveness of Nepal’s National Health Insurance Program (NHIP), launched in 2015, to reduce out-of-pocket (OOP) healthcare costs and mitigate CHE. Conducted in Pokhara Metropolitan City, the study used an analytical cross-sectional design, sampling 1276 households through a two-stage random sampling method. Data was collected via face-to-face interviews between May and October 2023. The analysis was conducted using SPSS version 29, incorporating propensity score matching to minimize biases and create comparable groups of enrolled and non-enrolled households in the NHIP. PSM helped reduce confounding effects by matching households with similar baseline characteristics. Additionally, a doubly robust methodology was employed, combining propensity score adjustment with regression modeling to enhance the reliability of the results. This comprehensive approach ensured a more accurate estimation of the impact of NHIP enrollment on CHE. Among the 1276 samples, 534 households (41.8%) were enrolled in NHIP. Of them, 84.3% of households renewed their insurance card, though some cited long waiting times, lack of medications, and complex procedures as barriers to renewal. Approximately 57.3% of households reported known diseases before enrollment, with 49.8% attending routine health check-ups in the past year. The primary motivation for enrollment was encouragement from insurance employees (50.2%). The data indicates that 12.5% of enrolled households experienced CHE versus 7.5% among non-enrolled. Enrollment into NHIP does not contribute to lower CHE (AOR: 1.98, 95% CI: 1.21-3.24). Key factors associated with increased CHE risk were presence of non-communicable diseases (NCDs) (AOR: 3.94, 95% CI: 2.10-7.39), acute illnesses/injuries (AOR: 6.70, 95% CI: 3.97-11.30), larger household size (AOR: 3.09, 95% CI: 1.81-5.28), and households below the poverty line (AOR: 5.82, 95% CI: 3.05-11.09). Other factors such as gender, education level, caste/ethnicity, presence of elderly members, and under-five children also showed varying associations with CHE, though not all were statistically significant. The study concludes that enrollment in the NHIP does not significantly reduce the risk of CHE. The reason for this could be inadequate coverage, where high-cost medicines, treatments, and transportation costs are not fully included in the insurance package, leading to significant out-of-pocket expenses. We also considered the long waiting time, lack of medicines, and complex procedures for the utilization of NHIP benefits, which might result in the underuse of covered services. Finally, gaps in enrollment and retention might leave certain households vulnerable to CHE despite the existence of NHIP. Key factors contributing to increased CHE include NCDs, acute illnesses, larger household sizes, and poverty. To improve the program’s effectiveness, it is recommended that NHIP benefits and coverage be expanded to better protect against high healthcare costs. Additionally, simplifying the renewal process, addressing long waiting times, and enhancing the availability of services could improve member satisfaction and retention. Targeted financial protection measures should be implemented for high-risk groups, and efforts should be made to increase awareness and encourage routine health check-ups to prevent severe health issues that contribute to CHE.Keywords: catastrophic health expenditure, effectiveness, national health insurance program, Nepal
Procedia PDF Downloads 2425 Enhanced Bioproduction of Moscatilin in Dendrobium ovatum through Hairy Root Culture
Authors: Ipsita Pujari, Abitha Thomas, Vidhu S. Babu, K. Satyamoorthy
Abstract:
Orchids are esteemed as celebrities in cut flower industry globally, due to their long-lasting fragrance and freshness. Apart from splendor, the unique metabolites endowed with pharmaceutical potency have made them one of the most hunted in plant kingdom. This had led to their trafficking, resulting in habitat loss, subsequently making them occupiers of IUCN red list as RET species. Many of the orchids especially wild varieties still remain undiscovered. In view to protect and conserve the wild germplasm, researchers have been inventing novel micropropagation protocols; thereby conserving Orchids. India is overflowing with exclusive wild cultivars of Orchids, whose pharmaceutical properties remain untapped and are not marketed owing to relatively small flowers. However, their germplasm is quite pertinent to be preserved for making unusual hybrids. Dendrobium genus is the second largest among Orchids exists in India and has highest demand attributable to enduring cut flowers and significant therapeutic uses in traditional medicinal system. Though the genus is quite endemic in Western Ghat regions of the country, many species are still anonymous with their unknown curative properties. A standard breeding cycle in Orchids usually takes five to seven years (Dendrobium hybrids taking a long juvenile phase of two to five years reaching maturity and flowering stage) and this extensive life cycle has always hindered the development of Dendrobium breeding. Dendrobium is reported with essential therapeutic plant bio-chemicals and ‘Moscatilin’ is one, found exclusive to this famous Dendrobium genus. Moscatilin is reported to have anti-mutagenic and anti-cancer properties, whose positive action has very recently been demonstrated against a range of cancers. Our preliminary study here established a simple and economic small-scale propagation protocol of Dendrobium ovatum describing in vitro production of Moscatilin. Subsequently for enhancing the content of Moscatilin, an efficient experimental related to the organization of transgenic (hairy) D. ovatum root cultures through infection of Agrobacterium rhizogenes 2364 strain on MS basal medium is being reported in the present study. Hairy roots generated on almost half of the explants used (spherules, in vitro plantlets and calli) maintained through suspension cultures, after 8 weeks of co-cultivation with Agrobacterium rhizogenes. GFP assay performed with isolated hairy roots has confirmed the integrative transformation which was further positively confirmed by PCR using rolB gene specific primers. Reverse phase-high performance liquid chromatography and mass spectrometry techniques were used for quantification and accurate identification of Moscatilin respectively from transgenic systems. A noticeable ~3 fold increase in contents were observed in transformed D. ovatum root cultures as compared to the simple in vitro culture, callus culture and callus regeneration plantlets. Role of elicitors e.g., Methyl jasmonate, Salicylic acid, Yeast extract and Chitosan were tested for elevating the Moscatilin content to obtain a comprehensive optimized protocol facilitating the in vitro production of valuable Moscatilin with larger yield. This study would provide evidence towards the in vitro assembly of Moscatilin within a short time-period through not a so-expensive technology for the first time. It also serves as an appropriate basis for bioreactor scale-up resulting in commercial bioproduction of Moscatilin.Keywords: bioproduction, Dendrobium ovatum, hairy root culture, moscatilin
Procedia PDF Downloads 23724 Speeding Up Lenia: A Comparative Study Between Existing Implementations and CUDA C++ with OpenGL Interop
Authors: L. Diogo, A. Legrand, J. Nguyen-Cao, J. Rogeau, S. Bornhofen
Abstract:
Lenia is a system of cellular automata with continuous states, space and time, which surprises not only with the emergence of interesting life-like structures but also with its beauty. This paper reports ongoing research on a GPU implementation of Lenia using CUDA C++ and OpenGL Interoperability. We demonstrate how CUDA as a low-level GPU programming paradigm allows optimizing performance and memory usage of the Lenia algorithm. A comparative analysis through experimental runs with existing implementations shows that the CUDA implementation outperforms the others by one order of magnitude or more. Cellular automata hold significant interest due to their ability to model complex phenomena in systems with simple rules and structures. They allow exploring emergent behavior such as self-organization and adaptation, and find applications in various fields, including computer science, physics, biology, and sociology. Unlike classic cellular automata which rely on discrete cells and values, Lenia generalizes the concept of cellular automata to continuous space, time and states, thus providing additional fluidity and richness in emerging phenomena. In the current literature, there are many implementations of Lenia utilizing various programming languages and visualization libraries. However, each implementation also presents certain drawbacks, which serve as motivation for further research and development. In particular, speed is a critical factor when studying Lenia, for several reasons. Rapid simulation allows researchers to observe the emergence of patterns and behaviors in more configurations, on bigger grids and over longer periods without annoying waiting times. Thereby, they enable the exploration and discovery of new species within the Lenia ecosystem more efficiently. Moreover, faster simulations are beneficial when we include additional time-consuming algorithms such as computer vision or machine learning to evolve and optimize specific Lenia configurations. We developed a Lenia implementation for GPU using the C++ and CUDA programming languages, and CUDA/OpenGL Interoperability for immediate rendering. The goal of our experiment is to benchmark this implementation compared to the existing ones in terms of speed, memory usage, configurability and scalability. In our comparison we focus on the most important Lenia implementations, selected for their prominence, accessibility and widespread use in the scientific community. The implementations include MATLAB, JavaScript, ShaderToy GLSL, Jupyter, Rust and R. The list is not exhaustive but provides a broad view of the principal current approaches and their respective strengths and weaknesses. Our comparison primarily considers computational performance and memory efficiency, as these factors are critical for large-scale simulations, but we also investigate the ease of use and configurability. The experimental runs conducted so far demonstrate that the CUDA C++ implementation outperforms the other implementations by one order of magnitude or more. The benefits of using the GPU become apparent especially with larger grids and convolution kernels. However, our research is still ongoing. We are currently exploring the impact of several software design choices and optimization techniques, such as convolution with Fast Fourier Transforms (FFT), various GPU memory management scenarios, and the trade-off between speed and accuracy using single versus double precision floating point arithmetic. The results will give valuable insights into the practice of parallel programming of the Lenia algorithm, and all conclusions will be thoroughly presented in the conference paper. The final version of our CUDA C++ implementation will be published on github and made freely accessible to the Alife community for further development.Keywords: artificial life, cellular automaton, GPU optimization, Lenia, comparative analysis.
Procedia PDF Downloads 4123 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet
Authors: Justin Woulfe
Abstract:
Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics
Procedia PDF Downloads 16022 Evidence Based Dietary Pattern in South Asian Patients: Setting Goals
Authors: Ananya Pappu, Sneha Mishra
Abstract:
Introduction: The South Asian population experiences unique health challenges that predisposes this demographic to cardiometabolic diseases at lower BMIs. South Asians may therefore benefit from recommendations specific to their cultural needs. Here, we focus on current BMI guidelines for Asians with a discussion of South Asian dietary practices and culturally tailored interventions. By integrating traditional dietary practices with modern nutritional recommendations, this manuscript aims to highlight effective strategies to improving health outcomes among South Asians. Background: The South Asian community, including individuals from India, Pakistan, Bangladesh, and Sri Lanka, experiences high rates of cardiovascular diseases, cancers, diabetes, and strokes. Notably, the prevalence of diabetes and cardiovascular disease among Asians is elevated at BMIs below the WHO's standard overweight threshold. As it stands, a BMI of 25-30 kg/m² is considered overweight in non-Asians, while this cutoff is reduced to 23-27.4 kg/m² in Asians. This discrepancy can be attributed to studies which have shown different associations between BMI and health risks in Asians compared to other populations. Given these significant challenges, optimizing lifestyle management for cardiometabolic risk factors is crucial. Tailored interventions that consider cultural context seem to be the best approach for ensuring the success of both dietary and physical activity interventions in South Asian patients. Adopting a whole food, plant-based diet (WFPD) is one such strategy. The WFPD suggests that half of one meal should consist of non-starchy vegetables. In the South Asian diet, this includes traditional vegetables such as okra, tindora, eggplant, and leafy greens including amaranth, collards, chard, and mustards. A quarter of the meal should include plant-based protein sources like cooked beans, lentils, and paneer, with the remaining quarter comprising healthy grains or starches such as whole wheat breads, millets, tapioca, and barley. Adherence to the WFPD has been shown to improve cardiometabolic risk factors including weight, BMI, total cholesterol, HbA1c, and reduces the risk of developing non-alcoholic fatty liver disease (NAFLD). Another approach to improving dietary habits is timing meals. Many of the major cultures and religions in the Indian subcontinent incorporate religious fasting. Time-restricted eating (TRE), also known as intermittent fasting, is a practice akin to traditional fasting, which involves consuming all daily calories within a specific window. TRE has been shown to improve insulin resistance in prediabetic and diabetic patients. Common regimens include completing all meals within an 8-hour window, consuming a low-calorie diet every other day, and the 5:2 diet, which involves fasting twice weekly. These fasting practices align with the natural circadian rhythm, potentially enhancing metabolic health and reducing obesity and diabetes risks. Conclusion: South Asians develop cardiometabolic disease at lower BMIs; hence, it is important to counsel patients about lifestyle interventions that decrease their risk. Traditional South Asian diets can be made more nutrient-rich by incorporating vegetables, plant proteins like lentils and beans, and substituting refined grains for whole grains. Ultimately, the best diet is one to which a patient can adhere. It is therefore important to find a regimen that aligns with a patient’s cultural and traditional food practices.Keywords: BMI, diet, obesity, South Asian, time-restricted eating
Procedia PDF Downloads 4321 Renewable Energy Utilization for Future Sustainability: An Approach to Roof-Mounted Photovoltaic Array Systems and Domestic Rooftop Rainwater Harvesting System Implementation in a Himachal Pradesh, India
Authors: Rajkumar Ghosh, Ananya Mukhopadhyay
Abstract:
This scientific paper presents a thorough investigation into the integration of roof-mounted photovoltaic (PV) array systems and home rooftop rainwater collection systems in a remote community in Himachal Pradesh, India, with the goal of optimum utilization of natural resources for attaining sustainable living conditions by 2030. The study looks into the technical feasibility, environmental benefits, and socioeconomic impacts of this integrated method, emphasizing its ability to handle energy and water concerns in remote rural regions. This comprehensive method not only provides a sustainable source of electricity but also ensures a steady supply of clean water, promoting resilience and improving the quality of life for the village's residents. This research highlights the potential of such integrated systems in supporting sustainable conditions in rural areas through a combination of technical feasibility studies, economic analysis, and community interaction. There would be 20690 villages and 1.48 million homes (23.79% annual growth rate) in Himachal Pradesh if all residential buildings in the state had roof-mounted photovoltaic arrays to capture solar energy for power generation. The energy produced is utilized to power homes, lessening dependency on traditional fossil fuels. The same residential buildings housed domestic rooftop rainwater collection systems. Rainwater runoff from rooftops is collected and stored in tanks for use in a number of residential purposes, such as drinking, cooking, and irrigation. The gathered rainfall enhances the region's limited groundwater resources, easing the strain on local wells and aquifers. Although Himachal Pradesh of India is a Power state, the PV arrays have reduced the reliance of village on grid power and diesel generators by providing a steady source of electricity. Rooftop rainwater gathering has not only increased residential water supply but it has also lessened the burden on local groundwater resources. This helps to replenish groundwater and offers a more sustainable water supply for the town. The neighbourhood has saved money by utilizing renewable energy and rainwater gathering. Furthermore, lower fossil fuel consumption reduces greenhouse gas emissions, which helps to mitigate the effects of climate change. The integrated strategy of installing grid connected rooftop photovoltaic arrays and home rooftop rainwater collecting systems in Himachal Pradesh rural community demonstrates a feasible model for sustainable development. According to “Swaran Jayanti Energy Policy of Himachal Pradesh”, Himachal Pradesh is planned 10 GW from rooftop mode from Solar Power. Government of India provides 40% subsidy on solar panel of 1-3 kw and subsidy of Rs 6,000 per kw per year to encourage domestic consumers of Himachal Pradesh. This effort solves energy and water concerns, improves economic well-being, and helps to conserve the environment. Such integrated systems can serve as a model for sustainable development in rural areas not only in Himachal Pradesh, but also in other parts of the world where resource scarcity is a major concern. Long-term performance and scalability of such integrated systems should be the focus of future study. Efforts should also be made to duplicate this approach in other rural areas and examine its socioeconomic and environmental implications over time.Keywords: renewable energy, photovoltaic arrays, rainwater harvesting, sustainability, rural development, Himachal Pradesh, India
Procedia PDF Downloads 10020 Addressing Primary Care Clinician Burnout in a Value Based Care Setting During the COVID-19 Pandemic
Authors: Robert E. Kenney, Efrain Antunez, Samuel Nodal, Ameer Malik, Richard B. Aguilar
Abstract:
Physician burnout has gained much attention during the COVID pandemic. After-hours workload, HCC coding, HEDIS metrics, and clinical documentation negatively impact career satisfaction. These and other influences have increased the rate of physicians leaving the workforce. In addition, roughly 1% of the entire physician workforce will be retiring earlier than expected based on pre-pandemic trends. The two Medical Specialties with the highest rates of burnout are Family Medicine and Primary Care. With a predicted shortage of primary care physicians looming, the need to address physician burnout is crucial. Commonly reported issues leading to clinician burnout are clerical documentation requirements, increased time working on Electronic Health Records (EHR) after hours, and a decrease in work-life balance. Clinicians experiencing burnout with physical and emotional exhaustion are at an increased likelihood of providing lower quality and less efficient patient care. This may include a lack of suitable clinical documentation, medication reconciliation, clinical assessment, and treatment plans. While the annual baseline turnover rates of physicians hover around 6-7%, the COVID pandemic profoundly disrupted the delivery of healthcare. A report found that 43% of physicians switched jobs during the initial two years of the COVID pandemic (2020 and 2021), tripling the expected average annual rate to 21.5 %/yr. During this same time, an average of 4% and 1.5% of physicians retired or left the workforce for a non-clinical career, respectively. The report notes that 35.2% made career changes for a better work-life balance and another 35% reported the reason as being unhappy with their administration’s response to the pandemic. A physician-led primary care-focused health organization, Cano Health (CH), based out of Florida, sought to preemptively address this problem by implementing several supportive measures. Working with >120 clinics and >280 PCPs from Miami to Tampa and Orlando, managing nearly 120,000 Medicare Advantage lives, CH implemented a number of changes to assist with the clinician’s workload. Supportive services such as after hour and home visits by APRNs, in-clinic care managers, and patient educators were implemented. In 2021, assistive Artificial Intelligence Software (AIS) was integrated into the EHR platform. This AIS converts free text within PDF files into a usable (copy-paste) format facilitating documentation. The software also systematically and chronologically organizes clinical data, including labs, medical records, consultations, diagnostic images, medications, etc., into an easy-to-use organ system or chronic disease state format. This reduced the excess time and documentation burden required to meet payor and CMS guidelines. A clinician Documentation Support team was employed to improve the billing/coding performance. The effects of these newly designed workflow interventions were measured via analysis of clinician turnover from CH’s hiring and termination reporting software. CH’s annualized average clinician turnover rate in 2020 and 2021 were 17.7% and 12.6%, respectively. This represents a 30% relative reduction in turnover rate compared to the reported national average of 21.5%. Retirement rates during both years were 0.1%, demonstrating a relative reduction of >95% compared to the national average (4%). This model successfully promoted the retention of clinicians in a Value-Based Care setting.Keywords: clinician burnout, COVID-19, value-based care, burnout, clinician retirement
Procedia PDF Downloads 8219 Synthetic Method of Contextual Knowledge Extraction
Authors: Olga Kononova, Sergey Lyapin
Abstract:
Global information society requirements are transparency and reliability of data, as well as ability to manage information resources independently; particularly to search, to analyze, to evaluate information, thereby obtaining new expertise. Moreover, it is satisfying the society information needs that increases the efficiency of the enterprise management and public administration. The study of structurally organized thematic and semantic contexts of different types, automatically extracted from unstructured data, is one of the important tasks for the application of information technologies in education, science, culture, governance and business. The objectives of this study are the contextual knowledge typologization, selection or creation of effective tools for extracting and analyzing contextual knowledge. Explication of various kinds and forms of the contextual knowledge involves the development and use full-text search information systems. For the implementation purposes, the authors use an e-library 'Humanitariana' services such as the contextual search, different types of queries (paragraph-oriented query, frequency-ranked query), automatic extraction of knowledge from the scientific texts. The multifunctional e-library «Humanitariana» is realized in the Internet-architecture in WWS-configuration (Web-browser / Web-server / SQL-server). Advantage of use 'Humanitariana' is in the possibility of combining the resources of several organizations. Scholars and research groups may work in a local network mode and in distributed IT environments with ability to appeal to resources of any participating organizations servers. Paper discusses some specific cases of the contextual knowledge explication with the use of the e-library services and focuses on possibilities of new types of the contextual knowledge. Experimental research base are science texts about 'e-government' and 'computer games'. An analysis of the subject-themed texts trends allowed to propose the content analysis methodology, that combines a full-text search with automatic construction of 'terminogramma' and expert analysis of the selected contexts. 'Terminogramma' is made out as a table that contains a column with a frequency-ranked list of words (nouns), as well as columns with an indication of the absolute frequency (number) and the relative frequency of occurrence of the word (in %% ppm). The analysis of 'e-government' materials showed, that the state takes a dominant position in the processes of the electronic interaction between the authorities and society in modern Russia. The media credited the main role in these processes to the government, which provided public services through specialized portals. Factor analysis revealed two factors statistically describing the used terms: human interaction (the user) and the state (government, processes organizer); interaction management (public officer, processes performer) and technology (infrastructure). Isolation of these factors will lead to changes in the model of electronic interaction between government and society. In this study, the dominant social problems and the prevalence of different categories of subjects of computer gaming in science papers from 2005 to 2015 were identified. Therefore, there is an evident identification of several types of contextual knowledge: micro context; macro context; dynamic context; thematic collection of queries (interactive contextual knowledge expanding a composition of e-library information resources); multimodal context (functional integration of iconographic and full-text resources through hybrid quasi-semantic algorithm of search). Further studies can be pursued both in terms of expanding the resource base on which they are held, and in terms of the development of appropriate tools.Keywords: contextual knowledge, contextual search, e-library services, frequency-ranked query, paragraph-oriented query, technologies of the contextual knowledge extraction
Procedia PDF Downloads 35918 A Systematic Review Of Literature On The Importance Of Cultural Humility In Providing Optimal Palliative Care For All Persons
Authors: Roseanne Sharon Borromeo, Mariana Carvalho, Mariia Karizhenskaia
Abstract:
Healthcare providers need to comprehend cultural diversity for optimal patient-centered care, especially near the end of life. Although a universal method for navigating cultural differences would be ideal, culture’s high complexity makes this strategy impossible. Adding cultural humility, a process of self-reflection to understand personal and systemic biases and humbly acknowledging oneself as a learner when it comes to understanding another's experience leads to a meaningful process in palliative care generating respectful, honest, and trustworthy relationships. This study is a systematic review of the literature on cultural humility in palliative care research and best practices. Race, religion, language, values, and beliefs can affect an individual’s access to palliative care, underscoring the importance of culture in palliative care. Cultural influences affect end-of-life care perceptions, impacting bereavement rituals, decision-making, and attitudes toward death. Cultural factors affecting the delivery of care identified in a scoping review of Canadian literature include cultural competency, cultural sensitivity, and cultural accessibility. As the different parts of the world become exponentially diverse and multicultural, healthcare providers have been encouraged to give culturally competent care at the bedside. Therefore, many organizations have made cultural competence training required to expose professionals to the special needs and vulnerability of diverse populations. Cultural competence is easily standardized, taught, and implemented; however, this theoretically finite form of knowledge can dangerously lead to false assumptions or stereotyping, generating poor communication, loss of bonds and trust, and poor healthcare provider-patient relationship. In contrast, Cultural humility is a dynamic process that includes self-reflection, personal critique, and growth, allowing healthcare providers to respond to these differences with an open mind, curiosity, and awareness that one is never truly a “cultural” expert and requires life-long learning to overcome common biases and ingrained societal influences. Cultural humility concepts include self-awareness and power imbalances. While being culturally competent requires being skilled and knowledgeable in one’s culture, being culturally humble involves the sometimes-uncomfortable position of healthcare providers as students of the patient. Incorporating cultural humility emphasizes the need to approach end-of-life care with openness and responsiveness to various cultural perspectives. Thus, healthcare workers need to embrace lifelong learning in individual beliefs and values on suffering, death, and dying. There have been different approaches to this as well. Some adopt strategies for cultural humility, addressing conflicts and challenges through relational and health system approaches. In practice and research, clinicians and researchers must embrace cultural humility to advance palliative care practices, using qualitative methods to capture culturally nuanced experiences. Cultural diversity significantly impacts patient-centered care, particularly in end-of-life contexts. Cultural factors also shape end-of-life perceptions, impacting rituals, decision-making, and attitudes toward death. Cultural humility encourages openness and acknowledges the limitations of expertise in one’s culture. A consistent self-awareness and a desire to understand patients’ beliefs drive the practice of cultural humility. This dynamic process requires practitioners to learn continuously, fostering empathy and understanding. Cultural humility enhances palliative care, ensuring it resonates genuinely across cultural backgrounds and enriches patient-provider interactions.Keywords: cultural competency, cultural diversity, cultural humility, palliative care, self-awareness
Procedia PDF Downloads 6217 Pisolite Type Azurite/Malachite Ore in Sandstones at the Base of the Miocene in Northern Sardinia: The Authigenic Hypothesis
Authors: S. Fadda, M. Fiori, C. Matzuzzi
Abstract:
Mineralized formations in the bottom sediments of a Miocene transgression have been discovered in Sardinia. The mineral assemblage consists of copper sulphides and oxidates suggesting fluctuations of redox conditions in neutral to high-pH restricted shallow-water coastal basins. Azurite/malachite has been observed as authigenic and occurs as loose spheroidal crystalline particles associated with the transitional-littoral horizon forming the bottom of the marine transgression. Many field observations are consistent with a supergenic circulation of metals involving terrestrial groundwater-seawater mixing. Both clastic materials and metals come from Tertiary volcanic edifices while the main precipitating anions, carbonates, and sulphides species are of both continental and marine origin. Formation of Cu carbonates as a supergene secondary 'oxide' assemblage, does not agree with field evidences, petrographic observations along with textural evidences in the host-rock types. Samples were collected along the sedimentary sequence for different analyses: the majority of elements were determined by X-ray fluorescence and plasma-atomic emission spectroscopy. Mineral identification was obtained by X-ray diffractometry and scanning electron microprobe. Thin sections of the samples were examined in microscopy while porosity measurements were made using a mercury intrusion porosimeter. Cu-carbonates deposited at a temperature below 100 C° which is consistent with the clay minerals in the matrix of the host rock dominated by illite and montmorillonite. Azurite nodules grew during the early diagenetic stage through reaction of cupriferous solutions with CO₂ imported from the overlying groundwater and circulating through the sandstones during shallow burial. Decomposition of organic matter in the bottom anoxic waters released additional carbon dioxide to pore fluids for azurite stability. In this manner localized reducing environments were also generated in which Cu was fixed as Cu-sulphide and sulphosalts. Microscopic examinations of textural features of azurite nodules give evidence of primary malachite/azurite deposition rather than supergene oxidation in place of primary sulfides. Photomicrographs show nuclei of azurite and malachite surrounded by newly formed microcrystalline carbonates which constitute the matrix. The typical pleochroism of crystals can be observed also when this mineral fills microscopic fissures or cracks. Sedimentological evidence of transgression and regression indicates that the pore water would have been a variable mixture of marine water and groundwaters with a possible meteoric component in an alternatively exposed and subaqueous environment owing to water-level fluctuation. Salinity data of the pore fluids, assessed at random intervals along the mineralised strata confirmed the values between about 7000 and 30,000 ppm measured in coeval sediments at the base of Miocene falling in the range of a more or less diluted sea water. This suggests a variation in mean pore-fluids pH between 5.5 and 8.5, compatible with the oxidized and reduced mineral paragenesis described in this work. The results of stable isotopes studies reflect the marine transgressive-regressive cyclicity of events and are compatibile with carbon derivation from sea water. During the last oxidative stage of diagenesis, under surface conditions of higher activity of H₂O and O₂, CO₂ partial pressure decreased, and malachite becomes the stable Cu mineral. The potential for these small but high grade deposits does exist.Keywords: sedimentary, Cu-carbonates, authigenic, tertiary, Sardinia
Procedia PDF Downloads 13116 Correlation of Unsuited and Suited 5ᵗʰ Female Hybrid III Anthropometric Test Device Model under Multi-Axial Simulated Orion Abort and Landing Conditions
Authors: Christian J. Kennett, Mark A. Baldwin
Abstract:
As several companies are working towards returning American astronauts back to space on US-made spacecraft, NASA developed a human flight certification-by-test and analysis approach due to the cost-prohibitive nature of extensive testing. This process relies heavily on the quality of analytical models to accurately predict crew injury potential specific to each spacecraft and under dynamic environments not tested. As the prime contractor on the Orion spacecraft, Lockheed Martin was tasked with quantifying the correlation of analytical anthropometric test devices (ATDs), also known as crash test dummies, against test measurements under representative impact conditions. Multiple dynamic impact sled tests were conducted to characterize Hybrid III 5th ATD lumbar, head, and neck responses with and without a modified shuttle-era advanced crew escape suit (ACES) under simulated Orion landing and abort conditions. Each ATD was restrained via a 5-point harness in a mockup Orion seat fixed to a dynamic impact sled at the Wright Patterson Air Force Base (WPAFB) Biodynamics Laboratory in the horizontal impact accelerator (HIA). ATDs were subject to multiple impact magnitudes, half-sine pulse rise times, and XZ - ‘eyeballs out/down’ or Z-axis ‘eyeballs down’ orientations for landing or an X-axis ‘eyeballs in’ orientation for abort. Several helmet constraint devices were evaluated during suited testing. Unique finite element models (FEMs) were developed of the unsuited and suited sled test configurations using an analytical 5th ATD model developed by LSTC (Livermore, CA) and deformable representations of the seat, suit, helmet constraint countermeasures, and body restraints. Explicit FE analyses were conducted using the non-linear solver LS-DYNA. Head linear and rotational acceleration, head rotational velocity, upper neck force and moment, and lumbar force time histories were compared between test and analysis using the enhanced error assessment of response time histories (EEARTH) composite score index. The EEARTH rating paired with the correlation and analysis (CORA) corridor rating provided a composite ISO score that was used to asses model correlation accuracy. NASA occupant protection subject matter experts established an ISO score of 0.5 or greater as the minimum expectation for correlating analytical and experimental ATD responses. Unsuited 5th ATD head X, Z, and resultant linear accelerations, head Y rotational accelerations and velocities, neck X and Z forces, and lumbar Z forces all showed consistent ISO scores above 0.5 in the XZ impact orientation, regardless of peak g-level or rise time. Upper neck Y moments were near or above the 0.5 score for most of the XZ cases. Similar trends were found in the XZ and Z-axis suited tests despite the addition of several different countermeasures for restraining the helmet. For the X-axis ‘eyeballs in’ loading direction, only resultant head linear acceleration and lumbar Z-axis force produced ISO scores above 0.5 whether unsuited or suited. The analytical LSTC 5th ATD model showed good correlation across multiple head, neck, and lumbar responses in both the unsuited and suited configurations when loaded in the XZ ‘eyeballs out/down’ direction. Upper neck moments were consistently the most difficult to predict, regardless of impact direction or test configuration.Keywords: impact biomechanics, manned spaceflight, model correlation, multi-axial loading
Procedia PDF Downloads 11415 Restoring Total Form and Function in Patients with Lower Limb Bony Defects Utilizing Patient-Specific Fused Deposition Modelling- A Neoteric Multidisciplinary Reconstructive Approach
Authors: Divya SY. Ang, Mark B. Tan, Nicholas EM. Yeo, Siti RB. Sudirman, Khong Yik Chew
Abstract:
Introduction: The importance of the amalgamation of technological and engineering advances with surgical principles of reconstruction cannot be overemphasized. With earlier detection of cancer, consequences of high-speed living and neglect, like traumatic injuries and infection, resulting in increasingly younger patients with bone defects. This may result in malformations and suboptimal function that is more noticeable and palpable in the younger, active demographic. Our team proposes a technique that encapsulates a mesh of multidisciplinary effort, tissue engineering and reconstructive principles. Methods/Materials: Our patient was a young competitive footballer in his early 30s who was diagnosed with submandibular adenoid cystic carcinoma with bony involvement. He was thus counselled for a right hemi mandibulectomy, the floor of mouth resection, right selective neck dissection, tracheostomy, and free fibular flap reconstruction of his mandible and required post-operative radiotherapy. Being young and in his prime sportsman years, he was unable to accept the morbidities associated with using his fibula to reconstruct his mandible despite it being the gold standard reconstructive option. The fibula is an ideal vascularized bone flap because it’s reliable and easily shaped with relatively minimal impact on functional outcomes. The fibula contributes to 30% of weightbearing and is the attachment for the lateral compartment muscles; it is stronger in footballers concerning lateral bending. When harvesting the fibula, the distal 6-8cm and up to 10% of the total length is preserved to maintain the ankle’s stability, thus, minimizing the impact on daily activities. There are studies that have noted gait variability post-operatively. Therefore, returning to a premorbid competitive level may be doubtful. To improve his functional outcomes, the decision was made to try and restore the fibula's form and function. Using the concept of Fused Deposition Modelling (FDM), our team comprising of Plastics, Otolaryngology, Orthopedics and Radiology, worked with Osteopore to design a 3D bioresorbable implant to regenerate the fibula defect (14.5cm). Bone marrow was harvested via reaming the contralateral hip prior to the wide resection. 30mls of his blood was obtained for extracting platelet rich plasma. These were packed into the Osteopore 3D-printed bone scaffold. This was then secured into the fibula defect with titanium plates and screws. The flexor hallucis longus and soleus were anchored along the construct and intraosseous membrane, done in a single setting. Results: He was reviewed closely as an outpatient over 10 months post operatively. He reported no discernable loss or difference in ankle function. He is satisfied and back in training and our team has video and photographs that substantiate his progress. Conclusion: FDM allows regeneration of long bone defects. However, we aimed to also restore his eversion and inversion that is imperative for footballers and hence reattached his previously dissected muscles along the length of the Osteopore implant. We believe that the reattachment of the muscle stabilizes not only the construct but allows optimum muscle tensioning when moving his ankle. This is a simple but effective technique in restoring complete function and form in a young patient whose minute muscle control is imperative to life.Keywords: fused deposition modelling, functional reconstruction, lower limb bony defects, regenerative surgery, 3D printing, tissue engineering
Procedia PDF Downloads 73