Search results for: language learning strategy instruction
Commenced in January 2007
Frequency: Monthly
Edition: International

Search results for: language learning strategy instruction

Political Party Mobilization Strategies in Ghana: A Comparative Analysis of Three Constituencies

Authors: F. Agbele

Abstract:

Elections are core democratic institutions. Consequently, voter participation during elections is paramount to democratic governance as it serves as a medium to legitimize authority and make the privileges of electoral democracy meaningful to citizens. To this effect, the topic of voter mobilization and subsequent turnout level have been largely studied in advanced democracies. In young and consolidating democracies, the debate has, however, revolves around the huge reliance on ethnic and regional appeals. According to the Author’s knowledge, studies on electoral mobilization especially within the African context have argued the use of ethnic linkages by political parties to mobilize voters during elections. Literature has however not differentiated between the level of democratic dispensation among African countries and the use of ethnic linkages. The question, however, is whether the state of the country’s democracy determines the strategies employed by political parties to induce voter participation. In other words, do parties simply play ethno-regional cards as strongly suggested by literature or will consider an arrayed of strategies to mobilize voters? Additionally, studies have not differentiated the impact of mobilization strategy within a country, i.e. between high to low turnout areas. They have also not distinguished between strategies employed by an incumbent or an opposition party. This paper, therefore, is a comparative analysis of voter mobilization in Ghana. It uses original survey and interview data from three constituencies in Ghana: Nanton, Assin North, and Ellembelle, which are typical cases of high, average and low turnout areas, respectively. The data were concurrently collected during fieldworks conducted in November 2016 to February 2017, and again from July to August 2017. The study found that political parties within a consolidating democracy employ a blend of strategies to ensure turnout by both parties’ faithful and swing voters. The dominant strategies used depends on whether the party is an incumbent or in opposition. While an incumbent may depend more on personalistic and clientelistic strategies, parties in opposition will largely use programmatic strategies, which entails making many campaign promises. Additionally, opposition parties do use clientelistic tactics, but not on the same level as the incumbent. Similarly, within the context of this study, the use of ethnic linkage by political parties to mobilize voters has not been found to be as strong as suggested in the literature. Further, location was key in determining the strategy to use. In all, the consolidation process of a democratic country like Ghana means the change of mobilization strategies used by political parties, which entail a gradual shift from ethnic linkages to programmatic and other forms of non-programmatic strategies.

Keywords: comparative analysis, elections, mobilization strategies, voter turnout

Procedia PDF Downloads 177
Challenges Faced by Teachers during Teaching with Developmental Disable Students at Primary Level in Lahore

Authors: Zikra Faiz, Nisar Abid, Muhammad Waqas

Abstract:

This study aim to examine the challenges faced by teachers during teaching to those students who are intellectually disable, suffering from autism spectrum disorder, learning disability, and ADHD at the primary level. The descriptive research design of quantitative approach was adopted to conduct this study; a cross-sectional survey method was used to collect data. The sample was comprised of 258 (43 male and 215 female) teachers who teach at special education institutes of Lahore district selected through proportionate stratified random sampling technique. Self-developed questionnaire was used which was comprised of 22 closed-ended items. Collected data were analyzed through descriptive and inferential statistical techniques by using Statistical Package for Social Sciences (SPSS) version 21. Results show that teachers faced problems during group activities, to handle bad behavior and different disabilities of students. It is concluded that there was a significant difference between male and female teachers perceptions about challenges faced during teaching with developmental disable students. Furthermore, there was a significant difference exist in the perceptions of teachers regarding challenges faced during teaching to students with developmental disabilities in term of teachers’ age and area of specialization. It is recommended that developmentally disable student require extra attention so that, teacher should trained through pre-service and in-service training to teach developmentally disabled students.

Keywords: intellectual disability, autism spectrum disorder, ADHD, learning disability

Procedia PDF Downloads 146
Mind Your Product-Market Strategy on Selecting Marketing Inputs: An Uncertainty Approach in Indian Context

Authors: Susmita Ghosh, Bhaskar Bhowmick

Abstract:

Market is an important factor for start-ups to look into during decision-making in product development and related areas. Emerging country markets are more uncertain in terms of information availability and institutional supports. The literature review of market uncertainty reveals the need for identifying factors representing the market uncertainty. This paper identifies factors for market uncertainty using Exploratory Factor Analysis (EFA) and confirms the number of factor retention using an alternative factor retention criterion, ‘Parallel Analysis’. 500 entrepreneurs, engaged in start-ups from all over India participated in the study. This paper concludes with the factor structure of ‘market uncertainty’ having dimensions of uncertainty in industry orientation, uncertainty in customer orientation and uncertainty in marketing orientation.

Keywords: uncertainty, market, orientation, competitor, demand

Procedia PDF Downloads 595
An Application of the Single Equation Regression Model

Authors: S. K. Ashiquer Rahman

Abstract:

Recently, oil has become more influential in almost every economic sector as a key material. As can be seen from the news, when there are some changes in an oil price or OPEC announces a new strategy, its effect spreads to every part of the economy directly and indirectly. That’s a reason why people always observe the oil price and try to forecast the changes of it. The most important factor affecting the price is its supply which is determined by the number of wildcats drilled. Therefore, a study about the number of wellheads and other economic variables may give us some understanding of the mechanism indicated by the amount of oil supplies. In this paper, we will consider a relationship between the number of wellheads and three key factors: the price of the wellhead, domestic output, and GNP constant dollars. We also add trend variables in the models because the consumption of oil varies from time to time. Moreover, this paper will use an econometrics method to estimate parameters in the model, apply some tests to verify the result we acquire, and then conclude the model.

Keywords: price, domestic output, GNP, trend variable, wildcat activity

Procedia PDF Downloads 66
Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates

Authors: Bongs Lainjo

Abstract:

Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.

Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum

Procedia PDF Downloads 180
A Quantitative Plan for Drawing Down Emissions to Attenuate Climate Change

Authors: Terry Lucas

Abstract:

Calculations are performed to quantify the potential contribution of each greenhouse gas emission reduction strategy. This approach facilitates the visualisation of the relative benefits of each, and it provides a potential baseline for the development of a plan of action that is rooted in quantitative evaluation. Emissions reductions are converted to potential de-escalation of global average temperature. A comprehensive plan is then presented which shows the potential benefits all the way out to year 2100. A target temperature de-escalation of 2oC was selected, but the plan shows a benefit of only 1.225oC. This latter disappointing result is in spite of new and powerful technologies introduced into the equation. These include nuclear fusion and alternative nuclear fission processes. Current technologies such as wind, solar and electric vehicles show surprisingly small constributions to the whole.

Keywords: climate change, emissions, drawdown, energy

Procedia PDF Downloads 135
Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.

Keywords: deep learning, artificial neural networks, energy price forecasting, turkey

Procedia PDF Downloads 300
Communication Tools Used in Teaching and Their Effects: An Empirical Study on the T. C. Selcuk University Samples

Authors: Sedat Simsek, Tugay Arat

Abstract:

Today's communication concept, which has a great revolution with the printing press which has been found by Gutenberg, has no boundary thanks to advanced communication devices and the internet. It is possible to take advantage in many areas, such as from medicine to social sciences or from mathematics to education, from the computers that was first produced for the purpose of military services. The use of these developing technologies in the field of education has created a great vision changes in both training and having education. Materials, which can be considered as basic communication resources and used in traditional education has begun to lose its significance, and some technologies have begun to replace them such as internet, computers, smart boards, projection devices and mobile phone. On the other hand, the programs and applications used in these technologies have also been developed. University students use virtual books instead of the traditional printed book, use cell phones instead of note books, use the internet and virtual databases instead of the library to research. They even submit their homework with interactive methods rather than printed materials. The traditional education system, these technologies, which increase productivity, have brought a new dimension to education. The aim of this study is to determine the influence of technologies in the learning process of students and to find whether is there any similarities and differences that arise from the their faculty that they have been educated and and their learning process. In addition to this, it is aimed to determine the level of ICT usage of students studying at the university level. In this context, the advantages and conveniences of the technology used by students are also scrutinized. In this study, we used surveys to collect data. The data were analyzed by using SPSS 16 statistical program with the appropriate testing.

Keywords: education, communication technologies, role of technology, teaching

Procedia PDF Downloads 307
Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data

Authors: M. Kharrat, G. Moreau, Z. Aboura

Abstract:

The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.

Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition

Procedia PDF Downloads 161
The Application of Artificial Neural Network for Bridge Structures Design Optimization

Authors: Angga S. Fajar, A. Aminullah, J. Kiyono, R. A. Safitri

Abstract:

This paper discusses about the application of ANN for optimizing of bridge structure design. ANN has been applied in various field of science concerning prediction and optimization. The structural optimization has several benefit including accelerate structural design process, saving the structural material, and minimize self-weight and mass of structure. In this paper, there are three types of bridge structure that being optimized including PSC I-girder superstructure, composite steel-concrete girder superstructure, and RC bridge pier. The different optimization strategy on each bridge structure implement back propagation method of ANN is conducted in this research. The optimal weight and easier design process of bridge structure with satisfied error are achieved.

Keywords: bridge structures, ANN, optimization, back propagation

Procedia PDF Downloads 378
When Ideological Intervention Backfires: The Case of the Iranian Clerical System’s Intervention in the Pandemic-Era Elementary Education

Authors: Hasti Ebrahimi

Abstract:

This study sheds light on the challenges and difficulties caused by the Iranian clerical system’s intervention in the country’s school education during the COVID-19 pandemic, when schools remained closed for almost two years. The pandemic brought Iranian elementary school education to a standstill for almost 6 months before the country developed a nationwide learning platform – a customized television network. While the initiative seemed to have been welcomed by the majority of Iranian parents, it resented some of the more traditional strata of the society, including the influential Friday Prayer Leaders who found the televised version of the elementary education ‘less spiritual’ and ‘more ‘material’ or science-based. That prompted the Iranian Channel of Education, the specialized television network that had been chosen to serve as a nationally televised school during the pandemic, to try to redefine much of its online elementary school educational content within the religious ideology of the Islamic Republic of Iran. As a result, young clergies appeared on the television screen as preachers of Islamic morality, religious themes and even sociology, history, and arts. The present research delves into the consequences of such an intervention, how it might have impacted the infrastructure of Iranian elementary education and whether or not the new ideology-infused curricula would withstand the opposition of students and mainstream teachers. The main methodology used in this study is Critical Discourse Analysis with a cognitive approach. It systematically finds and analyzes the alternative ideological structures of discourse in the Iranian Channel of Education from September 2021 to July 2022, when the clergy ‘teachers’ replaced ‘regular’ history and arts teachers on the television screen for the first time. It has aimed to assess how the various uses of the alternative ideological discourse in elementary school content have influenced the processes of learning: the acquisition of knowledge, beliefs, opinions, attitudes, abilities, and other cognitive and emotional changes, which are the goals of institutional education. This study has been an effort aimed at understanding and perhaps clarifying the relationships between the traditional textual structures and processing on the one hand and socio-cultural contexts created by the clergy teachers on the other. This analysis shows how the clerical portion of elementary education on the Channel of Education that seemed to have dominated the entire televised teaching and learning process faded away as the pandemic was contained and mainstream classes were restored. It nevertheless reflects the deep ideological rifts between the clerical approach to school education and the mainstream teaching process in Iranian schools. The semantic macrostructures of social content in the current Iranian elementary school education, this study suggests, have remained intact despite the temporary ideological intervention of the ruling clerical elite in their formulation and presentation. Finally, using thematic and schematic frameworks, the essay suggests that the ‘clerical’ social content taught on the Channel of Education during the pandemic cannot have been accepted cognitively by the channel’s target audience, including students and mainstream teachers.

Keywords: televised elementary school learning, Covid 19, critical discourse analysis, Iranian clerical ideology

Procedia PDF Downloads 59
Linking Supervisor’s Goal Orientation to Post-Training Supportive Behaviors: The Mediating Role of Interest in the Development of Subordinates Skills

Authors: Martin Lauzier, Benjamin Lafreniere-Carrier, Nathalie Delobbe

Abstract:

Supervisor support is one of the main levers to foster transfer of training. Although past and current studies voice its effects, few have sought to identify the factors that may explain why supervisors offer support to their subordinates when they return from training. Based on Goal Orientation Theory and following the principles of supportive supervision, this study aims to improve our understanding of the factors that influence supervisors’ involvement in the transfer process. More specifically, this research seeks to verify the influence of supervisors’ goal orientation on the adoption of post-training support behaviors. This study also assesses the mediating role of the supervisors’ interest in subordinates’ development on this first relationship. Conducted in two organizations (Canadian: N₁ = 292; Belgian: N₂ = 80), the results of this study revealed three main findings. First, supervisors’ who adopt learning mastery goal orientation also tend to adopt more post-training supportive behaviors. Secondly, regression analyses (using the bootstrap method) show that supervisors' interest in developing their subordinates’ skills mediate the relationship between supervisors’ goal orientation and post-training supportive behaviors. Thirdly, the observed mediation effects are consistent in both samples, regardless of supervisors’ gender or age. Overall, this research is part of the limited number of studies that have focused on the determining factors supervisors’ involvement in the learning transfer process.

Keywords: supervisor support, transfer of training, goal orientation, interest in the development of subordinates’ skills

Procedia PDF Downloads 192
Blended Cloud Based Learning Approach in Information Technology Skills Training and Paperless Assessment: Case Study of University of Cape Coast

Authors: David Ofosu-Hamilton, John K. E. Edumadze

Abstract:

Universities have come to recognize the role Information and Communication Technology (ICT) skills plays in the daily activities of tertiary students. The ability to use ICT – essentially, computers and their diverse applications – are important resources that influence an individual’s economic and social participation and human capital development. Our society now increasingly relies on the Internet, and the Cloud as a means to communicate and disseminate information. The educated individual should, therefore, be able to use ICT to create and share knowledge that will improve society. It is, therefore, important that universities require incoming students to demonstrate a level of computer proficiency or trained to do so at a minimal cost by deploying advanced educational technologies. The training and standardized assessment of all in-coming first-year students of the University of Cape Coast in Information Technology Skills (ITS) have become a necessity as students’ most often than not highly overestimate their digital skill and digital ignorance is costly to any economy. The one-semester course is targeted at fresh students and aimed at enhancing the productivity and software skills of students. In this respect, emphasis is placed on skills that will enable students to be proficient in using Microsoft Office and Google Apps for Education for their academic work and future professional work whiles using emerging digital multimedia technologies in a safe, ethical, responsible, and legal manner. The course is delivered in blended mode - online and self-paced (student centered) using Alison’s free cloud-based tutorial (Moodle) of Microsoft Office videos. Online support is provided via discussion forums on the University’s Moodle platform and tutor-directed and assisted at the ICT Centre and Google E-learning laboratory. All students are required to register for the ITS course during either the first or second semester of the first year and must participate and complete it within a semester. Assessment focuses on Alison online assessment on Microsoft Office, Alison online assessment on ALISON ABC IT, Peer assessment on e-portfolio created using Google Apps/Office 365 and an End of Semester’s online assessment at the ICT Centre whenever the student was ready in the cause of the semester. This paper, therefore, focuses on the digital culture approach of hybrid teaching, learning and paperless examinations and the possible adoption by other courses or programs at the University of Cape Coast.

Keywords: assessment, blended, cloud, paperless

Procedia PDF Downloads 253
Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries

Authors: Gaurav Kumar Sinha

Abstract:

The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.

Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance

Procedia PDF Downloads 34
Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 134
Influence of Intelligence and Failure Mindsets on Parent's Failure Feedback

Authors: Sarah Kalaouze, Maxine Iannucelli, Kristen Dunfield

Abstract:

Children’s implicit beliefs regarding intelligence (i.e., intelligence mindsets) influence their motivation, perseverance, and success. Previous research suggests that the way parents perceive failure influences the development of their child’s intelligence mindsets. We invited 151 children-parent dyads (Age= 5–6 years) to complete a series of difficult puzzles over zoom. We assessed parents’ intelligence and failure mindsets using questionnaires and recorded parents’ person/performance-oriented (e.g., “you are smart” or "you were almost able to complete that one) and process-oriented (e.g., “you are trying really hard” or "maybe if you place the bigger pieces first") failure feedback. We were interested in observing the relation between parental mindsets and the type of feedback provided. We found that parents’ intelligence mindsets were not predictive of the feedback they provided children. Failure mindsets, on the other hand, were predictive of failure feedback. Parents who view failure-as-debilitating provided more person-oriented feedback, focusing on performance and personal ability. Whereas parents who view failure-as-enhancing provided process-oriented feedback, focusing on effort and strategies. Taken all together, our results allow us to determine that although parents might already have a growth intelligence mindset, they don’t necessarily have a failure-as-enhancing mindset. Parents adopting a failure-as-enhancing mindset would influence their children to view failure as a learning opportunity, further promoting practice, effort, and perseverance during challenging tasks. The focus placed on a child’s learning, rather than their performance, encourages them to perceive intelligence as malleable (growth mindset) rather than fix (fixed mindset). This implies that parents should not only hold a growth mindset but thoroughly understand their role in the transmission of intelligence beliefs.

Keywords: mindset(s), failure, intelligence, parental feedback, parents

Procedia PDF Downloads 144
Developing Women Entrepreneurial Leadership: 'From Vision to Practice

Authors: Saira Maqbool, Qaisara Parveen, Muhammad Arshad Dahar

Abstract:

Improving females' involvement in management and enterprises in Pakistan requires the development of female entrepreneurs as leaders. Entrepreneurial education aims for providing students the knowledge, aptitudes and motivation to energize innovative accomplishment in various settings. Assortments of venture instruction are advertised at all stages of mentoring, from fundamental or discretionary institutes through graduate institutional platforms. The business enterprise will be considered the procedure by which a looming business visionary or business person pursues after openings without respect to the resources they directly regulate. This entails the ability of the business visionary to join every single other generation. This study explores the relationship between developing Women's Leadership skills and Entrepreneurship Education The essential reason for this consider was to analyze the role of Entrepreneurship Edification (EE) towards women's Leadership and develop entrepreneurial intentions among students. The major goal of this study was to foster entrepreneurial attitudes among PMAS Arid Agriculture University undergraduate students concerning their choice to work for themselves. This study focuses on the motivation and interest of female students in the social sciences to build entrepreneurial leadership skills. The quantitative analysis used a true-experimental, pretest-posttest control group research design. Female undergraduate students from PMAS Arid Agriculture University made up the study population. For entrepreneurial activity, a training module has been created. The students underwent a three-week training program at PMAS Arid Agriculture University, where they learned about entrepreneurial leadership abilities. The quantitative data were analyzed using descriptive statistics and T-tests. The findings indicated that students acquired entrepreneurial leadership skills and intentions after training. They have decided to launch their businesses as leaders. It is advised that other PMAS Arid Agriculture University departments use the training module and course outline because the research's usage of them has important results.

Keywords: business, entrepreneurial, intentions, leadership, women

Procedia PDF Downloads 73
Yawning Computing Using Bayesian Networks

Authors: Serge Tshibangu, Turgay Celik, Zenzo Ncube

Abstract:

Road crashes kill nearly over a million people every year, and leave millions more injured or permanently disabled. Various annual reports reveal that the percentage of fatal crashes due to fatigue/driver falling asleep comes directly after the percentage of fatal crashes due to intoxicated drivers. This percentage is higher than the combined percentage of fatal crashes due to illegal/Un-Safe U-turn and illegal/Un-Safe reversing. Although a relatively small percentage of police reports on road accidents highlights drowsiness and fatigue, the importance of these factors is greater than we might think, hidden by the undercounting of their events. Some scenarios show that these factors are significant in accidents with killed and injured people. Thus the need for an automatic drivers fatigue detection system in order to considerably reduce the number of accidents owing to fatigue.This research approaches the drivers fatigue detection problem in an innovative way by combining cues collected from both temporal analysis of drivers’ faces and environment. Monotony in driving environment is inter-related with visual symptoms of fatigue on drivers’ faces to achieve fatigue detection. Optical and infrared (IR) sensors are used to analyse the monotony in driving environment and to detect the visual symptoms of fatigue on human face. Internal cues from drivers faces and external cues from environment are combined together using machine learning algorithms to automatically detect fatigue.

Keywords: intelligent transportation systems, bayesian networks, yawning computing, machine learning algorithms

Procedia PDF Downloads 460
Association between Caries Status of First Permanent Molar with Oral Health Care Practice in Children Aged 9-12 Years in Lubuk Kilangan, Padang City

Authors: Cytha Nilam Chairani, Ditha Noviantika, Hidayati Amir, Nurul Khairiyah, Siti Rahmadita, Fadila Khairani

Abstract:

Background: Dental caries is one of the most common diseases with high prevalence in children. The first permanent molar (FPM) has an essential role in establishing the occlusion. Nevertheless, FPM is very prone to caries because of various factors, such as their anatomical structure and early emergence in oral cavity. It is due to the little knowledge from parents and children regarding the timing of emergence of FPM in oral cavity which is still considered as primary teeth. Furthermore, the lack of knowledge from parents and children may affect their oral hygiene practice resulting to carious process. Objective: The aim of this study was to assess the status of FPM caries and its association with children’s oral hygiene practice in 9-12-year-old school children in Lubuk Kilangan Community Health Centre, Padang City. Methods: A cross-sectional study was performed in 50 school children (9-12 years old) using random sampling technique from two randomly selected schools in Lubuk Kilangan Community Health Centre, Padang City. A questionnaire was developed from other studies consisting of four closed ended questions regarding oral health practice. The data obtained were analyzed statistically using Mann-Whitney Test to assess the status of FPM caries and its association with children’s oral hygiene practice. Results: The results showed that 32% of children had FPMs sound and the remaining 68% had FPMs carious which were grouped into 1-2 FPMs carious (60%) and 3-4 FPMs carious (8%). The caries status of mandibular FPM (64%) was higher compared to maxillary FPM (10%). Conclusion: There was significant association in subject who did not visit dentist in the last 6 months which had more carious FPMs compared to subject who visited dentist (p < 0.05). There was no significant association between the status of FPM caries and knowledge of the timing eruption of FPM, oral hygiene instruction from parents and tooth brushing (p > 0.05).

Keywords: dental caries, children, first permanent molar, oral hygiene practice

Procedia PDF Downloads 277
Factors Affecting Internet Behavior and Life Satisfaction of Older Adult Learners with Use of Smartphone

Authors: Horng-Ji Lai

Abstract:

The intuitive design features and friendly interface of smartphone attract older adults. In Taiwan, many senior education institutes offer smartphone training courses for older adult learners who are interested in learning this innovative technology. It is expected that the training courses can help them to enjoy the benefits of using smartphone and increase their life satisfaction. Therefore, it is important to investigate the factors that influence older adults’ behavior of using smartphone. The purpose of the research was to develop and test a research model that investigates the factors (self-efficacy, social connection, the need to seek health information, and the need to seek financial information) affecting older adult learners’ Internet behaviour and their life satisfaction with use of smartphone. Also, this research sought to identify the relationship between the proposed variables. Survey method was used to collect research data. A Structural Equation Modeling was performed using Partial Least Squares (PLS) regression for data exploration and model estimation. The participants were 394 older adult learners from smartphone training courses in active aging learning centers located in central Taiwan. The research results revealed that self-efficacy significantly affected older adult learner’ social connection, the need to seek health information, and the need to seek financial information. The construct of social connection yielded a positive influence in respondents’ life satisfaction. The implications of these results for practice and future research are also discussed.

Keywords: older adults, smartphone, internet behaviour, life satisfaction

Procedia PDF Downloads 195
Optimization Based Obstacle Avoidance

Authors: R. Dariani, S. Schmidt, R. Kasper

Abstract:

Based on a non-linear single track model which describes the dynamics of vehicle, an optimal path planning strategy is developed. Real time optimization is used to generate reference control values to allow leading the vehicle alongside a calculated lane which is optimal for different objectives such as energy consumption, run time, safety or comfort characteristics. Strict mathematic formulation of the autonomous driving allows taking decision on undefined situation such as lane change or obstacle avoidance. Based on position of the vehicle, lane situation and obstacle position, the optimization problem is reformulated in real-time to avoid the obstacle and any car crash.

Keywords: autonomous driving, obstacle avoidance, optimal control, path planning

Procedia PDF Downloads 374
The Locus of Action - Tinted Windows

Authors: Devleminck Steven, Debackere Boris

Abstract:

This research is about the ways artists and scientists deal with (and endure) new meaning and comprehend and construct the world. The project reflects on the intense connection between comprehension and construction and their place of creation – the ‘locus of action’. It seeks to define a liquid form of understanding and analysis capable of approaching our complex liquid world as discussed by Zygmunt Bauman. The aim is to establish a multi-viewpoint theoretical approach based on the dynamic concept of the Flâneur as introduced by Baudelaire, replacing single viewpoint categorization. This is coupled with the concept of thickening as proposed by Clifford Geertz with its implication of interaction between multi-layers of meaning. Here walking and looking is introduced as a method or strategy, a model or map, providing a framework of understanding in conditions of hybridity and change.

Keywords: action, art, liquid, locus, negotiation, place, science

Procedia PDF Downloads 283
Reconceptualising Faculty Teaching Competence: The Role of Agency during the Pandemic

Authors: Ida Fatimawati Adi Badiozaman, Augustus Raymond Segar

Abstract:

The Covid-19 pandemic transformed teaching contexts at an unprecedented level. Although studies have focused mainly on its impact on students, little is known about how emergency online teaching affects faculty members in higher education. Given that the pandemic has robbed teachers of opportunities for adequate preparation, it is vital to understand how teaching competencies were perceived in the crisis-response transition to online teaching and learning (OTL). Therefore, the study explores how academics perceive their readiness for OTL and what competencies were perceived to be central. Therefore, through a mixed-methods design, the study first explores through a survey how academics perceive their readiness for OTL and what competencies were perceived to be central. Emerging trends from the quantitative data of 330 academics (three public and three private Higher learning institutions) led to the formulation of interview guides for the subsequent qualitative phase. The authors use critical sensemaking (CSM) to analyse interviews with twenty-two teachers (n = 22) (three public; three private HEs) toward understanding the interconnected layers of influences they draw from as they make sense of their teaching competence. The sensemaking process reframed competence and readiness in that agentic competency emerged as crucial in shaping resilience and adaptability during the transition to OTL. The findings also highlight professional learningcriticalto teacher competence: course design, communication, time management, technological competence, and identity (re)construction. The findings highlight opportunities for strategic orientation to change during crisis. Implications for pedagogy and policy are discussed.

Keywords: online teaching, pedagogical competence, agentic competence, agency, technological competence

Procedia PDF Downloads 85
Denial among Women Living with Cancer: An Exploratory Study to Understand the Consequences of Cancer and the Denial Mechanism

Authors: Judith Partouche-Sebban, Saeedeh Rezaee Vessal

Abstract:

Because of the rising number of new cases of cancer, especially among women, it is more than essential to better understand how women experience cancer in order to bring them adapted to support and care and enhance their well-being and patient experience. Cancer stands for a traumatic experience in which the diagnosis, its medical treatments, and the related side effects lead to deep physical and psychological changes that may arouse considerable stress and anxiety. In order to reduce these negative emotions, women tend to use various defense mechanisms, among which denial has been defined as the most frequent mechanism used by breast cancer patients. This study aims to better understand the consequences of the experience of cancer and their link with the adoption of a denial strategy. The empirical research was done among female cancer survivors in France. Since the topic of this study is relatively unexplored, a qualitative methodology and open-ended interviews were employed. In total, 25 semi-directive interviews were conducted with a female with different cancers, different stages of treatment, and different ages. A systematic inductive method was performed to analyze data. The content analysis enabled to highlight three different denial-related behaviors among women with cancer, which serve a self-protective function. First, women who expressed high levels of anxiety confessed they tended to completely deny the existence of their cancer immediately after the diagnosis of their illness. These women mainly exhibit many fears and a deep distrust toward the medical context and professionals. This coping mechanism is defined by the patient as being unconscious. Second, other women deliberately decided to deny partial information about their cancer, whether this information is related to the stages of the illness, the emotional consequences, or the behavioral consequences of the illness. These women use this strategy as a way to avoid the reality of the illness and its impact on the different aspects of their life as if cancer does not exist. Third, some women tend to reinterpret and give meaning to their cancer as a way to reduce its impact on their life. To this end, they may use magical thinking or positive reframing, or reinterpretation. Because denial may lead to delays in medical treatments, this topic deserves a deep investigation, especially in the context of oncology. As denial is defined as a specific defense mechanism, this study contributes to the existing literature in service marketing which focuses on emotions and emotional regulation in healthcare services which is a crucial issue. Moreover, this study has several managerial implications for healthcare professionals who interact with patients in order to implement better care and support for the patients.

Keywords: cancer, coping mechanisms, denial, healthcare services

Procedia PDF Downloads 89
A Study of Transferable Skills for Work-Based Learning (WBL) Assessment

Authors: Abdool Qaiyum Mohabuth

Abstract:

Transferrable skills are learnt abilities which are mainly acquired when experiencing work. University students have the opportunities to develop the knowledge and aptitude at work when they undertake WBL placement during their studies. There is a range of transferrable skills which students may acquire at their placement settings. Several studies have tried to identify a core set of transferrable skills which students can acquire at their placement settings. However, the different lists proposed have often been criticised for being exhaustive and duplicative. In addition, assessing the achievement of students on practice learning based on the transferrable skills is regarded as being complex and tedious due to the variability of placement settings. No attempt has been made in investigating whether these skills are assessable at practice settings. This study seeks to define a set of generic transferrable skills that can be assessed during WBL practice. Quantitative technique was used involving the design of two questionnaires. One was administered to University of Mauritius students who have undertaken WBL practice and the other was slightly modified, destined to mentors who have supervised and assessed students at placement settings. To obtain a good representation of the student’s population, the sample considered was stratified over four Faculties. As for the mentors, probability sampling was considered. Findings revealed that transferrable skills may be subject to formal assessment at practice settings. Hypothesis tested indicate that there was no significant difference between students and mentors as regards to the application of transferrable skills for formal assessment. A list of core transferrable skills that are assessable at any practice settings has been defined after taking into account their degree of being generic, extent of acquisition at work settings and their consideration for formal assessment. Both students and mentors assert that these transferrable skills are accessible at work settings and require commitment and energy to be acquired successfully.

Keywords: knowledge, skills, assessment, placement, mentors

Procedia PDF Downloads 279
Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization

Authors: R. O. Osaseri, A. R. Usiobaifo

Abstract:

The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.

Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault

Procedia PDF Downloads 329
Optimized Approach for Secure Data Sharing in Distributed Database

Authors: Ahmed Mateen, Zhu Qingsheng, Ahmad Bilal

Abstract:

In the current age of technology, information is the most precious asset of a company. Today, companies have a large amount of data. As the data become larger, access to data for some particular information is becoming slower day by day. Faster data processing to shape it in the form of information is the biggest issue. The major problems in distributed databases are the efficiency of data distribution and response time of data distribution. The security of data distribution is also a big issue. For these problems, we proposed a strategy that can maximize the efficiency of data distribution and also increase its response time. This technique gives better results for secure data distribution from multiple heterogeneous sources. The newly proposed technique facilitates the companies for secure data sharing efficiently and quickly.

Keywords: ER-schema, electronic record, P2P framework, API, query formulation

Procedia PDF Downloads 335
Developing an IT Management Policy: A Proposal

Authors: Robert Gilliland

Abstract:

In any organization, a potential issue can arise and become a problem when management deviates from the standard norms set in the system development process of an IT system and the policies that pertain to it. In these instances, cybersecurity is a big challenge that organizations have to face in safeguarding the data that they generate and use. When a new idea, task, or process begins, specific standards must be followed, along with the policies and procedures that ensure the safeguard of data in the information system within the company. A good IT Strategy and Policy should have individuals who are in charge of overseeing the design, development, implementation, and auditing of these policies. Auditors are people who check to make sure that the issue conforms with the plan that is in place. Management has the ability through the role of the manager to potentially abuse power is given and to direct specific ideas, events, projects, and outcomes that are contrary to the vision or goals of the company.

Keywords: strategic policy, policy management, new policy, strategic planning

Procedia PDF Downloads 140
Sequential and Combinatorial Pre-Treatment Strategy of Lignocellulose for the Enhanced Enzymatic Hydrolysis of Spent Coffee Waste

Authors: Rajeev Ravindran, Amit K. Jaiswal

Abstract:

Waste from the food-processing industry is produced in large amount and contains high levels of lignocellulose. Due to continuous accumulation throughout the year in large quantities, it creates a major environmental problem worldwide. The chemical composition of these wastes (up to 75% of its composition is contributed by polysaccharide) makes it inexpensive raw material for the production of value-added products such as biofuel, bio-solvents, nanocrystalline cellulose and enzymes. In order to use lignocellulose as the raw material for the microbial fermentation, the substrate is subjected to enzymatic treatment, which leads to the release of reducing sugars such as glucose and xylose. However, the inherent properties of lignocellulose such as presence of lignin, pectin, acetyl groups and the presence of crystalline cellulose contribute to recalcitrance. This leads to poor sugar yields upon enzymatic hydrolysis of lignocellulose. A pre-treatment method is generally applied before enzymatic treatment of lignocellulose that essentially removes recalcitrant components in biomass through structural breakdown. Present study is carried out to find out the best pre-treatment method for the maximum liberation of reducing sugars from spent coffee waste (SPW). SPW was subjected to a range of physical, chemical and physico-chemical pre-treatment followed by a sequential, combinatorial pre-treatment strategy is also applied on to attain maximum sugar yield by combining two or more pre-treatments. All the pre-treated samples were analysed for total reducing sugar followed by identification and quantification of individual sugar by HPLC coupled with RI detector. Besides, generation of any inhibitory compounds such furfural, hydroxymethyl furfural (HMF) which can hinder microbial growth and enzyme activity is also monitored. Results showed that ultrasound treatment (31.06 mg/L) proved to be the best pre-treatment method based on total reducing content followed by dilute acid hydrolysis (10.03 mg/L) while galactose was found to be the major monosaccharide present in the pre-treated SPW. Finally, the results obtained from the study were used to design a sequential lignocellulose pre-treatment protocol to decrease the formation of enzyme inhibitors and increase sugar yield on enzymatic hydrolysis by employing cellulase-hemicellulase consortium. Sequential, combinatorial treatment was found better in terms of total reducing yield and low content of the inhibitory compounds formation, which could be due to the fact that this mode of pre-treatment combines several mild treatment methods rather than formulating a single one. It eliminates the need for a detoxification step and potential application in the valorisation of lignocellulosic food waste.

Keywords: lignocellulose, enzymatic hydrolysis, pre-treatment, ultrasound

Procedia PDF Downloads 368
Attracting European Youths to STEM Education and Careers: A Pedagogical Approach to a Hybrid Learning Environment

Authors: M. Assaad, J. Mäkiö, T. Mäkelä, M. Kankaanranta, N. Fachantidis, V. Dagdilelis, A. Reid, C. R. del Rio, E. V. Pavlysh, S. V. Piashkun

Abstract:

To bring science and society together in Europe, thus increasing the continent’s international competitiveness, STEM (science, technology, engineering and mathematics) education must be more relatable to European youths in their everyday life. STIMEY (Science, Technology, Innovation, Mathematics, Engineering for the Young) project researches and develops a hybrid educational environment with multi-level components that is being designed and developed based on a well-researched pedagogical framework, aiming to make STEM education more attractive to young people aged 10 to 18 years in this digital era. This environment combines social media components, robotic artefacts, and radio to educate, engage and increase students’ interest in STEM education and careers from a young age. Additionally, it offers educators the necessary modern tools to deliver STEM education in an attractive and engaging manner in or out of class. Moreover, it enables parents to keep track of their children’s education, and collaborate with their teachers on their development. Finally, the open platform allows businesses to invest in the growth of the youths’ talents and skills in line with the economic and labour market needs through entrepreneurial tools. Thus, universities, schools, teachers, students, parents, and businesses come together to complete a circle in which STEM becomes part of the daily life of youths through a hybrid educational environment that also prepares them for future careers.

Keywords: e-learning, entrepreneurship, pedagogy, robotics, serious gaming, social media, STEM education

Procedia PDF Downloads 377