Search results for: vascular tree
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1278

Search results for: vascular tree

588 A Study of Permission-Based Malware Detection Using Machine Learning

Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud

Abstract:

Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.

Keywords: android malware detection, machine learning, malware, malware analysis

Procedia PDF Downloads 169
587 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 538
586 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach

Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman

Abstract:

Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.

Keywords: categorical data, log linear modeling, neural network, shifting cultivation

Procedia PDF Downloads 56
585 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images

Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi

Abstract:

Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.

Keywords: hyperspectral, PolSAR, feature selection, SVM

Procedia PDF Downloads 418
584 Theoretical Modeling of Mechanical Properties of Eco-Friendly Composites Derived from Sugar Palm

Authors: J. Sahari, S. M. Sapuan

Abstract:

Eco-friendly composites have been successfully prepared by using sugar palm tree as a sources. The effect of fibre content on mechanical properties of (SPF/SPS) biocomposites have been done and the experimentally tensile properties (tensile strength and modulus) of biocomposites have been compared with the existing theories of reinforcement. The biocomposites were prepared with different amounts of fibres (i.e. 10%, 20% and 30% by weight percent). The mechanical properties of plasticized SPS improved with the incorporation of fibres. Both approaches (experimental and theoretical) show that the young’s modulus of the biocomposites is consistently increased when the sugar palm fibre (SPF) are placed into the sugar palm starch matrix (SPS). Surface morphological study through scanning electron microscopy showed homogeneous distribution of fibres and matrix with good adhesion which play an important role in improving the mechanical properties of biocomposites. The observed deviations between the experimental and theoretical values are explained by the simplifying model assumptions applied for the configuration of the composites, in particular the sugar palm starch composites.

Keywords: eco-friendly, biocomposite, mechanical, experimental, theoretical

Procedia PDF Downloads 444
583 Transdisciplinary Methodological Innovation: Connecting Natural and Social Sciences Research through a Training Toolbox

Authors: Jessica M. Black

Abstract:

Although much of natural and social science research aims to enhance human flourishing and address social problems, the training within the two fields is significantly different across theory, methodology, and implementation of results. Social scientists are trained in social, psychological, and to the extent that it is relevant to their discipline, spiritual development, theory, and accompanying methodologies. They tend not to receive training or learn about accompanying methodology related to interrogating human development and social problems from a biological perspective. On the other hand, those in the natural sciences, and for the purpose of this work, human biological sciences specifically – biology, neuroscience, genetics, epigenetics, and physiology – are often trained first to consider cellular development and related methodologies, and may not have opportunity to receive formal training in many of the foundational principles that guide human development, such as systems theory or person-in-environment framework, methodology related to tapping both proximal and distal psycho-social-spiritual influences on human development, and foundational principles of equity, justice and inclusion in research design. There is a need for disciplines heretofore siloed to know one another, to receive streamlined, easy to access training in theory and methods from one another and to learn how to build interdisciplinary teams that can speak and act upon a shared research language. Team science is more essential than ever, as are transdisciplinary approaches to training and research design. This study explores the use of a methodological toolbox that natural and social scientists can use by employing a decision-making tree regarding project aims, costs, and participants, among other important study variables. The decision tree begins with a decision about whether the researcher wants to learn more about social sciences approaches or biological approaches to study design. The toolbox and platform are flexible, such that users could also choose among modules, for instance, reviewing epigenetics or community-based participatory research even if those are aspects already a part of their home field. To start, both natural and social scientists would receive training on systems science, team science, transdisciplinary approaches, and translational science. Next, social scientists would receive training on grounding biological theory and the following methodological approaches and tools: physiology, (epi)genetics, non-invasive neuroimaging, invasive neuroimaging, endocrinology, and the gut-brain connection. Natural scientists would receive training on grounding social science theory, and measurement including variables, assessment and surveys on human development as related to the developing person (e.g., temperament and identity), microsystems (e.g., systems that directly interact with the person such as family and peers), mesosystems (e.g., systems that interact with one another but do not directly interact with the individual person, such as parent and teacher relationships with one another), exosystems (e.g., spaces and settings that may come back to affect the individual person, such as a parent’s work environment, but within which the individual does not directly interact, macrosystems (e.g., wider culture and policy), and the chronosystem (e.g., historical time, such as the generational impact of trauma). Participants will be able to engage with the toolbox and one another to foster increased transdisciplinary work

Keywords: methodology, natural science, social science, transdisciplinary

Procedia PDF Downloads 117
582 On an Approach for Rule Generation in Association Rule Mining

Authors: B. Chandra

Abstract:

In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation.

Keywords: knowledge discovery, association rule mining, antecedent support, rule generation

Procedia PDF Downloads 326
581 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine

Procedia PDF Downloads 152
580 Total Longitudinal Displacement (tLoD) of the Common Carotid Artery (CCA) Does Not Differ between Patients with Moderate or High Cardiovascular Risk (CV) and Patients after Acute Myocardial Infarction (AMI)

Authors: P. Serpytis, K. Azukaitis, U. Gargalskaite, R. Navickas, J. Badariene, V. Dzenkeviciute

Abstract:

Purpose: Total longitudinal displacement (tLoD) of the common carotid artery (CCA) wall is a novel ultrasound marker of vascular function that can be evaluated using modified speckle tracking techniques. Decreased CCA tLoD has already been shown to be associated with diabetes and was shown to predict one year cardiovascular outcome in patients with suspected coronary artery disease (CAD) . The aim of our study was to evaluate if CCA tLoD differ between patients with moderate or high cardiovascular (CV) risk and patients after recent acute myocardial infarction (AMI). Methods: 49 patients (54±6 years) with moderate or high CV risk and 42 patients (58±7 years) after recent AMI were included. All patients were non-diabetic. CCA tLoD was evaluated using GE EchoPAC speckle tracking software and expressed as mean of both sides. Data on systolic blood pressure, total and high density lipoprotein (HDL) cholesterol levels, high sensitivity C-reactive protein (hsCRP) level, smoking status and family history of early CV events was evaluated and assessed for association with CCA tLoD. Results: tLoD of CCA did not differ between patients with moderate or high CV risk and patients with very high CV risk after MI (0.265±0.128 mm vs. 0.237±0.103 mm, p>0.05). Lower tLoD was associated with lower HDL cholesterol levels (r=0.211, p=0.04) and male sex (0.228±0.1 vs. 0.297±0.134, p=0.01). Conclusions: tLoD of CCA did not differ between patients with moderate or high CV risk and patients with very high CV risk after AMI. However, lower CCA tLoD was significantly associated with low HDL cholesterol levels and male sex.

Keywords: total longitudinal displacement, carotid artery, cardiovascular risk, acute myocardial infarction

Procedia PDF Downloads 384
579 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets

Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi

Abstract:

Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.

Keywords: data sets, recommendation system, utility item sets, frequent item sets mining

Procedia PDF Downloads 295
578 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 147
577 Prevalence of Lupus Glomerulonephritis in Renal Biopsies in an Eastern Region of the Arab World

Authors: M. Fayez Al Homsi, Reem Al Homsi

Abstract:

Renal disease is a major cause of morbidity and mortality. Glomerular diseases make a small portion of the renal disease. Lupus glomerulonephritis (GN) is the commonest among the GN of systemic diseases. More than a hundred and eighty-eight consecutive renal biopsies are performed and evaluated for clinically suspected glomerular diseases over a period of two years. As in a standard practice after receiving the ultrasound-guided renal biopsies, the fresh biopsy is divided to three parts, one part is frozen for immunofluorescence evaluation, the second part is placed in 4% glutaraldehyde for electron microscopic evaluation, and the third part is placed in 10% buffered formalin for light microscopic evaluation. Primary glomerular diseases are detected in 83 biopsies; glomerulonephritis (GN) of systemic diseases are identified in 88, glomerular lesions in vascular diseases in 3, glomerular lesions in metabolic diseases in 7, hereditary nephropathies in 2, end-stage kidney in 2, and glomerular lesions in transplantation in 3 biopsies. Among the primary lesions, focal segmental glomerulosclerosis (28) and mesangial proliferative GN (26) were the most common. Lupus GN (67) and Ig A nephropathy (20) were the most common of the GN of systemic diseases. Lupus nephritis biopsies included one biopsy diagnosed as class 1 (normal), 17 biopsies class 2 (mesangial proliferation), 5 biopsies class 3 (focal proliferative GN), 39 biopsies class 4 diffuse proliferative GN), 3 biopsies class 5 (membranous GN), and 2 biopsies class 6 (crescentic GN). Lupus GN is the most common among GN of systemic diseases. While diabetes is very common here, diabetic GN (3 biopsies) is not as common as might one expects. Most likely this is due to sampling and reluctance on part of nephrologists and patients in sampling the kidney in diabetes mellitus.

Keywords: diabetes, glomerulonephritis, lupus, mesangial proliferation, nephropathy

Procedia PDF Downloads 132
576 Formation Control for Linear Multi-Robot System with Switched Directed Topology and Time-Varying Delays

Authors: Yaxiao Zhang, Yangzhou Chen

Abstract:

This study investigate the formation problem for high-order continuous-time multi-robot with bounded symmetric time-varying delay protocol under switched directed communication topology. By using a linear transformation, the formation problem is transformed to stability analysis of a switched delay system. Under the assumption that each communication topology has a directed spanning tree, sufficient conditions are presented in terms of linear matrix inequalities (LMIs) that the multi-robot system can achieve a desired formation by the trade-off among the pre-exist topologies with the help of the scheme of average dwell time. A numeral example is presented to illustrate the effectiveness of the obtained results.

Keywords: multi-robot systems, formation, switched directed topology, symmetric time-varying delay, average dwell time, linear matrix inequalities (lmis)

Procedia PDF Downloads 535
575 Development of Innovative Islamic Web Applications

Authors: Farrukh Shahzad

Abstract:

The rich Islamic resources related to religious text, Islamic sciences, and history are widely available in print and in electronic format online. However, most of these works are only available in Arabic language. In this research, an attempt is made to utilize these resources to create interactive web applications in Arabic, English and other languages. The system utilizes the Pattern Recognition, Knowledge Management, Data Mining, Information Retrieval and Management, Indexing, storage and data-analysis techniques to parse, store, convert and manage the information from authentic Arabic resources. These interactive web Apps provide smart multi-lingual search, tree based search, on-demand information matching and linking. In this paper, we provide details of application architecture, design, implementation and technologies employed. We also presented the summary of web applications already developed. We have also included some screen shots from the corresponding web sites. These web applications provide an Innovative On-line Learning Systems (eLearning and computer based education).

Keywords: Islamic resources, Muslim scholars, hadith, narrators, history, fiqh

Procedia PDF Downloads 285
574 Image Compression on Region of Interest Based on SPIHT Algorithm

Authors: Sudeepti Dayal, Neelesh Gupta

Abstract:

Image abbreviation is utilized for reducing the size of a file without demeaning the quality of the image to an objectionable level. The depletion in file size permits more images to be deposited in a given number of spaces. It also minimizes the time necessary for images to be transferred. Storage of medical images is a most researched area in the current scenario. To store a medical image, there are two parameters on which the image is divided, regions of interest and non-regions of interest. The best way to store an image is to compress it in such a way that no important information is lost. Compression can be done in two ways, namely lossy, and lossless compression. Under that, several compression algorithms are applied. In the paper, two algorithms are used which are, discrete cosine transform, applied to non-region of interest (lossy), and discrete wavelet transform, applied to regions of interest (lossless). The paper introduces SPIHT (set partitioning hierarchical tree) algorithm which is applied onto the wavelet transform to obtain good compression ratio from which an image can be stored efficiently.

Keywords: Compression ratio, DWT, SPIHT, DCT

Procedia PDF Downloads 349
573 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes

Authors: L. S. Chathurika

Abstract:

Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.

Keywords: algorithm, classification, evaluation, features, testing, training

Procedia PDF Downloads 119
572 Molecular Cloning and Identification of a Double WAP Domain–Containing Protein 3 Gene from Chinese Mitten Crab Eriocheir sinensis

Authors: Fengmei Li, Li Xu, Guoliang Xia

Abstract:

Whey acidic proteins (WAP) domain-containing proteins in crustacean are involved in innate immune response against microbial invasion. In the present study, a novel double WAP domain (DWD)-containing protein gene 3 was identified from Chinese mitten crab Eriocheir sinensis (designated EsDWD3) by expressed sequence tag (EST) analysis and PCR techniques. The full-length cDNA of EsDWD3 was of 1223 bp, consisting of a 5′-terminal untranslated region (UTR) of 74 bp, a 3′ UTR of 727 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 423 bp. The ORF encoded a polypeptide of 140 amino acids with a signal peptide of 22 amino acids. The deduced protein sequence EsDWD3 showed 96.4 % amino acid similar to other reported EsDWD1 from E. sinensis, and phylogenetic tree analysis revealed that EsDWD3 had closer relationships with the reported two double WAP domain-containing proteins of E. sinensis species.

Keywords: Chinese mitten crab, Eriocheir sinensis, cloning, double WAP domain-containing protein

Procedia PDF Downloads 355
571 Aerobic Exercise Increases Circulating Hematopoietic Stem Cells and Endothelial Progenitor Cells

Authors: Khaled A. shady, Fagr B. Bazeed, Nashwa K. Abousamra, Ihab H. Elberawe, Ashraf E. shaalan, Mohamed A. Sobh

Abstract:

Physical activity activates a variety of adult stem cells which might be released into the circulation or might be activated in their organ-resident state. A variety of stimuli such as metabolic, mechanical, and hormonal stimuli might by responsible for the mobilization. This study was done to know the changes in hematopoietic stem cells and endothelial progenitor in athletes in the 24 hours following 30 min of aerobic exercise. Methods: Ten healthy male's athlete's (age 20.7± 0.61 y) performed moderate running with 30 min at 80% of velocity of The IAT. Blood samples taken pre-, and immediately, 30 min, 2h, 6h and 24h post-exercise were analyzed for hematopoietic stem cells (HSCs ), endothelial progenitor cells (EPCs(, vascular endothelial growth factor (VEGF), nitric oxide (NO), lactic acid (LA), and white blood cells . HSCs and EPCs were quantified by flow cytometry. Results: After 30min of aerobic exercise significant increases in HSCs, EPC, VEGF, NO, LA and WBCs (p ˂ 0.05). This increase will be at different rates according to the timing of taking blood sample and was in the maximum rate of increase after 30 min of aerobic exercise. HSCs, EPC, NO and WBCs were in the maximum rate of increase 2h post exercise. In addition, VEGF was in the maximum rate of increase immediately post exercise and LA concentration not affected after exercise. Conclusion: These data suggest that HSCs and EPCs increased after aerobic exercise due to increase of VEGF which play an important role in mobilization of stem cells and promotes NO increase which contributes to increase EPCs.

Keywords: physical activity, hematopoietic stem cells, mobilization, athletes

Procedia PDF Downloads 118
570 A Predictive Machine Learning Model of the Survival of Female-led and Co-Led Small and Medium Enterprises in the UK

Authors: Mais Khader, Xingjie Wei

Abstract:

This research sheds light on female entrepreneurs by providing new insights on the survival predictions of companies led by females in the UK. This study aims to build a predictive machine learning model of the survival of female-led & co-led small & medium enterprises (SMEs) in the UK over the period 2000-2020. The predictive model built utilised a combination of financial and non-financial features related to both companies and their directors to predict SMEs' survival. These features were studied in terms of their contribution to the resultant predictive model. Five machine learning models are used in the modelling: Decision tree, AdaBoost, Naïve Bayes, Logistic regression and SVM. The AdaBoost model had the highest performance of the five models, with an accuracy of 73% and an AUC of 80%. The results show high feature importance in predicting companies' survival for company size, management experience, financial performance, industry, region, and females' percentage in management.

Keywords: company survival, entrepreneurship, females, machine learning, SMEs

Procedia PDF Downloads 101
569 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window

Procedia PDF Downloads 91
568 Stem Cell Augmentation Therapy for Cardiovascular Risk in Ankylosing Spondylitis: STATIN-as Study

Authors: Ashit Syngle, Nidhi Garg, Pawan Krishan

Abstract:

Objective: Bone marrow derived stem cells, endothelial progenitor cells (EPCs), protect against atherosclerotic vascular damage. However, EPCs are depleted in AS and contribute to the enhanced cardiovascular risk. Statins have a protective effect in CAD and diabetes by enhancing the proliferation, migration and survival of EPCs. Therapeutic potential of augmenting EPCs to treat the heightened cardiovascular risk of AS has not yet been exploited. We aimed to investigate the effect of rosuvastatin on EPCs population and inflammation in AS. Methods: 30 AS patients were randomized to receive 6 months of treatment with rosuvastatin (10 mg/day, n=15) and placebo (n=15) as an adjunct to existing stable anti-rheumatic drugs. EPCs (CD34+/CD133+) were quantified by Flow Cytometry. Inflammatory measures (BASDAI, BASFI, CRP and ESR), pro-inflammatory cytokines (TNF-α, IL-6 and IL-1) and lipids were measured at baseline and after treatment. Results: At baseline, inflammatory measures and pro-inflammatory cytokines were elevated and EPCs depleted among both groups. EPCs increased significantly (p < 0.01) after treatment with rosuvastatin. At 6 months, BASDAI, BASFI, ESR, CRP, TNF-α, and IL-6 improved significantly in rosuvastatin group. Significant negative correlation was observed between EPCs and BASDAI, CRP and IL-6 after rosuvastatin treatment. Conclusion: First study to show that rosuvastatin augments EPCs population in AS. This defines a novel mechanism of rosuvastatin treatment in AS: the augmentation of EPCs with improvement in proinflammatory cytokines and inflammatory disease activity. The augmentation of EPCs by rosuvastatin may provide a novel strategy to prevent cardiovascular events in AS.

Keywords: ankylosing spondylitis, Endothelial Progenitor Cells, inflammation, pro-inflammatory cytokines, rosuvastatin

Procedia PDF Downloads 354
567 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram

Abstract:

Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.

Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification

Procedia PDF Downloads 297
566 Treadmill Negotiation: The Stagnation of the Israeli – Palestinian Peace Process

Authors: Itai Kohavi, Wojciech Nowiak

Abstract:

This article explores the stagnation of the Israeli -Palestinian peace negotiation process, and the reasons behind the failure of more than 12 international initiatives to resolve the conflict. Twenty-seven top members of the Israeli national security elite (INSE) were interviewed, including heads of the negotiation teams, the National Security Council, the Mossad, and other intelligence and planning arms. The interviewees provided their insights on the Israeli challenges in reaching a sustainable and stable peace agreement and in dealing with the international pressure on Israel to negotiate a peace agreement while preventing anti-Israeli UN decisions and sanctions. The findings revealed a decision tree, with red herring deception strategies implemented to postpone the negotiation process and to delay major decisions during the negotiation process. Beyond the possible applications for the Israeli – Palestinian conflict, the findings shed more light on the phenomenon of rational deception of allies in a negotiation process, a subject less frequently researched as compared with deception of rivals.

Keywords: deception, Israeli-Palestinian conflict, negotiation, red herring, terrorist state, treadmill negotiation

Procedia PDF Downloads 305
565 Applications of Green Technology and Biomimicry in Civil Engineering with a Maglev Car Elevator

Authors: Sameer Ansari, Suhas Nitsure

Abstract:

Biomimicry has made a big move into the built environment by adapting nature's solutions to human designs and inventions. We can examine numerous aspects of the built environment right from generating energy, fed by rainwater and powered by sun to over all land use impacts. This paper discusses the potential of a man made building which will work for the welfare of humans and reduce the impact of the harmful environment on us which we ourselves created for us. Building services inspired by nature such as building walls from homeostasis in organisms, natural ventilation from termites, artificial aggregates from natural aggregates, solar panels from photosynthesis and building structure itself compared to tree as a cantilever. Environmental services such as using CO2 as a feedstock for construction related activities, using Ornilux glasses and  saving birds from collision with buildings, using prefabricated steel for fast building members- save time and also negligible waste as no formwork is used. Maglev inspired car elevators in building which is unique and giving all together new direction to technology.

Keywords: biomimicry, green technology, maglev car elevator, civil engineering

Procedia PDF Downloads 576
564 Embolization of Spinal Dural Arteriovenous Fistulae: Clinical Outcomes and Long-Term Follow-Up: A Multicenter Study

Authors: Walid Abouzeid, Mohamed Shadad, Mostafa Farid, Magdy El Hawary

Abstract:

The most frequent treatable vascular abnormality of the spinal canal is spinal dural arteriovenous fistulae (SDAVFs), which cause progressive para- or quadriplegia mostly affecting elderly males. SDAVFs are present in the thoracolumbar region. The main goal of treatment must be to obliterate the shunting zone via superselective embolization with the usage of a liquid embolic agent. This study aims to evaluate endovascular technique as a safe and efficient approach for the treatment SDAVFs, especially with long-term follow-up clinical outcomes. Study Design: A retrospective clinical case study. From May 2010 to May 2017, 15 patients who had symptoms attributed to SDAVFs underwent the operation in the Departments of Neurosurgery in Suhag, Tanta, and Al-Azhar Universities and Interventional Radiology, Ain Shams University. All the patients had varying degrees of progressive spastic paraparesis with and without sphincteric disturbances. Endovascular embolization was used in all cases. Fourteen were males, with ages ranging from 45 to 74 years old. After the treatment, good outcome was found in five patients (33.3%), a moderate outcome was delineated in six patients (40 %), and four patients revealed a poor outcome (26.7%). Spinal AVF could be treated safely and effectively by the endovascular approach. Generally, there is no correlation between the disappearance of MRI abnormalities and significant clinical improvement. The preclinical state of the patient is directly proportional to the clinical outcome. Due to unexpected responses, embolization should be attempted even the patient is in a bad clinical condition.

Keywords: spine, arteriovenous, fistula, endovascular, embolization

Procedia PDF Downloads 108
563 Investigation of Genetic Diversity of Tilia tomentosa Moench. (Silver Lime) in Duzce-Turkey

Authors: Ibrahim Ilker Ozyigit, Ertugrul Filiz, Seda Birbilener, Semsettin Kulac, Zeki Severoglu

Abstract:

In this study, we have performed genetic diversity analysis of Tilia tomentosa genotypes by using randomly amplified polymorphic DNA (RAPD) primers. A total of 28 genotypes, including 25 members from the urban ecosystem and 3 genotypes from forest ecosystem as outgroup were used. 8 RAPD primers produced a total of 53 bands, of which 48 (90.6 %) were polymorphic. Percentage of polymorphic loci (P), observed number of alleles (Na), effective number of alleles (Ne), Nei's (1973) gene diversity (h), and Shannon's information index (I) were found as 94.29 %, 1.94, 1.60, 0.34, and 0.50, respectively. The unweighted pair-group method with arithmetic average (UPGMA) cluster analysis revealed that two major groups were observed. The genotypes of urban and forest ecosystems showed a high genetic similarity between 28% and 92% and these genotypes did not separate from each other in UPGMA tree. Also, urban and forest genotypes clustered together in principal component analysis (PCA).

Keywords: Tilia tomentosa, genetic diversity, urban ecosystem, RAPD, UPGMA

Procedia PDF Downloads 511
562 Degradation Mechanism of Automotive Refinish Coatings Exposed to Biological Substances: The Role of Cross-Linking Density

Authors: M. Mahdavi, M. Mohseni, R. Rafiei, H. Yari

Abstract:

Environmental factors can deteriorate the automotive coatings significantly. Such as UV radiations, humidity, hot-cold shock and destructive chemical compounds. Furthermore, some natural materials such as bird droppings and tree gums have the potential to degrade the coatings as well. The present work aims to study the mechanism of degradation for two automotive refinish coating (PU based) systems exposed to two types of biological materials, i.e. Arabic gum and the simulated bird dropping, pancreatin. To reach this goal, effects of these biological materials on surface properties and appearance were studied using different techniques including digital camera, FT-IR spectroscopy, optical microscopy, and gloss measurements. In addition, the thermo-mechanical behavior of coatings was examined by DMTA. It was found that cross-linking had a crucial role on the biological resistance of clear coat. The higher cross-linking enhanced biological resistance.

Keywords: refinish clear coat, pancreatin, Arabic gum, cross-linking, biological degradation

Procedia PDF Downloads 368
561 Numerical Modelling of Skin Tumor Diagnostics through Dynamic Thermography

Authors: Luiz Carlos Wrobel, Matjaz Hribersek, Jure Marn, Jurij Iljaz

Abstract:

Dynamic thermography has been clinically proven to be a valuable diagnostic technique for skin tumor detection as well as for other medical applications such as breast cancer diagnostics, diagnostics of vascular diseases, fever screening, dermatological and other applications. Thermography for medical screening can be done in two different ways, observing the temperature response under steady-state conditions (passive or static thermography), and by inducing thermal stresses by cooling or heating the observed tissue and measuring the thermal response during the recovery phase (active or dynamic thermography). The numerical modelling of heat transfer phenomena in biological tissue during dynamic thermography can aid the technique by improving process parameters or by estimating unknown tissue parameters based on measured data. This paper presents a nonlinear numerical model of multilayer skin tissue containing a skin tumor, together with the thermoregulation response of the tissue during the cooling-rewarming processes of dynamic thermography. The model is based on the Pennes bioheat equation and solved numerically by using a subdomain boundary element method which treats the problem as axisymmetric. The paper includes computational tests and numerical results for Clark II and Clark IV tumors, comparing the models using constant and temperature-dependent thermophysical properties, which showed noticeable differences and highlighted the importance of using a local thermoregulation model.

Keywords: boundary element method, dynamic thermography, static thermography, skin tumor diagnostic

Procedia PDF Downloads 107
560 Isolation and Identification of Fungal Pathogens in Palm Groves of Oued Righ

Authors: Lakhdari Wassima, Ouffroukh Ammar, Dahliz Abderrahmène, Soud Adila, Hammi Hamida, M’lik Randa

Abstract:

Prospected palm groves of Oued Righ regions (Ouargla, Algeria) allowed us to observe sudden death of palm trees aged between 05 and 70 years. Field examinations revealed abnormal clinical signs with sometimes a quick death of affected trees. Entomologic investigations have confirmed the absence of phytophagous insects on dead trees. Further investigations by questioning farmers on the global management of palm groves visited (Irrigation, water quality used, soil type, etc.) did not establish any relationship between these aspects and the death of palm trees, which naturally pushed us to focus our investigations for research on fungal pathogens. Thus, laboratory studies were conducted to know the real causes of this phenomenon, 13 fungi were found on different parts of the dead palm trees. The flowing fungal types were identified: 1-Diplodia phoenicum, 2-Theilaviopsis paradoxa, 3-Phytophthora sp, 4-Helminthosporium sp, 5-Stemphylium botryosum, 6-Alternaria sp, 7-Aspergillus niger, 8-Aspergillus sp.

Keywords: palm tree, death, fungal pathogens, Oued Righ

Procedia PDF Downloads 414
559 Distributed Perceptually Important Point Identification for Time Series Data Mining

Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung

Abstract:

In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.

Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining

Procedia PDF Downloads 435