Search results for: treatment algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11695

Search results for: treatment algorithm

11005 Use of Natural Fibers in Landfill Leachate Treatment

Authors: Araujo J. F. Marina, Araujo F. Marcus Vinicius, Mulinari R. Daniella

Abstract:

Due to the resultant leachate from waste decomposition in landfills has polluter potential hundred times greater than domestic sewage, this is considered a problem related to the depreciation of environment requiring pre-disposal treatment. In seeking to improve this situation, this project proposes the treatment of landfill leachate using natural fibers intercropped with advanced oxidation processes. The selected natural fibers were palm, coconut and banana fiber. These materials give sustainability to the project because, besides having adsorbent capacity, are often part of waste discarded. The study was conducted in laboratory scale. In trials, the effluents were characterized as Chemical Oxygen Demand (COD), Turbidity and Color. The results indicate that is technically promising since that there were extremely oxidative conditions, the use of certain natural fibers in the reduction of pollutants in leachate have been obtained results of COD removals between 67.9% and 90.9%, Turbidity between 88.0% and 99.7% and Color between 67.4% and 90.4%. The expectation generated is to continue evaluating the association of efficiency of other natural fibers with other landfill leachate treatment processes.

Keywords: lndfill leachate, chemical treatment, natural fibers, advanced oxidation processes

Procedia PDF Downloads 355
11004 Determination of Inactivation and Recovery of Saccharomyces cerevisiae Cells after the Gas-Phase Plasma Treatment

Authors: Z. Herceg, V. Stulic, T. Vukusic, A. Rezek Jambrak

Abstract:

Gas phase plasma treatment is a new nonthermal technology used for food and water decontamination. In this study, we have investigated influence of the gas phase plasma treatment on yeast cells of S. cerevisiae. Sample was composed of 10 mL of yeast suspension and 190 mL of 0.01 M NaNO₃ with a medium conductivity of 100 µS/cm. Samples were treated in a glass reactor with a point- to-plate electrode configuration (high voltage electrode-titanium wire in the gas phase and grounded electrode in the liquid phase). Air or argon were injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min and positive polarity were defined parameters. Inactivation was higher with the applied higher frequency, longer treatment time and injected argon. Inactivation was not complete which resulted in complete recovery. Cellular leakage (260 nm and 280 nm) was higher with a longer treatment time and higher frequency. Leakage at 280 nm which defines a leakage of proteins was higher than leakage at 260 nm which defines a leakage of nucleic acids. The authors would like to acknowledge the support by Croatian Science Foundation and research project 'Application of electrical discharge plasma for preservation of liquid foods'.

Keywords: Saccharomyces cerevisiae, inactivation, gas-phase plasma treatment, cellular leakage

Procedia PDF Downloads 200
11003 A Hybrid Classical-Quantum Algorithm for Boundary Integral Equations of Scattering Theory

Authors: Damir Latypov

Abstract:

A hybrid classical-quantum algorithm to solve boundary integral equations (BIE) arising in problems of electromagnetic and acoustic scattering is proposed. The quantum speed-up is due to a Quantum Linear System Algorithm (QLSA). The original QLSA of Harrow et al. provides an exponential speed-up over the best-known classical algorithms but only in the case of sparse systems. Due to the non-local nature of integral operators, matrices arising from discretization of BIEs, are, however, dense. A QLSA for dense matrices was introduced in 2017. Its runtime as function of the system's size N is bounded by O(√Npolylog(N)). The run time of the best-known classical algorithm for an arbitrary dense matrix scales as O(N².³⁷³). Instead of exponential as in case of sparse matrices, here we have only a polynomial speed-up. Nevertheless, sufficiently high power of this polynomial, ~4.7, should make QLSA an appealing alternative. Unfortunately for the QLSA, the asymptotic separability of the Green's function leads to high compressibility of the BIEs matrices. Classical fast algorithms such as Multilevel Fast Multipole Method (MLFMM) take advantage of this fact and reduce the runtime to O(Nlog(N)), i.e., the QLSA is only quadratically faster than the MLFMM. To be truly impactful for computational electromagnetics and acoustics engineers, QLSA must provide more substantial advantage than that. We propose a computational scheme which combines elements of the classical fast algorithms with the QLSA to achieve the required performance.

Keywords: quantum linear system algorithm, boundary integral equations, dense matrices, electromagnetic scattering theory

Procedia PDF Downloads 152
11002 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment

Authors: J. Bolobajev, M. Trapido, A. Goi

Abstract:

The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.

Keywords: ferric sludge recycling, ferric iron reductant, water treatment, organic pollutant

Procedia PDF Downloads 288
11001 Effect of Different Levels of Dried Citrus Sinensis Peel on Blood Parameters of Broilers

Authors: Abbas Ebrahimi, Zohreh Pourhossein, Nariman Miraalami

Abstract:

The experiment was conducted to evaluate the effects of different levels of dried citrus sinensis peel (DCSP) on the blood parameters of broilers. Four hundred Ross 308 strain day old broiler in a completely randomized design with five treatments (four replicates per treatment and each replicate had 20 chicks) were categorized. Each treatment used either regulatory diet including 1.5% and 3% DCSP in the base diet and in two periods of 1st to 21st day and 1st to 42nd day and base diet without any additive for six weeks. Data analysis was performed using SAS software and mean comparison was conducted by Duncan method. The results determined that using different level of DCSP has significant effects on blood plasma parameters (P<0.05). Cholesterol, glucose, triglyceride, low density lipoprotein (LDL) at the rearing period was significantly influenced by experimental treatments (P<0.05). However, uric acid, alkaline phosphatase and high density lipoprotein (HDL) was not affected by experimental treatments (P>0.05). The lowest rate of blood cholesterol was concerned to the treatment which was used 3% DCSP 1st to 42nd day and the highest mean of blood cholesterol were concerned to the control treatment. The lowest rate of blood triglyceride was concerned to the treatment which was used 3% DCSP 1st to 42nd day and the highest mean of blood triglyceride were concerned to the control treatment. The lowest rate of blood alkaline phosphatase was concerned to the treatment which was used 3% DCSP 1st to 42nd day and the highest mean of blood alkaline phosphatase were concerned to the treatment which was used 3% DCSP 1st to 21st day.

Keywords: blood parameters, broilers, dried citrus sinensis peel, regulatory diet

Procedia PDF Downloads 558
11000 Different Formula of Mixed Bacteria as a Bio-Treatment for Sewage Wastewater

Authors: E. Marei, A. Hammad, S. Ismail, A. El-Gindy

Abstract:

This study aims to investigate the ability of different formula of mixed bacteria as a biological treatments of wastewater after primary treatment as a bio-treatment and bio-removal and bio-adsorbent of different heavy metals in natural circumstances. The wastewater was collected from Sarpium forest site-Ismailia Governorate, Egypt. These treatments were mixture of free cells and mixture of immobilized cells of different bacteria. These different formulas of mixed bacteria were prepared under Lab. condition. The obtained data indicated that, as a result of wastewater bio-treatment, the removal rate was found to be 76.92 and 76.70% for biological oxygen demand, 79.78 and 71.07% for chemical oxygen demand, 32.45 and 36.84 % for ammonia nitrogen as well as 91.67 and 50.0% for phosphate after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. Moreover, the bio-removals of different heavy metals were found to reach 90.0 and 50. 0% for Cu ion, 98.0 and 98.5% for Fe ion, 97.0 and 99.3% for Mn ion, 90.0 and 90.0% Pb, 80.0% and 75.0% for Zn ion after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. The results indicated that 13.86 and 17.43% of removal efficiency and reduction of total dissolved solids were achieved after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively.

Keywords: wastewater bio-treatment , bio-sorption heavy metals, biological desalination, immobilized bacteria, free cell bacteria

Procedia PDF Downloads 199
10999 Comparison of Crossover Types to Obtain Optimal Queries Using Adaptive Genetic Algorithm

Authors: Wafa’ Alma'Aitah, Khaled Almakadmeh

Abstract:

this study presents an information retrieval system of using genetic algorithm to increase information retrieval efficiency. Using vector space model, information retrieval is based on the similarity measurement between query and documents. Documents with high similarity to query are judge more relevant to the query and should be retrieved first. Using genetic algorithms, each query is represented by a chromosome; these chromosomes are fed into genetic operator process: selection, crossover, and mutation until an optimized query chromosome is obtained for document retrieval. Results show that information retrieval with adaptive crossover probability and single point type crossover and roulette wheel as selection type give the highest recall. The proposed approach is verified using (242) proceedings abstracts collected from the Saudi Arabian national conference.

Keywords: genetic algorithm, information retrieval, optimal queries, crossover

Procedia PDF Downloads 290
10998 Evaluation of Real-Time Background Subtraction Technique for Moving Object Detection Using Fast-Independent Component Analysis

Authors: Naoum Abderrahmane, Boumehed Meriem, Alshaqaqi Belal

Abstract:

Background subtraction algorithm is a larger used technique for detecting moving objects in video surveillance to extract the foreground objects from a reference background image. There are many challenges to test a good background subtraction algorithm, like changes in illumination, dynamic background such as swinging leaves, rain, snow, and the changes in the background, for example, moving and stopping of vehicles. In this paper, we propose an efficient and accurate background subtraction method for moving object detection in video surveillance. The main idea is to use a developed fast-independent component analysis (ICA) algorithm to separate background, noise, and foreground masks from an image sequence in practical environments. The fast-ICA algorithm is adapted and adjusted with a matrix calculation and searching for an optimum non-quadratic function to be faster and more robust. Moreover, in order to estimate the de-mixing matrix and the denoising de-mixing matrix parameters, we propose to convert all images to YCrCb color space, where the luma component Y (brightness of the color) gives suitable results. The proposed technique has been verified on the publicly available datasets CD net 2012 and CD net 2014, and experimental results show that our algorithm can detect competently and accurately moving objects in challenging conditions compared to other methods in the literature in terms of quantitative and qualitative evaluations with real-time frame rate.

Keywords: background subtraction, moving object detection, fast-ICA, de-mixing matrix

Procedia PDF Downloads 95
10997 Wastewater Treatment from Heavy Metals by Nanofiltration and Ion Exchange

Authors: G. G. Kagramanov, E. N. Farnosova, Linn Maung Maung

Abstract:

The technologies of ion exchange and nanofiltration can be used for treatment of wastewater containing copper and other heavy metal ions to decrease the environmental risks. Nanofiltration characteristics under water treatment of heavy metals have been studied. The influence of main technical process parameters - pressure, temperature, concentration and pH value of the initial solution on flux and rejection of nanofiltration membranes has been considered. And ion exchange capacities of resins in removal of heavy metal ions from wastewater have been determined.

Keywords: exchange capacity, heavy metals, ion exchange, membrane separation, nanofiltration

Procedia PDF Downloads 284
10996 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction

Authors: Marjan Golmaryami, Marzieh Behzadi

Abstract:

Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.

Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange

Procedia PDF Downloads 546
10995 Endodontics Flare-Up

Authors: Khalid Mohammed Idrees

Abstract:

Endodontic treatment aims to reverse the disease process and thereby eliminate the associated signs of symptoms. When the treatment itself appears to initiate the onset of pain and /or swelling (endodontic flare-up), the result can be distressing to both the patient and the operator. Patient might even consider postoperative symptoms as a bench mark against which the clinician’s skills are measured. Obviously the treatment with the lowest prevalence of postoperative pain is usually the treatment of choice as long as effectiveness and cost are not compromised. Knowledge of the cause and mechanism behind intra appointment flare-up is of utmost importance for the clinician to properly prevent or manage this undesirable condition. This review lecture will discuss the causative factors of flare-up with special attention to the microorganism role, various modalities of preventive measures would be discussed. Those measures are based on scientific evidence combined with the long clinical experience of the lecturer.

Keywords: endodontic flare-up, causative factors, inflammatory mediators, preventive measures

Procedia PDF Downloads 132
10994 Classification Rule Discovery by Using Parallel Ant Colony Optimization

Authors: Waseem Shahzad, Ayesha Tahir Khan, Hamid Hussain Awan

Abstract:

Ant-Miner algorithm that lies under ACO algorithms is used to extract knowledge from data in the form of rules. A variant of Ant-Miner algorithm named as cAnt-MinerPB is used to generate list of rules using pittsburgh approach in order to maintain the rule interaction among the rules that are generated. In this paper, we propose a parallel Ant MinerPB in which Ant colony optimization algorithm runs parallel. In this technique, a data set is divided vertically (i-e attributes) into different subsets. These subsets are created based on the correlation among attributes using Mutual Information (MI). It generates rules in a parallel manner and then merged to form a final list of rules. The results have shown that the proposed technique achieved higher accuracy when compared with original cAnt-MinerPB and also the execution time has also reduced.

Keywords: ant colony optimization, parallel Ant-MinerPB, vertical partitioning, classification rule discovery

Procedia PDF Downloads 293
10993 Effect of Lithium Bromide Concentration on the Structure and Performance of Polyvinylidene Fluoride (PVDF) Membrane for Wastewater Treatment

Authors: Poojan Kothari, Yash Madhani, Chayan Jani, Bharti Saini

Abstract:

The requirements for quality drinking and industrial water are increasing and water resources are depleting. Moreover large amount of wastewater is being generated and dumped into water bodies without treatment. These have made improvement in water treatment efficiency and its reuse, an important agenda. Membrane technology for wastewater treatment is an advanced process and has become increasingly popular in past few decades. There are many traditional methods for tertiary treatment such as chemical coagulation, adsorption, etc. However recent developments in membrane technology field have led to manufacturing of better quality membranes at reduced costs. This along with the high costs of conventional treatment processes, high separation efficiency and relative simplicity of the membrane treatment process has made it an economically viable option for municipal and industrial purposes. Ultrafiltration polymeric membranes can be used for wastewater treatment and drinking water applications. The proposed work focuses on preparation of one such UF membrane - Polyvinylidene fluoride (PVDF) doped with LiBr for wastewater treatment. Majorly all polymeric membranes are hydrophobic in nature. This property leads to repulsion of water and hence solute particles occupy the pores, decreasing the lifetime of a membrane. Thus modification of membrane through addition of small amount of salt such as LiBr helped us attain certain characteristics of membrane, which can then be used for wastewater treatment. The membrane characteristics are investigated through measuring its various properties such as porosity, contact angle and wettability to find out the hydrophilic nature of the membrane and morphology (surface as well as structure). Pure water flux, solute rejection and permeability of membrane is determined by permeation experiments. A study of membrane characteristics with various concentration of LiBr helped us to compare its effectivity.

Keywords: Lithium bromide (LiBr), morphology, permeability, Polyvinylidene fluoride (PVDF), solute rejection, wastewater treatment

Procedia PDF Downloads 146
10992 Data Mining Spatial: Unsupervised Classification of Geographic Data

Authors: Chahrazed Zouaoui

Abstract:

In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.

Keywords: mining, GIS, geo-clustering, neighborhood

Procedia PDF Downloads 374
10991 Optimization Analysis of a Concentric Tube Heat Exchanger with Field Synergy Principle

Authors: M. C. Lin, C. W. Su

Abstract:

The paper investigates the optimization analysis to the heat exchanger design, mainly with response surface method and genetic algorithm to explore the relationship between optimal fluid flow velocity and temperature of the heat exchanger using field synergy principle. First, finite volume method is proposed to calculate the flow temperature and flow rate distribution for numerical analysis. We identify the most suitable simulation equations by response surface methodology. Furthermore, a genetic algorithm approach is applied to optimize the relationship between fluid flow velocity and flow temperature of the heat exchanger. The results show that the field synergy angle plays vital role in the performance of a true heat exchanger.

Keywords: optimization analysis, field synergy, heat exchanger, genetic algorithm

Procedia PDF Downloads 306
10990 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments

Authors: Aileen F. Wang

Abstract:

Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.

Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square

Procedia PDF Downloads 451
10989 Faulty Sensors Detection in Planar Array Antenna Using Pelican Optimization Algorithm

Authors: Shafqat Ullah Khan, Ammar Nasir

Abstract:

Using planar antenna array (PAA) in radars, Broadcasting, satellite antennas, and sonar for the detection of targets, Helps provide instant beam pattern control. High flexibility and Adaptability are achieved by multiple beam steering by using a Planar array and are particularly needed in real-life Sanrio’s where the need arises for several high-directivity beams. Faulty sensors in planar arrays generate asymmetry, which leads to service degradation, radiation pattern distortion, and increased levels of sidelobe. The POA, a nature-inspired optimization algorithm, accurately determines faulty sensors within an array, enhancing the reliability and performance of planar array antennas through extensive simulations and experiments. The analysis was done for different types of faults in 7 x 7 and 8 x 8 planar arrays in MATLAB.

Keywords: Planar antenna array, , Pelican optimisation Algorithm, , Faculty sensor, Antenna arrays

Procedia PDF Downloads 77
10988 Response to Name Training in Autism Spectrum Disorder (ASD): A New Intervention Model

Authors: E. Verduci, I. Aguglia, A. Filocamo, I. Macrì, R. Scala, A. Vinci

Abstract:

One of the first indicator of autism spectrum disorder (ASD) is a decreasing tendency or failure to respond to name (RTN) call. Despite RTN is important for social and language developmentand it’s a common target for early interventions for children with ASD, research on specific treatments is insufficient and does not consider the importance of the discrimination between the own name and other names. The purpose of the current study was to replicate an assessment and treatment model proposed by Conine et al. (2020) to teach children with ASD to respond to their own name and to not respond to other names (RTO). The model includes three different phases (baseline/screening, treatment, and generalization), and itgradually introduces the different treatment components, starting with the most naturalistic ones (such as social interaction) and adding more intrusive components (such as tangible reinforcements, prompt and fading procedures) if necessary. The participants of this study were three children with ASD diagnosis: D. (5 years old) with a low frequency of RTN, M. (7 years old) with a RTN unstable and no ability of discrimination between his name and other names, S. (3 years old) with a strong RTN but a constant response to other names. Moreover, the treatment for D. and M. consisted of social and tangible reinforcements (treatment T1), for S. the purpose of the treatment was to teach the discrimination between his name and the others. For all participants, results suggest the efficacy of the model to acquire the ability to selectively respond to the own name and the generalization of the behavior with other people and settings.

Keywords: response to name, autism spectrum disorder, progressive training, ABA

Procedia PDF Downloads 83
10987 A Five-Year Follow-up Survey Using Regression Analysis Finds Only Maternal Age to Be a Significant Medical Predictor for Infertility Treatment

Authors: Lea Stein, Sabine Rösner, Alessandra Lo Giudice, Beate Ditzen, Tewes Wischmann

Abstract:

For many couples bearing children is a consistent life goal; however, it cannot always be fulfilled. Undergoing infertility treatment does not guarantee pregnancies and live births. Couples have to deal with miscarriages and sometimes even discontinue infertility treatment. Significant medical predictors for the outcome of infertility treatment have yet to be fully identified. To further our understanding, a cross-sectional five-year follow-up survey was undertaken, in which 95 women and 82 men that have been treated at the Women’s Hospital of Heidelberg University participated. Binary logistic regressions, parametric and non-parametric methods were used for our sample to determine the relevance of biological (infertility diagnoses, maternal and paternal age) and lifestyle factors (smoking, drinking, over- and underweight) on the outcome of infertility treatment (clinical pregnancy, live birth, miscarriage, dropout rate). During infertility treatment, 72.6% of couples became pregnant and 69.5% were able to give birth. Suffering from miscarriages 27.5% of couples and 20.5% decided to discontinue an unsuccessful fertility treatment. The binary logistic regression models for clinical pregnancies, live births and dropouts were statistically significant for the maternal age, whereas the paternal age in addition to maternal and paternal BMI, smoking, infertility diagnoses and infections, showed no significant predicting effect on any of the outcome variables. The results confirm an effect of maternal age on infertility treatment, whereas the relevance of other medical predictors remains unclear. Further investigations should be considered to increase our knowledge of medical predictors.

Keywords: advanced maternal age, assisted reproductive technology, female factor, male factor, medical predictors, infertility treatment, reproductive medicine

Procedia PDF Downloads 108
10986 Separation of Chlorinated Plastics and Immobilization of Heavy Metals in Hazardous Automotive Shredder Residue

Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thi Thanh Truc, Byeong-Kyu Lee

Abstract:

In the present study, feasibility of the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment was evaluated to facilitate the separation from automotive shredder residue (ASR), by the froth flotation. The combination of 60 sec microwave treatment with PAC, a sharp and significant decrease about 16.5° contact angle of PVC was observed in ASR plastic compared with other plastics. The microwave treatment with the addition of PAC resulted in a synergetic effect for the froth flotation, which may be a result of the 90% selective separation of PVC from ASR plastics, with 82% purity. While, simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR soil/residues. The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. Microwave treatment can be a simple and effective method for PVC separation from ASR plastics.

Keywords: automotive shredder residue, chlorinated plastics, hazardous waste, heavy metals, immobilization, separation

Procedia PDF Downloads 519
10985 Performance, Yolk and Serum Cholesterol of Shaver-Brown Layers Fed Moringa Leaf Meal and Sun Dried Garlic Powder

Authors: Anselm Onyimonyi, A. Abaponitus

Abstract:

One hundred and ninety two Shaver-Brown layers aged 40 weeks were used in a 10 weeks feeding trial to investigate the effect of supplementary moringa leaf meal and sun-dried garlic powder (MOGA) on the performance, egg yolk and serum cholesterol profiles of the birds. The birds were randomly assigned to four treatments in a 2 x 2 factorial in a Completely Randomized Design with 48 birds per treatment. Each treatment had 24 replicates with 2 birds, each separately housed in a cell in a battery cage. Birds on treatment 1 received a standard layers mash (16.5% CP and 3000 kcalME/kg) without any MOGA. Treatment 2 birds received the control diet with 5 g moringa leaf meal/kg of feed, treatment 3 received the control diet with 5 g sun-dried garlic powder/kg of feed, treatment 4 had a combination of 5 g each of moringa leaf meal and sun dried garlic powder/kg of feed. Data were kept on daily egg production, egg weight and feed intake. 10 eggs were collected per treatment at the end of the study for yolk cholesterol determination. Blood samples from four birds per treatment were collected and used for the serum cholesterol and triglycerides determination. Results showed that bird on treatment 3 (5% moringa leaf meal/kg of feed) had significantly higher (P < 0.05) Hen Day Egg Production record of 83.3% as against 78.75%, 65.05% and 66.67% recorded for the control, T2 and T4 birds, respectively. Egg weight of 56.39 g recorded for the same birds on treatment 3 was significantly (P< 0.05) lower than the values of 62.61 g, 60.99 g and 59.33 g recorded for birds on T4, T1 and T2, respectively. Yolk and serum cholesterol profiles of the moringa leaf meal fed birds were significantly (P<0.05) lowered when compared to those of the other treatments. Comparatively, the birds on the MOGA diets had significantly reduced yolk and serum cholesterol than the control. It is concluded that supplementation of moringa leaf meal and sun dried garlic powder at the levels used in this study will result in the production of nutritionally healthier eggs with less yolk and serum cholesterol.

Keywords: performance, cholesterol, moringa, garlic

Procedia PDF Downloads 518
10984 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa

Authors: Olumuyiwa Ojo, Masengo Ilunga

Abstract:

Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.

Keywords: ANN, artificial neural network, wastewater treatment, model, development

Procedia PDF Downloads 148
10983 Effects of Alkalinity on the Treatment of Landfill Leachate through Algae Growth

Authors: Tahir Imran Qureshi

Abstract:

This study was aimed at finding out effects of potential influence of alkalinity on the treatment of landfill leachate through the growth of algae at varying dilution rates and toxicity potential. pH control proved to be an effective factor influencing on algal growth. With the use of algae Scenedesmus sp. for the treatment of leachate, a sharp increase in the growth of algae was recorded until pH 9. However, at pH 9.3 and 25 °C temperature, the growing trend of algae population showed a weakening tendency with the increase of total alkalinity in the leachate solution. Highest growth of algae was recorded in the leachate samples with alkalinity ranged at 1500-2500 mg CaCO3/L under neutral condition at pH 7 after 48 hours of cultivation time. Under the similar conditions, total nitrogen and total phosphorous in the leachate also reduced to 80% and 85%, respectively, however, no significant removal of COD was observed during the course of experiment.

Keywords: leachate treatment, microalgae, nutrient removal, ammonia toxicity

Procedia PDF Downloads 329
10982 Assessment of Patient Cooperation and Compliance in Three Stages of Orthodontic Treatment in Adult Patients: A Cross-Sectional Study

Authors: Hafsa Qabool, Rashna Sukhia, Mubassar Fida

Abstract:

Introduction: Success of orthodontic mechanotherapy is highly dependent upon patient cooperation and compliance throughout the duration of treatment. This study was conducted to assess the cooperation and compliance of adult orthodontic patients during the leveling and alignment, space closure/molar correction, and finishing stages of tooth movement. Materials and Methods: Patient cooperation and compliance among three stages of orthodontic treatment were assessed using the Orthodontic Patient Cooperation Scale (OPCS) and Clinical Compliance Evaluation (CCE) form. A sample size of 38 was calculated for each stage of treatment; therefore, 114 subjects were included in the study. Shapiro-Wilk test identified that the data were normally distributed. One way ANOVA was used to evaluate the percentage cooperation and compliance among the three stages. Pair-wise comparisons between the three stages were performed using Post-hoc Tukey. Results: Statistically significant difference was seen for scores of patient compliance using CCE (p = 0.01); however, the results of the OPCS showed a non-significant difference for patient cooperation (p = 0.16) among the three stages of treatment. Post-hoc analysis showed significant differences (p = 0.01) in patient cooperation and compliance between space closure and the finishing stage. Highly significant (p < 0.001) decline in oral hygiene was found with the progression of orthodontic treatment. Conclusions: Improvement in the cooperation and compliance levels for adult orthodontic patients was observed during space closure & molar correction stage, which then showed a decline as treatment progressed. Oral hygiene was progressively compromised as orthodontic treatment progressed.

Keywords: patient compliance, adult orthodontics, orthodontic motivation, orthodontic patient adherence

Procedia PDF Downloads 166
10981 Using LTE-Sim in New Hanover Decision Algorithm for 2-Tier Macrocell-Femtocell LTE Network

Authors: Umar D. M., Aminu A. M., Izaddeen K. Y.

Abstract:

Deployments of mini macrocell base stations also referred to as femtocells, improve the quality of service of indoor and outdoor users. Nevertheless, mobility management remains a key issue with regards to their deployment. This paper is leaned towards this issue, with an in-depth focus on the most important aspect of mobility management -handover. In handover management, making a handover decision in the LTE two-tier macrocell femtocell network is a crucial research area. Decision algorithms in this research are classified and comparatively analyzed according to received signal strength, user equipment speed, cost function, and interference. However, it was observed that most of the discussed decision algorithms fail to consider cell selection with hybrid access policy in a single macrocell multiple femtocell scenario, another observation was a majority of these algorithms lack the incorporation of user equipment residence parameter. Not including this parameter boosts the number of unnecessary handover occurrence. To deal with these issues, a sophisticated handover decision algorithm is proposed. The proposed algorithm considers the user’s velocity, received signal strength, residence time, as well as the femtocell base station’s access policy. Simulation results have shown that the proposed algorithm reduces the number of unnecessary handovers when compared to conventional received signal strength-based handover decision algorithm.

Keywords: user-equipment, radio signal service, long term evolution, mobility management, handoff

Procedia PDF Downloads 123
10980 Design of Digital IIR Filter Using Opposition Learning and Artificial Bee Colony Algorithm

Authors: J. S. Dhillon, K. K. Dhaliwal

Abstract:

In almost all the digital filtering applications the digital infinite impulse response (IIR) filters are preferred over finite impulse response (FIR) filters because they provide much better performance, less computational cost and have smaller memory requirements for similar magnitude specifications. However, the digital IIR filters are generally multimodal with respect to the filter coefficients and therefore, reliable methods that can provide global optimal solutions are required. The artificial bee colony (ABC) algorithm is one such recently introduced meta-heuristic optimization algorithm. But in some cases it shows insufficiency while searching the solution space resulting in a weak exchange of information and hence is not able to return better solutions. To overcome this deficiency, the opposition based learning strategy is incorporated in ABC and hence a modified version called oppositional artificial bee colony (OABC) algorithm is proposed in this paper. Duplication of members is avoided during the run which also augments the exploration ability. The developed algorithm is then applied for the design of optimal and stable digital IIR filter structure where design of low-pass (LP) and high-pass (HP) filters is carried out. Fuzzy theory is applied to achieve maximize satisfaction of minimum magnitude error and stability constraints. To check the effectiveness of OABC, the results are compared with some well established filter design techniques and it is observed that in most cases OABC returns better or atleast comparable results.

Keywords: digital infinite impulse response filter, artificial bee colony optimization, opposition based learning, digital filter design, multi-parameter optimization

Procedia PDF Downloads 477
10979 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment

Authors: Hae-Yeoun Lee

Abstract:

Mosaic refers to a technique that makes image by gathering lots of small materials in various colours. This paper presents an automatic algorithm that makes the photomosaic image using photos. The algorithm is composed of four steps: Partition and feature extraction, block matching, redundancy removal and colour adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.

Keywords: photomosaic, Euclidean distance, block matching, intensity adjustment

Procedia PDF Downloads 278
10978 Converting Scheduling Time into Calendar Date Considering Non-Interruptible Construction Tasks

Authors: Salman Ali Nisar, Suzuki Koji

Abstract:

In this paper we developed a new algorithm to convert the project scheduling time into calendar date in order to handle non-interruptible activities not to be split by non-working days (such as weekend and holidays). In a construction project some activities might require not to be interrupted even on non-working days, or to be finished on the end day of business days. For example, concrete placing work might be required to be completed by the end day of weekdays i.e. Friday, and curing in the weekend. This research provides an algorithm that imposes time constraint for start and finish times of non-interruptible activities. The algorithm converts working days, which is obtained by Critical Path Method (CPM), to calendar date with consideration of the start date of a project. After determining the interruption by non-working days, the start time of a certain activity should be postponed, if there is enough total float value. Otherwise, the duration is shortened by hiring additional resources capacity or/and using overtime work execution. Then, time constraints are imposed to start time and finish time of the activity. The algorithm is developed in Excel Spreadsheet for microcomputer and therefore we can easily get a feasible, calendared construction schedule for such a construction project with some non-interruptible activities.

Keywords: project management, scheduling, critical path method, time constraint, non-interruptible tasks

Procedia PDF Downloads 501
10977 Modification of Rk Equation of State for Liquid and Vapor of Ammonia by Genetic Algorithm

Authors: S. Mousavian, F. Mousavian, V. Nikkhah Rashidabad

Abstract:

Cubic equations of state like Redlich–Kwong (RK) EOS have been proved to be very reliable tools in the prediction of phase behavior. Despite their good performance in compositional calculations, they usually suffer from weaknesses in the predictions of saturated liquid density. In this research, RK equation was modified. The result of this study shows that modified equation has good agreement with experimental data.

Keywords: equation of state, modification, ammonia, genetic algorithm

Procedia PDF Downloads 379
10976 Improved Multi–Objective Firefly Algorithms to Find Optimal Golomb Ruler Sequences for Optimal Golomb Ruler Channel Allocation

Authors: Shonak Bansal, Prince Jain, Arun Kumar Singh, Neena Gupta

Abstract:

Recently nature–inspired algorithms have widespread use throughout the tough and time consuming multi–objective scientific and engineering design optimization problems. In this paper, we present extended forms of firefly algorithm to find optimal Golomb ruler (OGR) sequences. The OGRs have their one of the major application as unequally spaced channel–allocation algorithm in optical wavelength division multiplexing (WDM) systems in order to minimize the adverse four–wave mixing (FWM) crosstalk effect. The simulation results conclude that the proposed optimization algorithm has superior performance compared to the existing conventional computing and nature–inspired optimization algorithms to find OGRs in terms of ruler length, total optical channel bandwidth and computation time.

Keywords: channel allocation, conventional computing, four–wave mixing, nature–inspired algorithm, optimal Golomb ruler, lévy flight distribution, optimization, improved multi–objective firefly algorithms, Pareto optimal

Procedia PDF Downloads 318