Search results for: receptor activation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1393

Search results for: receptor activation

703 Association of AGT (M268T) Gene Polymorphism in Diabetes and Nephropathy in Pakistan

Authors: Syed M. Shahid, Rozeena Shaikh, Syeda N. Nawab, Abid Azhar

Abstract:

Diabetes mellitus (DM) is a prevalent non-communicable disease worldwide. DM may lead to many vascular complications like hypertension, nephropathy, retinopathy, neuropathy and foot infections. Pathogenesis of diabetic nephropathy (DN) is implicated by the polymorphisms in genes encoding the specific components of renin angiotensin aldosterone system (RAAS) which include angiotensinogen (AGT), angiotensin-II receptor and angiotensin converting enzyme (ACE) genes. This study was designed to explore the possible association of AG (M268T) polymorphism in the patients of diabetes and nephropathy in Pakistan. Study subjects included 100 controls, 260 diabetic patients without renal insufficiency and 190 diabetic nephropathy patients with persistent albuminuria. Fasting blood samples were collected from all the subjects after getting institutional ethical approval and informed consent. The biochemical estimations, PCR amplification and direct sequencing for the specific region of AGT gene was carried out. A significantly high frequency of TT genotype and T allele of AGT (M268T) was observed in the patients of diabetes with nephropathy as compared to controls and diabetic patients without any known renal impairment. The TT genotype and T allele of AGT (M268T) polymorphism may be considered as a genetic risk factor for the development and progression of nephropathy in diabetes. Further cross sectional population studies would be of help to establish and confirm the observed possible association of AGT gene variations with development of nephropathy in diabetes.

Keywords: RAAS, AGT (M268T), diabetes, nephropathy

Procedia PDF Downloads 524
702 Durability Enhancement of CaSO4 in Repetitive Operation of Chemical Heat Pump

Authors: Y. Shiren, M. Masuzawa, H. Ohkura, T. Yamagata, Y. Aman, N. Kobayashi

Abstract:

An important problem for the CaSO4/CaSO4・1/2H2O Chemical heat pump (CHP) is that the material is deactivated through repetitive reaction between hydration and dehydration in which the crystal phase of the material is transformed from III-CaSO4 to II-CaSO4. We investigated suppression on the phase change by adding a sulfated compound. The most effective material was MgSO4. MgSO4 doping increased the durability of CaSO4 in the actual CHP repetitive cycle of hydration/dehydration to 3.6 times that of undoped CaSO4. The MgSO4-doped CaSO4 showed a higher phase transition temperature and activation energy for crystal transformation from III-CaSO4 to II-CaSO4. MgSO4 doping decreased the crystal lattice size of CaSO4・1/2H2O and II-CaSO4 to smaller than that of undoped CaSO4. Modification of the crystal structure is considered to be related to the durability change in CaSO4 resulting from MgSO4 doping.

Keywords: CaSO4, chemical heat pump, durability of chemical heat storage material, heat storage

Procedia PDF Downloads 573
701 Process Modified Geopolymer Concrete: A Sustainable Material for Green Construction Technology

Authors: Dibyendu Adak, Saroj Mandal

Abstract:

The fly ash based geopolymer concrete generally requires heat activation after casting, which has been considered as an important limitation for its practical application. Such limitation can be overcome by a modification in the process at the time of mixing of ingredients (fly and activator fluid) for geopolymer concrete so that curing can be made at ambient temperature. This process modified geopolymer concrete shows an appreciable improvement in structural performance compared to conventional heat cured geopolymer concrete and control cement concrete. The improved durability performance based on water absorption, sulphate test, and RCPT is also noted. The microstructural properties analyzed through Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques show the better interaction of fly ash and activator solution at early ages for the process modified geopolymer concrete. This accelerates the transformation of the amorphous phase of fly ash to the crystalline phase.

Keywords: fly ash, geopolymer concrete, process modification, structural properties, durability, micro-structures

Procedia PDF Downloads 159
700 A Constitutive Model of Ligaments and Tendons Accounting for Fiber-Matrix Interaction

Authors: Ratchada Sopakayang, Gerhard A. Holzapfel

Abstract:

In this study, a new constitutive model is developed to describe the hyperelastic behavior of collagenous tissues with a parallel arrangement of collagen fibers such as ligaments and tendons. The model is formulated using a continuum approach incorporating the structural changes of the main tissue components: collagen fibers, proteoglycan-rich matrix and fiber-matrix interaction. The mechanical contribution of the interaction between the fibers and the matrix is simply expressed by a coupling term. The structural change of the collagen fibers is incorporated in the constitutive model to describe the activation of the fibers under tissue straining. Finally, the constitutive model can easily describe the stress-stretch nonlinearity which occurs when a ligament/tendon is axially stretched. This study shows that the interaction between the fibers and the matrix contributes to the mechanical tissue response. Therefore, the model may lead to a better understanding of the physiological mechanisms of ligaments and tendons under axial loading.

Keywords: constitutive model, fiber-matrix, hyperelasticity, interaction, ligament, tendon

Procedia PDF Downloads 295
699 Novel Pyrimidine Based Semicarbazones: Confirmation of Four Binding Site Pharmacophoric Model Hypothesis for Antiepileptic Activity

Authors: Harish Rajak, Swati Singh

Abstract:

A series of novel pyrimidine based semicarbazone were designed and synthesized on the basis of semicarbazone based pharmacophoric model to satisfy the structural prerequisite crucial for antiepileptic activity. The semicarbazones based pharmacophoric model consists of following four essential binding sites: (i) An aryl hydrophobic binding site with halo substituent; (ii) A hydrogen bonding domain; (iii) An electron donor group and (iv) Another hydrophobic-hydrophilic site controlling the pharmacokinetic features of the anticonvulsant. The aryl semicarbazones has been recognized as a structurally novel class of compounds with remarkable anticonvulsant activity. In the present study, all the test semicarbazones were subjected to molecular docking using Glide v5.8. Some of the compounds were found to interact with ARG192, GLU270 and THR353 residues of 1OHV protein, present in GABA-AT receptor. The chemical structures of the synthesized molecules were characterized by elemental and spectral (IR, 1H NMR, 13C NMR and MS) analysis. The anticonvulsant activities of the compounds were investigated using maximal electroshock seizure (MES) and subcutaneous pentylenetrtrazole (scPTZ) models. The neurotoxicity was evaluated in mice by the rotorod test. The attempts were also made to establish structure-activity relationships among synthesized compounds. The results of the present study confirmed that the pharmacophore model with four binding sites is essential for antiepileptic activity.

Keywords: pyrimidine, semicarbazones, anticonvulsant activity, neurotoxicity

Procedia PDF Downloads 249
698 The Role of Polar Body in the Female Gamete

Authors: Parsa Sheikhzadeh

Abstract:

Polar bodies are cells that form by oogenesis in meiosis which differentiate and develop from oocytes. Although in many animals, these cells often die following meiotic maturation of the oocyte. Oocyte activation is during mammalian fertilization, sperm is fused with the oocyte's membrane, triggering the resumption of meiosis from the metaphase II arrest, the extrusion of the second polar body, and the exocytosis of cortical granules. The origin recognition complex proteins 4 (ORC4) forms a cage around the set of chromosomes that will be extruded during polar body formation before it binds to the chromatin shortly before zygotic DNA replication. One unique feature of the female gamete is that the polar bodies can provide beneficial information about the genetic background of the oocyte without potentially destroying it. Testing at the polar body (PB) stage was the least accurate, mainly due to the high incidence of post-zygotic events. On the other hand, the results from PB1-MII oocyte pair validated that PB1 contains nearly the same methylome (average Pearson correlation is 0.92) with sibling MII oocyte. In this article, we comprehensively examine the role of polar bodies in female human gametes.

Keywords: polar bodies, ORC4, oocyte, genetic, methylome, gamete, female

Procedia PDF Downloads 85
697 Clustering of Natural and Nature Derived Compounds for Cardiovascular Disease: Pharmacophore Modeling

Authors: S. Roy, R. Rekha, K. Sriram, G. Subhadra, R. Johana

Abstract:

Cardiovascular disease remains a leading cause of death in most industrialized countries. Many chemical drugs are available in the market which targets different receptor proteins related to cardiovascular diseases. Of late the traditional herbal drugs are safer when compared to chemical drugs because of its side effects. However, many herbal remedies used in treating cardiovascular diseases have not undergone scientific assessment to prove its pharmacological activities. There are many natural compounds, nature derived and Natural product mimic compounds are available which are in the market as approved drug. In the most of the cases drug activity at the molecular level are not known. Here we have categorized those compounds with our experimental compounds in different classes based on the structural similarity and physicochemical properties, using a tool, Chemmine and has attempted to understand the mechanism of the action of a experimental compound, which are clustered with Simvastatin, Lovastatin, Mevastatin and Pravastatin. Target protein molecule for Simvastatin, Lovastatin, Mevastatin and Pravastatin is HMG-CoA reductase, so we concluded that the experimental compound may be able to bind to the same target. Molecular docking and atomic interaction studies with simvastatin and our experimental compound were compared. A pharmacophore modeling was done based on the experimental compound and HMG-CoA reductase inhibitor.

Keywords: molecular docking, physicochemical properties, pharmacophore modeling structural similarity, pravastatin

Procedia PDF Downloads 317
696 Targeting Calcium Dysregulation for Treatment of Dementia in Alzheimer's Disease

Authors: Huafeng Wei

Abstract:

Dementia in Alzheimer’s Disease (AD) is the number one cause of dementia internationally, without effective treatments. Increasing evidence suggest that disruption of intracellular calcium homeostasis, primarily pathological elevation of cytosol and mitochondria but reduction of endoplasmic reticulum (ER) calcium concentrations, play critical upstream roles on multiple pathologies and associated neurodegeneration, impaired neurogenesis, synapse, and cognitive dysfunction in various AD preclinical studies. The last federal drug agency (FDA) approved drug for AD dementia treatment, memantine, exert its therapeutic effects by ameliorating N-methyl-D-aspartate (NMDA) glutamate receptor overactivation and subsequent calcium dysregulation. More research works are needed to develop other drugs targeting calcium dysregulation at multiple pharmacological acting sites for future effective AD dementia treatment. Particularly, calcium channel blockers for the treatment of hypertension and dantrolene for the treatment of muscle spasm and malignant hyperthermia can be repurposed for this purpose. In our own research work, intranasal administration of dantrolene significantly increased its brain concentrations and durations, rendering it a more effective therapeutic drug with less side effects for chronic AD dementia treatment. This review summarizesthe progress of various studies repurposing drugs targeting calcium dysregulation for future effective AD dementia treatment as potentially disease-modifying drugs.

Keywords: alzheimer, calcium, cognitive dysfunction, dementia, neurodegeneration, neurogenesis

Procedia PDF Downloads 176
695 Muscle Relaxant Dantrolene Repurposed to Treat Alzheimer's Disease

Authors: Huafeng Wei

Abstract:

Failures of developing new drugs primarily based on the amyloid pathology hypothesis after decades of efforts internationally lead to changes of focus targeting alternative pathways of pathology in Alzheimer’s disease (AD). Disruption of intracellular Ca2+ homeostasis, especially the pathological and excessive Ca2+ release from the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) Ca2+ channels, has been considered an upstream pathology resulting in major AD pathologies, such as amyloid and Tau pathology, mitochondria damage and inflammation, etc. Therefore, dantrolene, an inhibitor of RyRs that reduces the pathological Ca2+ release from ER and a clinically available drug for the treatment of malignant hyperthermia and muscle spasm, is expected to ameliorate AD multiple pathologies synapse and cognitive dysfunction. Our own studies indicated that dantrolene ameliorated impairment of neurogenesis and synaptogenesis in neurons developed from induced pluripotent stem cells (iPSCs) originated from skin fibroblasts of either familiar (FAD) or sporadic (SAD) AD by restoring intracellular Ca2+ homeostasis. Intranasal administration of dantrolene significantly increased its passage across the blood-brain barrier (BBB) and, therefore its brain concentrations and durations. This can render dantrolene a more effective therapeutic drug with fewer side effects for chronic AD treatment. This review summarizes the potential therapeutic and side effects of dantrolene and repurposes intranasal dantrolene as a disease-modifying drug for future AD treatment.

Keywords: Alzheimer's disease, calcium, drug development, dementia, neurodegeneration, neurogenesis

Procedia PDF Downloads 205
694 Sesamol Decreases Melanin Biosynthesis via Melanogenesis-Related Gene Expressions in Melan-a Cells

Authors: Seung-Hwa Baek, In-Jung Nam, Sang-Han Lee

Abstract:

The development of anti-melanogenic agents is important for the prevention of serious esthetic problem like a melasma, freckle, age spots, and chloasma. The aim of this study was to investigate the anti-melanogenic effect of sesamol, an active lignan isolated from sesame seed, by mushroom and cellular tyrosinase assay, melanin content and the analysis of melanogensis-related mRNA expressions in melana cells. Sesamol showed strong inhibitory activity against the mushroom tyrosinase in a dose-dependent manner. Intracellular tyrosinase inhibition activity was also confirmed by zymography. At a concentration of 50 μM, sesamol inhibited melanin production in melan-a cells with no cytoxicity while those of phenylthiourea (PTU) as a positive control were the same condition. Sesamol significantly inhibited the expression of melanogensis-related genes, such as tyrosinase, tyrosinase-related protein-1 (TRP-1), dopachrome tautomerase (Dct), microphthalmia-associated transcription factor (MITF) and melanocortin 1 receptor (MC1R). These findings indicate that sesamol could reduce melanin biosynthesis via the downregulation of tyrosinase activity and melanin production via subsequent gene expression of melanogenesis-related proteins. Together, these results suggest that the sesamol have strong potential in inhibiting melanin biosynthesis, in that the substance may be used as a new skin-whitening agent of cosmetic materials.

Keywords: sesamol, sesame seed, melanin biosynthesis, melanogenesis-related gene, skin-whitening agent

Procedia PDF Downloads 385
693 Exploring Digital Media’s Impact on Sports Sponsorship: A Global Perspective

Authors: Sylvia Chan-Olmsted, Lisa-Charlotte Wolter

Abstract:

With the continuous proliferation of media platforms, there have been tremendous changes in media consumption behaviors. From the perspective of sports sponsorship, while there is now a multitude of platforms to create brand associations, the changing media landscape and shift of message control also mean that sports sponsors will have to take into account the nature of and consumer responses toward these emerging digital media to devise effective marketing strategies. Utilizing the personal interview methodology, this study is qualitative and exploratory in nature. A total of 18 experts from European and American academics, sports marketing industry, and sports leagues/teams were interviewed to address three main research questions: 1) What are the major changes in digital technologies that are relevant to sports sponsorship; 2) How have digital media influenced the channels and platforms of sports sponsorship; and 3) How have these technologies affected the goals, strategies, and measurement of sports sponsorship. The study found that sports sponsorship has moved from consumer engagement, engagement measurement, and consequences of engagement on brand behaviors to micro-targeting one on one, engagement by context, time, and space, and activation and leveraging based on tracking and databases. From the perspective of platforms and channels, the use of mobile devices is prominent during sports content consumption. Increasing multiscreen media consumption means that sports sponsors need to optimize their investment decisions in leagues, teams, or game-related content sources, as they need to go where the fans are most engaged in. The study observed an imbalanced strategic leveraging of technology and digital infrastructure. While sports leagues have had less emphasis on brand value management via technology, sports sponsors have been much more active in utilizing technologies like mobile/LBS tools, big data/user info, real-time marketing and programmatic, and social media activation. Regardless of the new media/platforms, the study found that integration and contextualization are the two essential means of improving sports sponsorship effectiveness through technology. That is, how sponsors effectively integrate social media/mobile/second screen into their existing legacy media sponsorship plan so technology works for the experience/message instead of distracting fans. Additionally, technological advancement and attention economy amplify the importance of consumer data gathering, but sports consumer data does not mean loyalty or engagement. This study also affirms the benefit of digital media as they offer viral and pre-event activations through storytelling way before the actual event, which is critical for leveraging brand association before and after. That is, sponsors now have multiple opportunities and platforms to tell stories about their brands for longer time period. In summary, digital media facilitate fan experience, access to the brand message, multiplatform/channel presentations, storytelling, and content sharing. Nevertheless, rather than focusing on technology and media, today’s sponsors need to define what they want to focus on in terms of content themes that connect with their brands and then identify the channels/platforms. The big challenge for sponsors is to play to the venues/media’s specificity and its fit with the target audience and not uniformly deliver the same message in the same format on different platforms/channels.

Keywords: digital media, mobile media, social media, technology, sports sponsorship

Procedia PDF Downloads 293
692 Influence of Cationic Surfactant (TTAB) on the Rate of Dipeptide (Gly-DL-Asp) Ninhydrin Reaction in Absence and Presence of Organic Solvents

Authors: Mohd. Akram, A. A. M. Saeed

Abstract:

Surfactants are widely used in our daily life either directly in household and personal care products or indirectly in the industrial processes. The kinetics of the interaction of glycyl-DL-aspartic acid (Gly-DL-Asp) with ninhydrin has been investigated spectrophotometrically in aqueous and organic-solvent media in the absence and presence of cationic surfactant of tetradecyltrimethylammonium bromide (TTAB). The study was carried out under different experimental conditions. The first and fractional order-rate were observed for [Gly-DL-Asp] and [ninhydrin], respectively. The reaction was enhanced about four-fold by TTAB micelles. The effect of organic solvents was studied at a constant concentration of TTAB and showed an increase in the absorbance as well as the rate constant for the formation of product (Ruhemann's purple). The results obtained in micellar media are treated quantitatively in terms of pseudo-phase and Piszkiewicz cooperativity models. The Arrhenius and Eyring equations are valid for the reaction over the range of temperatures used and different activation parameters (Ea, ∆H#, ∆S#, and ∆G#) have been evaluated.

Keywords: glycyl-DL-aspartic acid, ninhydrin, organic solvents, TTAB

Procedia PDF Downloads 380
691 In vitro And in vivo Anticholinesterase Activity of the Volatile Oil of the Aerial Parts of Ocimum Basilicum L. and O. africanum Lour. Growing in Egypt

Authors: Mariane G. Tadros, Shahira M. Ezzat, Maha M. Salama, Mohamed A. Farag

Abstract:

In this study, the in vitro anticholinesterase activity of the volatile oils of both O. basilicum and O. africanum was investigated and both samples showed significant activity. As a result, the major constituents of the two oils were isolated using several column chromatography. Linalool, 1,8-cineol and eugenol were isolated from the volatile oil of O. basilicum and camphor was isolated from the volatile oil of O. africanum. The anticholinesterase activity of the isolated compounds were also evaluated where 1,8-cineol showed the highest inhibitory activity followed by camphor. To confirm these activities, learning and memory enhancing effects were tested in mice. Memory impairment was induced by scopolamine, a cholinergic muscarinic receptor antagonist. Anti-amnesic effects of both volatile oils and their terpenoids were investigated by the passive avoidance task in mice. We also examined their effects on brain acetylcholinesterase activity. Results showed that scopolamine-induced cognitive dysfunction was significantly attenuated by administration of the volatile oils and their terpenoids, eugenol and camphor, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that O. basilicum and O. africanum volatile oils can be good candidates for further studies on Alzheimer’s disease via their acetylcholinesterase inhibitory actions.

Keywords: Ocimum baselicum, Ocimum africanum, GC/MS analysis, anticholinesterase

Procedia PDF Downloads 453
690 Lipopolysaccharide Induced Avian Innate Immune Expression in Heterophils

Authors: Rohita Gupta, G. S. Brah, R. Verma, C. S. Mukhopadhayay

Abstract:

Although chicken strains show differences in susceptibility to a number of diseases, the underlying immunological basis is yet to be elucidated. In the present study, heterophils were subjected to LPS stimulation and total RNA extraction, further differential gene expression was studied in broiler, layer and indigenous Aseel strain by Real Time RT-PCR at different time periods before and after induction. The expression of the 14 AvBDs and chTLR 1, 2, 3, 4, 5, 7, 15 and 21 was detectable in heterophils. The expression level of most of the AvBDs significantly increased (P<0.05) 3 hours post in vitro lipopolysaccharide challenge. Higher expression level and stronger activation of most AvBDs, NFkB-1 and IRF-3 in heterophils was observed, with the stimulation of LPS in layer compared to broiler, and in Aseel compared to both layer and broiler. This investigation will allow more refined interpretation of immuno-genetic basis of the variable disease resistance/susceptibility in divergent stock of chicken including indigenous breed. Moreover this study will be helpful in formulation of strategy for isolation of antimicrobial peptides from heterophils.

Keywords: differential expression, heterophils, cytokines, defensin, TLR

Procedia PDF Downloads 613
689 Photocatalytic Activity of Polypyrrole/ZnO Composites for Degradation of Dye Reactive Red 45 in Wastewater

Authors: Ljerka Kratofil Krehula, Vanja Gilja, Andrea Husak, Sniježana Šuka, Zlata Hrnjak-Murgić

Abstract:

Zinc oxide (ZnO) can be used as photocatalysts for water purification. However, one particular interest is given on the integration of inorganic ZnO nanoclusters with conducting polymers because the resulting nanocomposites may possess unique properties and enhanced photocatalytic activity in comparison to pure ZnO, using UV and also visible light. It is needed to explore the appropriate structure of polypyrrole that can induce activation of ZnO photocatalyst since the synthesis of organic/inorganic hybrid materials can result in a synergistic and complementary feature, increasing ZnO photocatalytic efficiency. In this paper several different composites of polypyrrole/zinc oxide (ZnO) were studied. Composite samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and scanning electron microscopy (SEM). The photocatalytic efficiency of prepared samples was studied as a decomposition of Reactive Red 45 (RR 45) dye, which was monitored by UV-Vis spectroscopy as a change in absorbance of characteristic wavelength at 542 nm. Results show good photocatalytic efficiency of all nanocomposite samples.

Keywords: photocatalysis, polypyrrole, wastewater, zinc oxide

Procedia PDF Downloads 260
688 CO2 Adsorption on the Activated Klaten-Indonesian Natural Zeolite in a Packed Bed Adsorber

Authors: Sang Kompiang Wirawan, Chandra Purnomo

Abstract:

Carbon dioxide (CO2) adsorption on the activated Klaten-Indonesian natural zeolite (AKINZ) in a packed bed adsorber has been studied. Experiment works consisted of acid activation and adsorption experiments. The natural zeolite sample was activated using 0.3 M HCl at the temperature of 353 K. In the adsorption experiments the feed gas concentrations were 40 and 80 % CO2 in helium within various temperatures of 303; 323 and 373 K. The experiments were conducted by using transient step change adsorption and 20 % Ar/He tracer experiment was conducted to measure dispersion and time lag effect of the packed bed system. A mathematical model of CO2 adsorption had been set up by assuming plug flow;isothermal;isobaric and no gas film mass transport resistance. Single site Langmuir physisorption and Maxwell Stefan mass transport in micropore were applied. All the data were then optimized to get the best value of modified fitted parameter. The model was in a good agreement with the experiment data. Diffusivity tended to increase by increasing temperatures.

Keywords: adsorption, Langmuir, Maxwell-Stefan, natural zeolite, surface diffusion

Procedia PDF Downloads 350
687 Synthesis of a Library of Substituted Isoquinolines Based on a Triazolization Strategy, and Their Anti-HIV and C-X-C Chemokine Receptor Type 4 Antagonist Activity

Authors: Mastaneh Safarnejad Shad, Wim Dehaen, Steven De Jonghe

Abstract:

Since CXCR4 is the main coreceptor of HIV-1 and plays an important role in human immunodeficiency virus (HIV) entry, numerous efforts were directed towards the discovery of new classes of small molecules that act as CXCR4 antagonists. In addition, CXCR4 antagonists are potentially useful in the treatment of several other disorders, such as cancer cell metastasis, leukemia cell proliferation, rheumatoid arthritis, and pulmonary fibrosis. Since AMD3100 (plerixafor) is the only CXCR4 antagonist which obtained approval by the Food and Drug Administration (FDA), we were motivated to investigate a new category of molecules as CXCR4 antagonists. Most of the scaffolds which have been studied so far as CXCR4 antagonists are based on the tetrahydroquinoline (THQ) moiety in which AMD11070 (mavorixafor), GSK-812394, and TIQ15 displayed the most potent CXCR4 antagonism. Due to the high potency of these scaffolds, two different series of compounds were prepared in this work. In the first set, the THQ moiety is coupled to an amine chain and various isoquinoline derivatives (prepared by an in-house developed triazolization strategy), of which the upper part of molecules is identical to AMD11070 and TIQ15. In the second category of compounds, the THQ moiety was simplified by the synthesis of a substituted pyridine moiety. In order to investigate if CXCR4 antagonism requires the presence of an isoquinoline moiety, the corresponding pyridine analogues were also prepared. In both series of compounds, potent CXCR4 antagonism was noticed.

Keywords: CXCR4 coreceptor, CXCR4 antagonists, HIV inhibitor, tetrahydroquinoline

Procedia PDF Downloads 190
686 Factors Associated with Ketamine Use in Pancreatic Cancer Patient in a Single Hospice Center

Authors: Kyung Min Kwom, Young Joo Lee

Abstract:

Purpose: Up to 90% of pancreatic cancer patient suffer from neuropathic pain. In palliative care setting, pain control in a pancreatic cancer patient is one of the major goals. Ketamine is a NMDA receptor antagonist effective in neuropathic pain. Also, there have been studies about opioid sparing effect of ketamine. This study was held in palliative care unit among pancreatic cancer patients to find out the factors related to ketamine use and the opioid sparing effect. Methods: Medical records of pancreatic cancer patients admitted to St. Mary’s hospital palliative care unit from 2013.1 to 2014.12 were reviewed. Patients were divided into two categories according to ketamine use. Also, opioid use before and after ketamine use was compared in ketamine group. Results: Compared to non ketamine use group, patients in ketamine group required a higher dose of opioid. Total opioid dose, daily opioid dose, number of daily rescue medication, daily average rescue dose were statistically significantly higher in ketamine group. Opioid requirement was increased after ketamine administration. Conclusion: In this study, ketamine group required more opioid. Ketamine is frequently considered in patients with severe pain, requiring high amount of opioid. Also, ketamine did not have an opioid sparing effect. Future studies about palliative use of ketamine in a larger number of patients are required.

Keywords: ketamine, opioid sparing, palliative care, pancreatic cancer

Procedia PDF Downloads 229
685 Modeling of Hot Casting Technology of Beryllium Oxide Ceramics with Ultrasonic Activation

Authors: Zamira Sattinova, Tassybek Bekenov

Abstract:

The article is devoted to modeling the technology of hot casting of beryllium oxide ceramics. The stages of ultrasonic activation of beryllium oxide slurry in the plant vessel to improve the rheological property, hot casting in the moulding cavity with cooling and solidification of the casting are described. Thermoplastic slurry (hereinafter referred to as slurry) shows the rheology of a non-Newtonian fluid with yield and plastic viscosity. Cooling-solidification of the slurry in the forming cavity occurs in the liquid, taking into account crystallization and solid state. In this work is the method of calculation of hot casting of the slurry using the method of effective molecular viscosity of viscoplastic fluid. It is shown that the slurry near the cooled wall is in a state of crystallization and plasticity, and the rest may still be in the liquid phase. Nonuniform distribution of temperature, density and concentration of kinetically free binder takes place along the cavity section. This leads to compensation of shrinkage by the influx of slurry from the liquid into the crystallization zones and plasticity of the castings. In the plasticity zone, the shrinkage determined by the concentration of kinetically free binder is compensated under the action of the pressure gradient. The solidification mechanism, as well as the mechanical behavior of the casting mass during casting, the rheological and thermophysical properties of the thermoplastic BeO slurry due to ultrasound exposure have not been well studied. Nevertheless, experimental data allow us to conclude that the effect of ultrasonic vibrations on the slurry mass leads to it: a change in structure, an increase in technological properties, a decrease in heterogeneity and a change in rheological properties. In the course of experiments, the effect of ultrasonic treatment and its duration on the change in viscosity and ultimate shear stress of the slurry depending on temperature (55-75℃) and the mass fraction of the binder (10 - 11.7%) have been studied. At the same time, changes in these properties before and after ultrasound exposure have been analyzed, as well as the nature of the flow in the system under study. The experience of operating the unit with ultrasonic impact has shown that at the same time, the casting capacity of the slurry increases by an average of 15%, and the viscosity decreases by more than half. Experimental study of physicochemical properties and phase change with simultaneous consideration of all factors affecting the quality of products in the process of continuous casting is labor-intensive. Therefore, an effective way to control the physical processes occurring in the formation of articles with predetermined properties and shapes is to simulate the process and determine its basic characteristics. The results of the calculations show the whole stage of hot casting of beryllium oxide slurry, taking into account the change in its state of aggregation. Ultrasonic treatment improves rheological properties and increases the fluidity of the slurry in the forming cavity. Calculations show the influence of velocity, temperature factors and structural data of the cavity on the cooling-solidification process of the casting. In the calculations, conditions for molding with shrinkage of the slurry by hot casting have been found, which makes it possible to obtain a solidifying product with a uniform beryllium oxide structure at the outlet of the cavity.

Keywords: hot casting, thermoplastic slurry molding, shrinkage, beryllium oxide

Procedia PDF Downloads 12
684 Cognitive Behavior Therapy with a Migrant Pakistani in Malaysia: A Single Case Study of Conversion Disorder

Authors: Fahad R. Choudhry., Khadeeja Munawar

Abstract:

This clinical case presents a 24 years old, Muslim Pakistani girl with a history of conversion disorder. Her symptoms comprised fits, restlessness, numbness in legs, poor coordination and balance, burning during urination and retention. A cognitive-behavioral model was used for conceptualizing her problem and devising a management plan based on cognitive behavioral therapy (CBT) and culturally adapted coping statements. She took 13 therapy sessions and was presented with idiosyncratic case conceptualization. Psychoeducation, coping statements, extinction, verbal challenging, and behavioral activation techniques were practiced in a collaborative way for cognitive restructuring of the client. Focus of terminal sessions was on anger management. The client needed a couple of more sessions in order to help her manage her anger. However, the therapy was terminated on the part of the client after attainment of short term goals. The client reported to have a 75 % improvement in her overall condition and remained compliant throughout the therapy.

Keywords: cognitive behavioral therapy, conversion disorder, female, Muslim, Pakistani

Procedia PDF Downloads 189
683 Accelerated Molecular Simulation: A Convolution Approach

Authors: Jannes Quer, Amir Niknejad, Marcus Weber

Abstract:

Computational Drug Design is often based on Molecular Dynamics simulations of molecular systems. Molecular Dynamics can be used to simulate, e.g., the binding and unbinding event of a small drug-like molecule with regard to the active site of an enzyme or a receptor. However, the time-scale of the overall binding event is many orders of magnitude longer than the time-scale of simulation. Thus, there is a need to speed-up molecular simulations. In order to speed up simulations, the molecular dynamics trajectories have to be ”steared” out of local minimizers of the potential energy surface – the so-called metastabilities – of the molecular system. Increasing the kinetic energy (temperature) is one possibility to accelerate simulated processes. However, with temperature the entropy of the molecular system increases, too. But this kind ”stearing” is not directed enough to stear the molecule out of the minimum toward the saddle point. In this article, we give a new mathematical idea, how a potential energy surface can be changed in such a way, that entropy is kept under control while the trajectories are still steared out of the metastabilities. In order to compute the unsteared transition behaviour based on a steared simulation, we propose to use extrapolation methods. In the end we mathematically show, that our method accelerates the simulations along the direction, in which the curvature of the potential energy surface changes the most, i.e., from local minimizers towards saddle points.

Keywords: extrapolation, Eyring-Kramers, metastability, multilevel sampling

Procedia PDF Downloads 323
682 Silicon Nanoparticles and Irradiated Chitosan: Sustainable Elicitors for PS II Activity and Antioxidant Mediated Plant Immunity

Authors: Mohammad Mukarram, M. Masroor A. Khan, Daniel Kurjak, Marek Fabrika

Abstract:

Lemongrass (Cymbopogon flexuosus (Steud.) Wats) is an aromatic grass with great industrial potential. It is cultivated for its essential oil (EO), which has great economic value due to its numerous medicinal, cosmetic, and culinary applications. The present study had the goal to evaluate whether the combined application of silicon nanoparticles (SiNPs) 150 mg L⁻¹ and irradiated chitosan (ICH) 120 mg L⁻¹ can upgrade lemongrass crop and render enhanced growth and productivity. The analyses of growth and photosynthetic parameters, leaf-nitrogen, and reactive oxygen species metabolism, as well as the content of total essential oil, indicated that combined foliar sprays of SiNPs and ICH can significantly (p≤0.05) trigger a general activation of lemongrass metabolism. Overall, the data indicate that concomitant SiNPs and ICH application elicit lemongrass physiology and defence system, and opens new possibilities for their biotechnological application on other related plant species with agronomic potential.

Keywords: photosynthesis, Cymbopogon, antioxidant metabolism, essential oil, ROS, nanoparticles, polysaccharides

Procedia PDF Downloads 78
681 A Review of Feature Selection Methods Implemented in Neural Stem Cells

Authors: Natasha Petrovska, Mirjana Pavlovic, Maria M. Larrondo-Petrie

Abstract:

Neural stem cells (NSCs) are multi-potent, self-renewing cells that generate new neurons. Three subtypes of NSCs can be separated regarding the stages of NSC lineage: quiescent neural stem cells (qNSCs), activated neural stem cells (aNSCs) and neural progenitor cells (NPCs), but their gene expression signatures are not utterly understood yet. Single-cell examinations have started to elucidate the complex structure of NSC populations. Nevertheless, there is a lack of thorough molecular interpretation of the NSC lineage heterogeneity and an increasing need for tools to analyze and improve the efficiency and correctness of single-cell sequencing data. Feature selection and ordering can identify and classify the gene expression signatures of these subtypes and can discover novel subpopulations during the NSCs activation and differentiation processes. The aim here is to review the implementation of the feature selection technique on NSC subtypes and the classification techniques that have been used for the identification of gene expression signatures.

Keywords: feature selection, feature similarity, neural stem cells, genes, feature selection methods

Procedia PDF Downloads 146
680 Quantifying the Protein-Protein Interaction between the Ion-Channel-Forming Colicin A and the Tol Proteins by Potassium Efflux in E. coli Cells

Authors: Fadilah Aleanizy

Abstract:

Colicins are a family of bacterial toxins that kill Escherichia coli and other closely related species. The mode of action of colicins involves binding to an outer membrane receptor and translocation across the cell envelope, leading to cytotoxicity through specific targets. The mechanism of colicin cytotoxicity includes a non-specific endonuclease activity or depolarization of the cytoplasmic membrane by pore-forming activity. For Group A colicins, translocation requires an interaction between the N-terminal domain of the colicin and a series of membrane- bound and periplasmic proteins known as the Tol system (TolB, TolR, TolA, TolQ, and Pal and the active domain must be translocated through the outer membranes. Protein-protein interactions are intrinsic to virtually every cellular process. The transient protein-protein interactions of the colicin include the interaction with much more complicated assemblies during colicin translocation across the cellular membrane to its target. The potassium release assay detects variation in the K+ content of bacterial cells (K+in). This assays is used to measure the effect of pore-forming colicins such as ColA on an indicator organism by measuring the changes of the K+ concentration in the external medium (K+out ) that are caused by cell killing with a K+ selective electrode. One of the goals of this work is to employ a quantifiable in-vivo method to spot which Tol protein are more implicated in the interaction with colicin A as it is translocated to its target.

Keywords: K+ efflux, Colicin A, Tol-proteins, E. coli

Procedia PDF Downloads 406
679 Structural Characterization and Hot Deformation Behaviour of Al3Ni2/Al3Ni in-situ Core-shell intermetallic in Al-4Cu-Ni Composite

Authors: Ganesh V., Asit Kumar Khanra

Abstract:

An in-situ powder metallurgy technique was employed to create Ni-Al3Ni/Al3Ni2 core-shell-shaped aluminum-based intermetallic reinforced composites. The impact of Ni addition on the phase composition, microstructure, and mechanical characteristics of the Al-4Cu-xNi (x = 0, 2, 4, 6, 8, 10 wt.%) in relation to various sintering temperatures was investigated. Microstructure evolution was extensively examined using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM) techniques. Initially, under sintering conditions, the formation of "Single Core-Shell" structures was observed, consisting of Ni as the core with Al3Ni2 intermetallic, whereas samples sintered at 620°C exhibited both "Single Core-Shell" and "Double Core-Shell" structures containing Al3Ni2 and Al3Ni intermetallics formed between the Al matrix and Ni reinforcements. The composite achieved a high compressive yield strength of 198.13 MPa and ultimate strength of 410.68 MPa, with 24% total elongation for the sample containing 10 wt.% Ni. Additionally, there was a substantial increase in hardness, reaching 124.21 HV, which is 2.4 times higher than that of the base aluminum. Nanoindentation studies showed hardness values of 1.54, 4.65, 21.01, 13.16, 5.52, 6.27, and 8.39GPa corresponding to α-Al matrix, Ni, Al3Ni2, Ni and Al3Ni2 interface, Al3Ni, and their respective interfaces. Even at 200°C, it retained 54% of its room temperature strength (90.51 MPa). To investigate the deformation behavior of the composite material, experiments were conducted at deformation temperatures ranging from 300°C to 500°C, with strain rates varying from 0.0001s-1 to 0.1s-1. A sine-hyperbolic constitutive equation was developed to characterize the flow stress of the composite, which exhibited a significantly higher hot deformation activation energy of 231.44 kJ/mol compared to the self-diffusion of pure aluminum. The formation of Al2Cu intermetallics at grain boundaries and Al3Ni2/Al3Ni within the matrix hindered dislocation movement, leading to an increase in activation energy, which might have an adverse effect on high-temperature applications. Two models, the Strain-compensated Arrhenius model and the Artificial Neural Network (ANN) model, were developed to predict the composite's flow behavior. The ANN model outperformed the Strain-compensated Arrhenius model with a lower average absolute relative error of 2.266%, a smaller root means square error of 1.2488 MPa, and a higher correlation coefficient of 0.9997. Processing maps revealed that the optimal hot working conditions for the composite were in the temperature range of 420-500°C and strain rates between 0.0001s-1 and 0.001s-1. The changes in the composite microstructure were successfully correlated with the theory of processing maps, considering temperature and strain rate conditions. The uneven distribution in the shape and size of Core-shell/Al3Ni intermetallic compounds influenced the flow stress curves, leading to Dynamic Recrystallization (DRX), followed by partial Dynamic Recovery (DRV), and ultimately strain hardening. This composite material shows promise for applications in the automobile and aerospace industries.

Keywords: core-shell structure, hot deformation, intermetallic compounds, powder metallurgy

Procedia PDF Downloads 3
678 GeneNet: Temporal Graph Data Visualization for Gene Nomenclature and Relationships

Authors: Jake Gonzalez, Tommy Dang

Abstract:

This paper proposes a temporal graph approach to visualize and analyze the evolution of gene relationships and nomenclature over time. An interactive web-based tool implements this temporal graph, enabling researchers to traverse a timeline and observe coupled dynamics in network topology and naming conventions. Analysis of a real human genomic dataset reveals the emergence of densely interconnected functional modules over time, representing groups of genes involved in key biological processes. For example, the antimicrobial peptide DEFA1A3 shows increased connections to related alpha-defensins involved in infection response. Tracking degree and betweenness centrality shifts over timeline iterations also quantitatively highlight the reprioritization of certain genes’ topological importance as knowledge advances. Examination of the CNR1 gene encoding the cannabinoid receptor CB1 demonstrates changing synonymous relationships and consolidating naming patterns over time, reflecting its unique functional role discovery. The integrated framework interconnecting these topological and nomenclature dynamics provides richer contextual insights compared to isolated analysis methods. Overall, this temporal graph approach enables a more holistic study of knowledge evolution to elucidate complex biology.

Keywords: temporal graph, gene relationships, nomenclature evolution, interactive visualization, biological insights

Procedia PDF Downloads 59
677 Analysis of Microstructure around Opak River Pleret Area, Bantul Regency, Special Region of Yogyakarta Province, Indonesia, as a Result of Opak Fault Reactivation, Using Stereographic Method

Authors: Gayus Pratama Polunggu, Pamela Felita Adibrata, Hafidh Fathur Riza

Abstract:

Opak Fault is a large fault that extends from the northeast to the southwest of Yogyakarta Special Region. Opak Fault allegedly re-active after the 2006 Yogyakarta earthquake, about eleven years ago. Opak Fault is a big fault, therefore the activation will bring up the microstructure around the Opak River. This microstructure will reveal a different direction of force from the Opak Fault because the trigger for the emergence of the microstructure is the reactivation of the Opak Fault. In other words, this microstructure is a potentially severe weak area during a tectonic disaster. This research was conducted to find out the impact from the reactivation of Opak Fault that triggered the emergence of microstructure around Opak River which is very useful for disaster mitigation information around research area. This research used the approach from literature study in the form of the journal of structural geology and field study. The method used is a laboratory analysis in the form of stereographic analysis.

Keywords: Opak fault, reactivation, microstructure, stereographic

Procedia PDF Downloads 180
676 NFResNet: Multi-Scale and U-Shaped Networks for Deblurring

Authors: Tanish Mittal, Preyansh Agrawal, Esha Pahwa, Aarya Makwana

Abstract:

Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three differ-ent loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.

Keywords: multi-scale, Unet, deblurring, FFT, resblock, NAF-block, nfresnet, charbonnier, edge, frequency reconstruction

Procedia PDF Downloads 131
675 Mixed-Methods Analyses of Subjective Strategies of Most Unlikely but Successful Transitions from Social Benefits to Work

Authors: Hirseland Andreas, Kerschbaumer Lukas

Abstract:

In the case of Germany, there are about one million long-term unemployed – a figure that did not vary much during the past years. These long-term unemployed did not benefit from the prospering labor market while most short-term unemployed did. Instead, they are continuously dependent on welfare and sometimes precarious short-term employment, experiencing work poverty. Long-term unemployment thus turns into a main obstacle to become employed again, especially if it is accompanied by other impediments such as low-level education (school/vocational), poor health (especially chronical illness), advanced age (older than fifty), immigrant status, motherhood or engagement in care for other relatives. As can be shown by this current research project, in these cases the chance to regain employment decreases to near nil. Almost two-thirds of all welfare recipients have multiple impediments which hinder a successful transition from welfare back to sustainable and sufficient employment. Prospective employers are unlikely to hire long-term unemployed with additional impediments because they evaluate potential employees on their negative signaling (e.g. low-level education) and the implicit assumption of unproductiveness (e.g. poor health, age). Some findings of the panel survey “Labor market and social security” (PASS) carried out by the Institute of Employment Research (the research institute of the German Federal Labor Agency) spread a ray of hope, showing that unlikely does not necessarily mean impossible. The presentation reports on current research on these very scarce “success stories” of unlikely transitions from long-term unemployment to work and how these cases were able to perform this switch against all odds. The study is based on a mixed-method design. Within the panel survey (~15,000 respondents in ~10,000 households), only 66 cases of such unlikely transitions were observed. These cases have been explored by qualitative inquiry – in depth-interviews and qualitative network techniques. There is strong evidence that sustainable transitions are influenced by certain biographical resources like habits of network use, a set of informal skills and particularly a resilient way of dealing with obstacles, combined with contextual factors rather than by job-placement procedures promoted by Job-Centers according to activation rules or by following formal paths of application. On the employer’s side small and medium-sized enterprises are often found to give job opportunities to a wider variety of applicants, often based on a slow but steadily increasing relationship leading to employment. According to these results it is possible to show and discuss some limitations of (German) activation policies targeting the labor market and their impact on welfare dependency and long-term unemployment. Based on these findings, indications for more supportive small-scale measures in the field of labor-market policies are suggested to help long-term unemployed with multiple impediments to overcome their situation (e.g. organizing small-scale-structures and low-threshold services to encounter possible employers on a more informal basis like “meet and greet”).

Keywords: against-all-odds, mixed-methods, Welfare State, long-term unemployment

Procedia PDF Downloads 358
674 Determination of Full Energy Peak Efficiency and Resolution of Nai (Tl) Detector Using Gamma-ray Spectroscopy

Authors: Jibon Sharma, Alakjyoti Patowary, Moirangthem Nara Singh

Abstract:

In experimental research it is very much essential to obtain the quality control of the system used for the experiment. NaI (Tl) scintillation detector is the most commonly used in radiation and medical physics for measurement of the gamma ray activity of various samples. In addition, the scintillation detector has a lot of applications in the elemental analysis of various compounds, alloys using activation analysis. In each application for quantitative analysis, it is very much essential to know the detection efficiency and resolution for different gamma energies. In this work, the energy dependence of efficiency and resolution of NaI (Tl) detector using gamma-ray spectroscopy are investigated. Different photon energies of 356.01 keV,511keV,661.60keV,1170 keV,1274.53 keV and 1330 keV are obtained from four radioactive sources (133Ba,22Na,137Cs and 60 Co) used in these studies. Values of full energy peak efficiencies of these gamma energies are found to be respectively 58.46%,10.15%,14.39%,1.4%,3.27% and 1.31%. The values of percent resolution for above different gamma ray energies are found to be 11.27%,7.27%,6.38%,5.17%,4.86% and 4.74% respectively. It was found that the efficiency of the detector exponentially decreases with energy and the resolution of the detector is directly proportional to the energy of gamma-ray.

Keywords: naI (Tl) gamma-ray spectrometer, resolution, full energy peak efficiency, radioactive sources

Procedia PDF Downloads 99