Search results for: predictive validity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2034

Search results for: predictive validity

1344 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 63
1343 Understanding and Measuring Stigma, Barriers and Attitudes Associated with Seeking Psychological Help Among Young Adults in Czech Republic

Authors: Tereza Hruskova

Abstract:

200 million people globally experience serious mental health problems, and only one third seek professional help, and help-seeking is described as a last resort. Adolescents and young adults have a high prevalence of mental illness. Mental stigma is a key element in the decision to seek help and is divided into (i) self-stigma (self-stigmatization), including internal beliefs, low self-esteem, and lower quality of life, and (ii) public stigma (social stigma) containing stereotypes, beliefs and society's disapproval of help-seeking having a negative effect on help-seeking and our attitudes. Previous research has mainly focused on examining the construct of help seeking, avoidance, and delaying separately and trying to find out why people do not seek help in time and what obstacles stand in the way. Barriers are not static and may change over time and the stage of help-seeking. Attitudes are closely related to self-stigma and social stigma and predict whether a person will seek help. Barriers (stigmatization, a sense of humiliation, insufficient recognition of the problem, preferences, solving it alone, and distrust of a professional) and facilitators (previous experience with mental problems, social support, and help from others) are factors influencing help-seeking. The current research on the Czech population of young adults responds to the gap between a person with mental health problems and actually seeking professional help. The aim of the study is to describe in detail the individual constructs and factors, to understand the person seeking help, and to define possible obstacles on this path of seeking help. A sample of approximately 250 participants (age 18-35) would take part in the online questionnaire, conducted in May-June 2023, and would be administered a demographic questionnaire and four scales measuring attitudes (Attitudes Toward Seeking Professional Psychological Help – Short form), barriers (Barrier to Help Seeking Scale), self-stigma (Self Stigma of Seeking Help) and stigmatization (Perceptions of Stigmatization by Others for seeking help). Firstly, all four scales would be translated into the Czech language. The aim is (I) to determine the validity and reliability of the Czech translation of the scales, (II) to examine the factors of the scales on the Czech population and compare them retrospectively with the results of reliability and validity from the original language of the scales and (III) to examine the connections between attitudes towards seeking, avoidance or delaying the search for professional psychological help due to the demographic and individual differences of the participants, barriers, self-stigmatization and social stigmatization. We expect to carry out the first study on the given topic in the Czech Republic, to identify and better understand the factors leading to the avoidance of seeking professional help and to reveal the relationships between stigmatization, attitudes and barriers leading to the avoidance or postponement of seeking professional help. The belief is to find out whether the Czech population of young adults differs from the data found on the foreign population in individual constructs, as cultural differences in individual countries were found.

Keywords: mental health, stigma, problems, seeking psychological help

Procedia PDF Downloads 74
1342 Implementing Activity-Based Costing in Architectural Aluminum Projects: Case Study and Lessons Learned

Authors: Amer Momani, Tarek Al-Hawari, Abdallah Alakayleh

Abstract:

This study explains how to construct an actionable activity-based costing and management system to accurately track and account the total costs of architectural aluminum projects. Two ABC models were proposed to accomplish this purpose. First, the learning and development model was introduced to examine how to apply an ABC model in an architectural aluminum firm for the first time and to be familiar with ABC concepts. Second, an actual ABC model was built on the basis of the results of the previous model to accurately trace the actual costs incurred on each project in a year, and to be able to provide a quote with the best trade-off between competitiveness and profitability. The validity of the proposed model was verified on a local architectural aluminum company.

Keywords: activity-based costing, activity-based management, construction, architectural aluminum

Procedia PDF Downloads 100
1341 Projective Lag Synchronization in Drive-Response Dynamical Networks via Hybrid Feedback Control

Authors: Mohd Salmi Md Noorani, Ghada Al-Mahbashi, Sakhinah Abu Bakar

Abstract:

This paper investigates projective lag synchronization (PLS) behavior in drive response dynamical networks (DRDNs) model with identical nodes. A hybrid feedback control method is designed to achieve the PLS with mismatch and without mismatch terms. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Moreover, the numerical simulations results demonstrate the validity of the proposed method.

Keywords: drive-response dynamical network, projective lag synchronization, hybrid feedback control, stability theory

Procedia PDF Downloads 390
1340 Comparison of Selected Pier-Scour Equations for Wide Piers Using Field Data

Authors: Nordila Ahmad, Thamer Mohammad, Bruce W. Melville, Zuliziana Suif

Abstract:

Current methods for predicting local scour at wide bridge piers, were developed on the basis of laboratory studies and very limited scour prediction were tested with field data. Laboratory wide pier scour equation from previous findings with field data were presented. A wide range of field data were used and it consists of both live-bed and clear-water scour. A method for assessing the quality of the data was developed and applied to the data set. Three other wide pier-scour equations from the literature were used to compare the performance of each predictive method. The best-performing scour equation were analyzed using statistical analysis. Comparisons of computed and observed scour depths indicate that the equation from the previous publication produced the smallest discrepancy ratio and RMSE value when compared with the large amount of laboratory and field data.

Keywords: field data, local scour, scour equation, wide piers

Procedia PDF Downloads 411
1339 Procalcitonin and Other Biomarkers in Sepsis Patients: A Prospective Study

Authors: Neda Valizadeh, Soudabeh Shafiee Ardestani, Arvin Najafi

Abstract:

Objectives: The aim of this study is to evaluate the association of mid-regional pro-atrial natriuretic peptide (MRproANP), procalcitonin (PCT), proendothelin-1 (proET-1) levels with sepsis severity in Emergency ward patients. Materials and Methods: We assessed the predictive value of MRproANP, PCT, copeptin, and proET-1 in early sepsis among patients referring to the emergency ward with a suspected sepsis. Results-132 patients were enrolled in this study. 45 (34%) patients had a final diagnosis of sepsis. A higher percentage of patients with definite sepsis had systemic inflammatory response syndrome (SIRS) criteria at initial visit in comparison with no-sepsis patients (P<0.05) and were admitted to the hospital (P<0.05). PCT levels were higher in sepsis patients [P<0.05]. There was no significant differences for MRproANP or proET-1 in sepsis patients (P=0.47). Conclusion: A combination of SIRS criteria and PCT levels is beneficial for the early sepsis diagnosis in emergency ward patients with a suspicious infection disease.

Keywords: emergency, prolactin, sepsis, biomarkers

Procedia PDF Downloads 438
1338 An Empirical Investigation of Big Data Analytics: The Financial Performance of Users versus Vendors

Authors: Evisa Mitrou, Nicholas Tsitsianis, Supriya Shinde

Abstract:

In the age of digitisation and globalisation, businesses have shifted online and are investing in big data analytics (BDA) to respond to changing market conditions and sustain their performance. Our study shifts the focus from the adoption of BDA to the impact of BDA on financial performance. We explore the financial performance of both BDA-vendors (business-to-business) and BDA-clients (business-to-customer). We distinguish between the five BDA-technologies (big-data-as-a-service (BDaaS), descriptive, diagnostic, predictive, and prescriptive analytics) and discuss them individually. Further, we use four perspectives (internal business process, learning and growth, customer, and finance) and discuss the significance of how each of the five BDA-technologies affects the performance measures of these four perspectives. We also present the analysis of employee engagement, average turnover, average net income, and average net assets for BDA-clients and BDA-vendors. Our study also explores the effect of the COVID-19 pandemic on business continuity for both BDA-vendors and BDA-clients.

Keywords: BDA-clients, BDA-vendors, big data analytics, financial performance

Procedia PDF Downloads 122
1337 Association of Major Histocompatibility Complex with Cell Mediated Immunity

Authors: Atefeh Esmailnejad, Gholamreza Nikbakht Brujeni

Abstract:

Major histocompatibility complex (MHC) is one of the best characterized genetic regions associated with immune responses and controlling disease resistance in chicken. Association of the MHC with a wide range of immune responses makes it a valuable predictive factor for the disease pathogenesis and outcome. In this study, the association of MHC with cell-mediated immune responses was analyzed in commercial broiler chicken. The tandem repeat LEI0258 was applied to investigate the MHC polymorphism. Cell-mediated immune response was evaluated by peripheral blood lymphocyte proliferation assay using MTT method. Association study revealed a significant influence of MHC alleles on cellular immune responses in this population. Alleles 385 and 448 bp were associated with elevated cell-mediated immunity. Haplotypes associated with improved immune responses could be considered as candidate markers for disease resistance and applied to breeding strategies.

Keywords: MHC, cell-mediated immunity, broiler, chicken

Procedia PDF Downloads 144
1336 Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition

Authors: A. Benyahia, M. Zergoug, M. Amir, M. Fodil

Abstract:

The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed.

Keywords: DT, pulsed eddy current, continuous wavelet transform, Mexican hat wavelet mother, defect detection, power spectral density.

Procedia PDF Downloads 233
1335 A Case Study on the Impact of Technology Readiness in a Department of Clinical Nurses

Authors: Julie Delany

Abstract:

To thrive in today’s digital climate, it is vital that organisations adopt new technology and prepare for rising digital trends. This proves more difficult in government where, traditionally, people lack change readiness. While individuals may have a desire to work smarter, this does not necessarily mean embracing technology. This paper discusses the rollout of an application into a small department of highly experienced nurses. The goal was to both streamline the department's workflow and provide a platform for gathering essential business metrics. The biggest challenges were adoption and motivating the nurses to change their routines and learn new computer skills. Two-thirds struggled with the change, and as a result, some jeopardised the validity of the business metrics. In conclusion, there are lessons learned and recommendations for similar projects.

Keywords: change ready, information technology, end-user, iterative method, rollout plan, data analytics

Procedia PDF Downloads 143
1334 A Product-Specific/Unobservable Approach to Segmentation for a Value Expressive Credit Card Service

Authors: Manfred F. Maute, Olga Naumenko, Raymond T. Kong

Abstract:

Using data from a nationally representative financial panel of Canadian households, this study develops a psychographic segmentation of the customers of a value-expressive credit card service and tests for effects on relational response differences. The variety of segments elicited by agglomerative and k means clustering and the familiar profiles of individual clusters suggest that the face validity of the psychographic segmentation was quite high. Segmentation had a significant effect on customer satisfaction and relationship depth. However, when socio-demographic characteristics like household size and income were accounted for in the psychographic segmentation, the effect on relational response differences was magnified threefold. Implications for the segmentation of financial services markets are considered.

Keywords: customer satisfaction, financial services, psychographics, response differences, segmentation

Procedia PDF Downloads 331
1333 Critical Realism as a Bridge between Critical Pedagogy and Queer Theory

Authors: Mike Seal

Abstract:

This paper explores the traditions of critical and queer pedagogy, its intersections, tensions and paradoxes. Critical pedagogy, with a materialist realist ontology, and queer theory, which is often post-modern, post-structural and anti-essential, may not seem compatible. Similarly, there are tensions between activist orientations, often enacted through essential sexual identities, and a queer approach that questions such identities and subjectivities. It will argue that critical realism gives us a bridge between critical and queer pedagogy in preserving a realist materialist ontology, where economic forces are real, and independent of consciousness and hermeneutic constructions of them. At the same time, it offers an epistemology that does not necessitate a binary view of the roles of the oppressed, liberator, or even oppressor. It accepts that our knowledge is contingent, partial and contestable, but has the potential, and enough validity, to demand action and potentially inform the actions of others.

Keywords: critical pedagogy, queer pedagogy, critical realsim, heteronormativity

Procedia PDF Downloads 188
1332 Off-Line Parameter Estimation for the Induction Motor Drive System

Authors: Han-Woong Ahn, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

It is important to accurately identify machine parameters for direct vector control. To obtain the parameter values, traditional methods can be used such as no-load and rotor locked tests. However, there are many differences between values obtained from the traditional tests and actual values. In addition, there are drawbacks that additional equipment and cost are required for the experiment. Therefore, it is hard to temporary operation to estimate induction motor parameters. Therefore, this paper deals with the estimation algorithm of induction motor parameters without a motor operation and the measurement from additional equipment such as sensors and dynamometer. The validity and usefulness of the estimation algorithm considering inverter nonlinearity is verified by comparing the conventional method with the proposed method.

Keywords: induction motor, parameter, off-line estimation, inverter nonlinearity

Procedia PDF Downloads 527
1331 An Online Mastery Learning Method Based on a Dynamic Formative Evaluation

Authors: Jeongim Kang, Moon Hee Kim, Seong Baeg Kim

Abstract:

This paper proposes a novel e-learning model that is based on a dynamic formative evaluation. On evaluating the existing format of e-learning, conditions regarding repetitive learning to achieve mastery, causes issues for learners to lose tension and become neglectful of learning. The dynamic formative evaluation proposed is able to supplement limitation of the existing approaches. Since a repetitive learning method does not provide a perfect feedback, this paper puts an emphasis on the dynamic formative evaluation that is able to maximize learning achievement. Through the dynamic formative evaluation, the instructor is able to refer to the evaluation result when making estimation about the learner. To show the flow chart of learning, based on the dynamic formative evaluation, the model proves its effectiveness and validity.

Keywords: online learning, dynamic formative evaluation, mastery learning, repetitive learning method, learning achievement

Procedia PDF Downloads 508
1330 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories

Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan

Abstract:

In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.

Keywords: basketball, computer vision, image processing, convolutional neural network

Procedia PDF Downloads 152
1329 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension

Authors: Obe Olumide Olayinka, Victor Balanica, Eugen Neagoe

Abstract:

The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.

Keywords: neural network, hypertension, data set, training set, supervised learning

Procedia PDF Downloads 390
1328 Estimating 3D-Position of a Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals

Authors: Katsumi Hirata

Abstract:

To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.

Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position

Procedia PDF Downloads 357
1327 Machine Learning Application in Shovel Maintenance

Authors: Amir Taghizadeh Vahed, Adithya Thaduri

Abstract:

Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.

Keywords: maintenance, machine learning, shovel, conditional based monitoring

Procedia PDF Downloads 216
1326 Identification of Hub Genes in the Development of Atherosclerosis

Authors: Jie Lin, Yiwen Pan, Li Zhang, Zhangyong Xia

Abstract:

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, immune cells, and extracellular matrix in the arterial walls. This pathological process can lead to the formation of plaques that can obstruct blood flow and trigger various cardiovascular diseases such as heart attack and stroke. The underlying molecular mechanisms still remain unclear, although many studies revealed the dysfunction of endothelial cells, recruitment and activation of monocytes and macrophages, and the production of pro-inflammatory cytokines and chemokines in atherosclerosis. This study aimed to identify hub genes involved in the progression of atherosclerosis and to analyze their biological function in silico, thereby enhancing our understanding of the disease’s molecular mechanisms. Through the analysis of microarray data, we examined the gene expression in media and neo-intima from plaques, as well as distant macroscopically intact tissue, across a cohort of 32 hypertensive patients. Initially, 112 differentially expressed genes (DEGs) were identified. Subsequent immune infiltration analysis indicated a predominant presence of 27 immune cell types in the atherosclerosis group, particularly noting an increase in monocytes and macrophages. In the Weighted gene co-expression network analysis (WGCNA), 10 modules with a minimum of 30 genes were defined as key modules, with blue, dark, Oliver green and sky-blue modules being the most significant. These modules corresponded respectively to monocyte, activated B cell, and activated CD4 T cell gene patterns, revealing a strong morphological-genetic correlation. From these three gene patterns (modules morphology), a total of 2509 key genes (Gene Significance >0.2, module membership>0.8) were extracted. Six hub genes (CD36, DPP4, HMOX1, PLA2G7, PLN2, and ACADL) were then identified by intersecting 2509 key genes, 102 DEGs with lipid-related genes from the Genecard database. The bio-functional analysis of six hub genes was estimated by a robust classifier with an area under the curve (AUC) of 0.873 in the ROC plot, indicating excellent efficacy in differentiating between the disease and control group. Moreover, PCA visualization demonstrated clear separation between the groups based on these six hub genes, suggesting their potential utility as classification features in predictive models. Protein-protein interaction (PPI) analysis highlighted DPP4 as the most interconnected gene. Within the constructed key gene-drug network, 462 drugs were predicted, with ursodeoxycholic acid (UDCA) being identified as a potential therapeutic agent for modulating DPP4 expression. In summary, our study identified critical hub genes implicated in the progression of atherosclerosis through comprehensive bioinformatic analyses. These findings not only advance our understanding of the disease but also pave the way for applying similar analytical frameworks and predictive models to other diseases, thereby broadening the potential for clinical applications and therapeutic discoveries.

Keywords: atherosclerosis, hub genes, drug prediction, bioinformatics

Procedia PDF Downloads 65
1325 Data Management and Analytics for Intelligent Grid

Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh

Abstract:

Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.

Keywords: data management, analytics, energy data analytics, smart grid, smart utilities

Procedia PDF Downloads 778
1324 Modern State of the Universal Modeling for Centrifugal Compressors

Authors: Y. Galerkin, K. Soldatova, A. Drozdov

Abstract:

The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi three-dimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.

Keywords: compressor design, loss model, performance prediction, test data, model stages, flow rate coefficient, work coefficient

Procedia PDF Downloads 411
1323 Comparison and Validation of a dsDNA biomimetic Quality Control Reference for NGS based BRCA CNV analysis versus MLPA

Authors: A. Delimitsou, C. Gouedard, E. Konstanta, A. Koletis, S. Patera, E. Manou, K. Spaho, S. Murray

Abstract:

Background: There remains a lack of International Standard Control Reference materials for Next Generation Sequencing-based approaches or device calibration. We have designed and validated dsDNA biomimetic reference materials for targeted such approaches incorporating proprietary motifs (patent pending) for device/test calibration. They enable internal single-sample calibration, alleviating sample comparisons to pooled historical population-based data assembly or statistical modelling approaches. We have validated such an approach for BRCA Copy Number Variation analytics using iQRS™-CNVSUITE versus Mixed Ligation-dependent Probe Amplification. Methods: Standard BRCA Copy Number Variation analysis was compared between mixed ligation-dependent probe amplification and next generation sequencing using a cohort of 198 breast/ovarian cancer patients. Next generation sequencing based copy number variation analysis of samples spiked with iQRS™ dsDNA biomimetics were analysed using proprietary CNVSUITE software. Mixed ligation-dependent probe amplification analyses were performed on an ABI-3130 Sequencer and analysed with Coffalyser software. Results: Concordance of BRCA – copy number variation events for mixed ligation-dependent probe amplification and CNVSUITE indicated an overall sensitivity of 99.88% and specificity of 100% for iQRS™-CNVSUITE. The negative predictive value of iQRS-CNVSUITE™ for BRCA was 100%, allowing for accurate exclusion of any event. The positive predictive value was 99.88%, with no discrepancy between mixed ligation-dependent probe amplification and iQRS™-CNVSUITE. For device calibration purposes, precision was 100%, spiking of patient DNA demonstrated linearity to 1% (±2.5%) and range from 100 copies. Traditional training was supplemented by predefining the calibrator to sample cut-off (lock-down) for amplicon gain or loss based upon a relative ratio threshold, following training of iQRS™-CNVSUITE using spiked iQRS™ calibrator and control mocks. BRCA copy number variation analysis using iQRS™-CNVSUITE™ was successfully validated and ISO15189 accredited and now enters CE-IVD performance evaluation. Conclusions: The inclusion of a reference control competitor (iQRS™ dsDNA mimetic) to next generation sequencing-based sequencing offers a more robust sample-independent approach for the assessment of copy number variation events compared to mixed ligation-dependent probe amplification. The approach simplifies data analyses, improves independent sample data analyses, and allows for direct comparison to an internal reference control for sample-specific quantification. Our iQRS™ biomimetic reference materials allow for single sample copy number variation analytics and further decentralisation of diagnostics to single patient sample assessment.

Keywords: validation, diagnostics, oncology, copy number variation, reference material, calibration

Procedia PDF Downloads 65
1322 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence

Authors: Chawarat Rotejanaprasert, Andrew Lawson

Abstract:

Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.

Keywords: Bayesian, spatial, temporal, surveillance, prospective

Procedia PDF Downloads 311
1321 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García

Abstract:

In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.

Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning

Procedia PDF Downloads 470
1320 Intelligent Electric Vehicle Charging System (IEVCS)

Authors: Prateek Saxena, Sanjeev Singh, Julius Roy

Abstract:

The security of the power distribution grid remains a paramount to the utility professionals while enhancing and making it more efficient. The most serious threat to the system can be maintaining the transformers, as the load is ever increasing with the addition of elements like electric vehicles. In this paper, intelligent transformer monitoring and grid management has been proposed. The engineering is done to use the evolving data from the smart meter for grid analytics and diagnostics for preventive maintenance. The two-tier architecture for hardware and software integration is coupled to form a robust system for the smart grid. The proposal also presents interoperable meter standards for easy integration. Distribution transformer analytics based on real-time data benefits utilities preventing outages, protects the revenue loss, improves the return on asset and reduces overall maintenance cost by predictive monitoring.

Keywords: electric vehicle charging, transformer monitoring, data analytics, intelligent grid

Procedia PDF Downloads 789
1319 Optimal Maintenance and Improvement Policies in Water Distribution System: Markov Decision Process Approach

Authors: Jong Woo Kim, Go Bong Choi, Sang Hwan Son, Dae Shik Kim, Jung Chul Suh, Jong Min Lee

Abstract:

The Markov Decision Process (MDP) based methodology is implemented in order to establish the optimal schedule which minimizes the cost. Formulation of MDP problem is presented using the information about the current state of pipe, improvement cost, failure cost and pipe deterioration model. The objective function and detailed algorithm of dynamic programming (DP) are modified due to the difficulty of implementing the conventional DP approaches. The optimal schedule derived from suggested model is compared to several policies via Monte Carlo simulation. Validity of the solution and improvement in computational time are proved.

Keywords: Markov decision processes, dynamic programming, Monte Carlo simulation, periodic replacement, Weibull distribution

Procedia PDF Downloads 421
1318 Algorithms used in Spatial Data Mining GIS

Authors: Vahid Bairami Rad

Abstract:

Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.

Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining

Procedia PDF Downloads 458
1317 Supplementing Aerial-Roving Surveys with Autonomous Optical Cameras: A High Temporal Resolution Approach to Monitoring and Estimating Effort within a Recreational Salmon Fishery in British Columbia, Canada

Authors: Ben Morrow, Patrick O'Hara, Natalie Ban, Tunai Marques, Molly Fraser, Christopher Bone

Abstract:

Relative to commercial fisheries, recreational fisheries are often poorly understood and pose various challenges for monitoring frameworks. In British Columbia (BC), Canada, Pacific salmon are heavily targeted by recreational fishers while also being a key source of nutrient flow and crucial prey for a variety of marine and terrestrial fauna, including endangered Southern Resident killer whales (Orcinus orca). Although commercial fisheries were historically responsible for the majority of salmon retention, recreational fishing now comprises both greater effort and retention. The current monitoring scheme for recreational salmon fisheries involves aerial-roving creel surveys. However, this method has been identified as costly and having low predictive power as it is often limited to sampling fragments of fluid and temporally dynamic fisheries. This study used imagery from two shore-based autonomous cameras in a highly active recreational fishery around Sooke, BC, and evaluated their efficacy in supplementing existing aerial-roving surveys for monitoring a recreational salmon fishery. This study involved continuous monitoring and high temporal resolution (over one million images analyzed in a single fishing season), using a deep learning-based vessel detection algorithm and a custom image annotation tool to efficiently thin datasets. This allowed for the quantification of peak-season effort from a busy harbour, species-specific retention estimates, high levels of detected fishing events at a nearby popular fishing location, as well as the proportion of the fishery management area represented by cameras. Then, this study demonstrated how it could substantially enhance the temporal resolution of a fishery through diel activity pattern analyses, scaled monthly to visualize clusters of activity. This work also highlighted considerable off-season fishing detection, currently unaccounted for in the existing monitoring framework. These results demonstrate several distinct applications of autonomous cameras for providing enhanced detail currently unavailable in the current monitoring framework, each of which has important considerations for the managerial allocation of resources. Further, the approach and methodology can benefit other studies that apply shore-based camera monitoring, supplement aerial-roving creel surveys to improve fine-scale temporal understanding, inform the optimal timing of creel surveys, and improve the predictive power of recreational stock assessments to preserve important and endangered fish species.

Keywords: cameras, monitoring, recreational fishing, stock assessment

Procedia PDF Downloads 122
1316 Impacts of Racialization: Exploring the Relationships between Racial Discrimination, Racial Identity, and Activism

Authors: Brianna Z. Ross, Jonathan N. Livingston

Abstract:

Given that discussions of racism and racial tensions have become more salient, there is a need to evaluate the impacts of racialization among Black individuals. Racial discrimination has become one of the most common experiences within the Black American population. Likewise, Black individuals have indicated a need to address their racial identities at an earlier age than their non-Black peers. Further, Black individuals have been found at the forefront of multiple social and political movements, including but not limited to the Civil Rights Movement, Black Lives Matter, MeToo, and Say Her Name. Moreover, the present study sought to explore the predictive relationships that exist between racial discrimination, racial identity, and activism in the Black community. The results of standard and hierarchical regression analyses revealed that racial discrimination and racial identity significantly predict each other, but only racial discrimination is a significant predictor for the relationship to activism. Nonetheless, the results from this study will provide a basis for social scientists to better understand the impacts of racialization on the Black American population.

Keywords: activism, racialization, racial discrimination, racial identity

Procedia PDF Downloads 150
1315 Comparative Study of Computer Assisted Instruction and Conventional Method in Attaining and Retaining Mathematical Concepts

Authors: Nirupma Bhatti

Abstract:

This empirical study was aimed to compare the effectiveness of Computer Assisted Instruction (CAI) and Conventional Method (CM) in attaining and retaining mathematical concepts. Instructional and measuring tools were developed for five units of Matrix Algebra, two of Calculus and five of Numerical Analysis. Reliability and validity of these tools were also examined in pilot study. Ninety undergraduates participated in this study. Pre-test – post-test equivalent – groups research design was used. SPSS v.16 was used for data analysis. Findings supported CAI as better mode of instruction for attainment and retention of basic mathematical concepts. Administrators should motivate faculty members to develop Computer Assisted Instructional Material (CAIM) in mathematics for higher education.

Keywords: attainment, CAI, CAIM, conventional method, retention

Procedia PDF Downloads 185