Search results for: manufacturing optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5052

Search results for: manufacturing optimization

4362 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 118
4361 Grey Relational Analysis Coupled with Taguchi Method for Process Parameter Optimization of Friction Stir Welding on 6061 AA

Authors: Eyob Messele Sefene, Atinkut Atinafu Yilma

Abstract:

The highest strength-to-weight ratio criterion has fascinated increasing curiosity in virtually all areas where weight reduction is indispensable. One of the recent advances in manufacturing to achieve this intention endears friction stir welding (FSW). The process is widely used for joining similar and dissimilar non-ferrous materials. In FSW, the mechanical properties of the weld joints are impelled by property-selected process parameters. This paper presents verdicts of optimum process parameters in attempting to attain enhanced mechanical properties of the weld joint. The experiment was conducted on a 5 mm 6061 aluminum alloy sheet. A butt joint configuration was employed. Process parameters, rotational speed, traverse speed or feed rate, axial force, dwell time, tool material and tool profiles were utilized. Process parameters were also optimized, making use of a mixed L18 orthogonal array and the Grey relation analysis method with larger is better quality characteristics. The mechanical properties of the weld joint are examined through the tensile test, hardness test and liquid penetrant test at ambient temperature. ANOVA was conducted in order to investigate the significant process parameters. This research shows that dwell time, rotational speed, tool shape, and traverse speed have become significant, with a joint efficiency of about 82.58%. Nine confirmatory tests are conducted, and the results indicate that the average values of the grey relational grade fall within the 99% confidence interval. Hence the experiment is proven reliable.

Keywords: friction stir welding, optimization, 6061 AA, Taguchi

Procedia PDF Downloads 102
4359 Social Media Advertising and Acceptability of Fast Moving Consumer Goods in Nigeria’s Manufacturing Industry

Authors: John Akinwumi Makinde

Abstract:

Nigerian manufacturing industry, particularly the fast moving consumer producing firms play vital roles in Nigerian economy. This sector’s product acceptability is given very little attention along with social media advertising that communicate product information to audience across the globe need to be documented. Procter and Gamble Plc operate in Nigeria with appreciable number of fast moving consumer goods that service Nigerian economy. Social media advertising disposition of the company and product acceptability of the company deserve some elucidations. This study therefore examined the impact of social media advertising on product acceptability of FMCG in Nigerian manufacturing industry, using Procter and Gamble Plc as case study. The study employed the case study type of descriptive survey research design. The population consisted of 235 customers of G&P Plc, which were selected through random sampling method. A total of 235 copies of questionnaires titled 'Social Media Advertising and Product Acceptability (SMA-PA) Questionnaire' was administered and retrieved. Data generated were analysed using frequency distribution and regression analysis at 0.05 level. It was found that social media advertising positively and significantly motivated customers to buy product of P&G Plc (r =.147**, N= 235, p(.000) < .01). Findings also showed that social media advertising has significant impact on product acceptability of FCMG in P&G Plc (F(2,61)=22.250; R2=.629; P(.000) < .05). The study concluded that social media advertising is a determinant factor of consumer decision to accept fast moving consumer goods in Nigerian manufacturing industry. It is recommended that with the growing market of FMCG, there is need to educate the market with the product unique features, standard and quality on social media. Finally, Fast Moving Consumer Goods firms should deploy excellent marketing mix on social media.

Keywords: advertising, fast moving consumer goods, manufacturing industry, product acceptability, social media

Procedia PDF Downloads 315
4358 Pareto System of Optimal Placement and Sizing of Distributed Generation in Radial Distribution Networks Using Particle Swarm Optimization

Authors: Sani M. Lawal, Idris Musa, Aliyu D. Usman

Abstract:

The Pareto approach of optimal solutions in a search space that evolved in multi-objective optimization problems is adopted in this paper, which stands for a set of solutions in the search space. This paper aims at presenting an optimal placement of Distributed Generation (DG) in radial distribution networks with an optimal size for minimization of power loss and voltage deviation as well as maximizing voltage profile of the networks. And these problems are formulated using particle swarm optimization (PSO) as a constraint nonlinear optimization problem with both locations and sizes of DG being continuous. The objective functions adopted are the total active power loss function and voltage deviation function. The multiple nature of the problem, made it necessary to form a multi-objective function in search of the solution that consists of both the DG location and size. The proposed PSO algorithm is used to determine optimal placement and size of DG in a distribution network. The output indicates that PSO algorithm technique shows an edge over other types of search methods due to its effectiveness and computational efficiency. The proposed method is tested on the standard IEEE 34-bus and validated with 33-bus test systems distribution networks. Results indicate that the sizing and location of DG are system dependent and should be optimally selected before installing the distributed generators in the system and also an improvement in the voltage profile and power loss reduction have been achieved.

Keywords: distributed generation, pareto, particle swarm optimization, power loss, voltage deviation

Procedia PDF Downloads 365
4357 Aerodynamic Design an UAV with Application on the Spraying Agricola with Method of Genetic Algorithm Optimization

Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.

Abstract:

Agriculture in the world falls within the main sources of economic and global needs, so care of crop is extremely important for owners and workers; one of the major causes of loss of product is the pest infection of different types of organisms. We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB"," ANSYS FLUENT"," XFoil " package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi- objective problems can be helpful for future developments. The program has 10 functions developed in MATLAB, these functions are related to each other to enable the development of design, and all these functions are controlled by the principal code "Master.m".

Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, stability, vortex

Procedia PDF Downloads 533
4356 Reliable Soup: Reliable-Driven Model Weight Fusion on Ultrasound Imaging Classification

Authors: Shuge Lei, Haonan Hu, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Yan Tong

Abstract:

It remains challenging to measure reliability from classification results from different machine learning models. This paper proposes a reliable soup optimization algorithm based on the model weight fusion algorithm Model Soup, aiming to improve reliability by using dual-channel reliability as the objective function to fuse a series of weights in the breast ultrasound classification models. Experimental results on breast ultrasound clinical datasets demonstrate that reliable soup significantly enhances the reliability of breast ultrasound image classification tasks. The effectiveness of the proposed approach was verified via multicenter trials. The results from five centers indicate that the reliability optimization algorithm can enhance the reliability of the breast ultrasound image classification model and exhibit low multicenter correlation.

Keywords: breast ultrasound image classification, feature attribution, reliability assessment, reliability optimization

Procedia PDF Downloads 86
4355 Current Status of Industry 4.0 in Material Handling Automation and In-house Logistics

Authors: Orestis Κ. Efthymiou, Stavros T. Ponis

Abstract:

In the last decade, a new industrial revolution seems to be emerging, supported -once again- by the rapid advancements of Information Technology in the areas of Machine-to-Machine (M2M) communication permitting large numbers of intelligent devices, e.g. sensors to communicate with each other and take decisions without any or minimum indirect human intervention. The advent of these technologies have triggered the emergence of a new category of hybrid (cyber-physical) manufacturing systems, combining advanced manufacturing techniques with innovative M2M applications based on the Internet of Things (IoT), under the umbrella term Industry 4.0. Even though the topic of Industry 4.0 has attracted much attention during the last few years, the attempts of providing a systematic literature review of the subject are scarce. In this paper, we present the authors’ initial study of the field with a special focus on the use and applications of Industry 4.0 principles in material handling automations and in-house logistics. Research shows that despite the vivid discussion and attractiveness of the subject, there are still many challenges and issues that have to be addressed before Industry 4.0 becomes standardized and widely applicable.

Keywords: Industry 4.0, internet of things, manufacturing systems, material handling, logistics

Procedia PDF Downloads 127
4354 Oracle JDE Enterprise One ERP Implementation: A Case Study

Authors: Abhimanyu Pati, Krishna Kumar Veluri

Abstract:

The paper intends to bring out a real life experience encountered during actual implementation of a large scale Tier-1 Enterprise Resource Planning (ERP) system in a multi-location, discrete manufacturing organization in India, involved in manufacturing of auto components and aggregates. The business complexities, prior to the implementation of ERP, include multi-product with hierarchical product structures, geographically distributed multiple plant locations with disparate business practices, lack of inter-plant broadband connectivity, existence of disparate legacy applications for different business functions, and non-standardized codifications of products, machines, employees, and accounts apart from others. On the other hand, the manufacturing environment consisted of processes like Assemble-to-Order (ATO), Make-to-Stock (MTS), and Engineer-to-Order (ETO) with a mix of discrete and process operations. The paper has highlighted various business plan areas and concerns, prior to the implementation, with specific focus on strategic issues and objectives. Subsequently, it has dealt with the complete process of ERP implementation, starting from strategic planning, project planning, resource mobilization, and finally, the program execution. The step-by-step process provides a very good learning opportunity about the implementation methodology. At the end, various organizational challenges and lessons emerged, which will act as guidelines and checklist for organizations to successfully align and implement ERP and achieve their business objectives.

Keywords: ERP, ATO, MTS, ETO, discrete manufacturing, strategic planning

Procedia PDF Downloads 247
4353 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems

Authors: Emily Kambalame

Abstract:

Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluation

Keywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems

Procedia PDF Downloads 63
4352 A Novel Hybrid Lubri-Coolant for Machining Difficult-to-Cut Ti-6Al-4V Alloy

Authors: Muhammad Jamil, Ning He, Wei Zhao

Abstract:

It is a rough estimation that the aerospace companies received orders of 37000 new aircraft, including the air ambulances, until 2037. And titanium alloys have a 15% contribution in modern aircraft's manufacturing owing to the high strength/weight ratio. Despite their application in the aerospace and medical equipment manufacturing industry, still, their high-speed machining puts a challenge in terms of tool wear, heat generation, and poor surface quality. Among titanium alloys, Ti-6Al-4V is the major contributor to aerospace application. However, its poor thermal conductivity (6.7W/mK) accumulates shear and friction heat at the tool-chip interface zone. To dissipate the heat generation and friction effect, cryogenic cooling, Minimum quantity lubrication (MQL), nanofluids, hybrid cryogenic-MQL, solid lubricants, etc., are applied frequently to underscore their significant effect on improving the machinability of Ti-6Al-4V. Nowadays, hybrid lubri-cooling is getting attention from researchers to explore their effect regarding the hard-to-cut Ti-6Al-4V. Therefore, this study is devoted to exploring the effect of hybrid ethanol-ester oil MQL regarding the cutting temperature, surface integrity, and tool life. As the ethanol provides -OH group and ester oil of long-chain molecules provide a tribo-film on the tool-workpiece interface. This could be a green manufacturing alternative for the manufacturing industry.

Keywords: hybrid lubri-cooling, surface roughness, tool wear, MQL

Procedia PDF Downloads 85
4351 Maintenance Performance Measurement Derived Optimization: A Case Study

Authors: James M. Wakiru, Liliane Pintelon, Peter Muchiri, Stanley Mburu

Abstract:

Maintenance performance measurement (MPM) represents an integrated aspect that considers both operational and maintenance related aspects while evaluating the effectiveness and efficiency of maintenance to ensure assets are working as they should. Three salient issues require to be addressed for an asset-intensive organization to employ an MPM-based framework to optimize maintenance. Firstly, the organization should establish important perfomance metric(s), in this case the maintenance objective(s), which they will be focuss on. The second issue entails aligning the maintenance objective(s) with maintenance optimization. This is achieved by deriving maintenance performance indicators that subsequently form an objective function for the optimization program. Lastly, the objective function is employed in an optimization program to derive maintenance decision support. In this study, we develop a framework that initially identifies the crucial maintenance performance measures, and employs them to derive maintenance decision support. The proposed framework is demonstrated in a case study of a geothermal drilling rig, where the objective function is evaluated utilizing a simulation-based model whose parameters are derived from empirical maintenance data. Availability, reliability and maintenance inventory are depicted as essential objectives requiring further attention. A simulation model is developed mimicking a drilling rig operations and maintenance where the sub-systems are modelled undergoing imperfect maintenance, corrective (CM) and preventive (PM), with the total cost as the primary performance measurement. Moreover, three maintenance spare inventory policies are considered; classical (retaining stocks for a contractual period), vendor-managed inventory with consignment stock and periodic monitoring order-to-stock (s, S) policy. Optimization results infer that the adoption of (s, S) inventory policy, increased PM interval and reduced reliance of CM actions offers improved availability and total costs reduction.

Keywords: maintenance, vendor-managed, decision support, performance, optimization

Procedia PDF Downloads 125
4350 Production Optimization under Geological Uncertainty Using Distance-Based Clustering

Authors: Byeongcheol Kang, Junyi Kim, Hyungsik Jung, Hyungjun Yang, Jaewoo An, Jonggeun Choe

Abstract:

It is important to figure out reservoir properties for better production management. Due to the limited information, there are geological uncertainties on very heterogeneous or channel reservoir. One of the solutions is to generate multiple equi-probable realizations using geostatistical methods. However, some models have wrong properties, which need to be excluded for simulation efficiency and reliability. We propose a novel method of model selection scheme, based on distance-based clustering for reliable application of production optimization algorithm. Distance is defined as a degree of dissimilarity between the data. We calculate Hausdorff distance to classify the models based on their similarity. Hausdorff distance is useful for shape matching of the reservoir models. We use multi-dimensional scaling (MDS) to describe the models on two dimensional space and group them by K-means clustering. Rather than simulating all models, we choose one representative model from each cluster and find out the best model, which has the similar production rates with the true values. From the process, we can select good reservoir models near the best model with high confidence. We make 100 channel reservoir models using single normal equation simulation (SNESIM). Since oil and gas prefer to flow through the sand facies, it is critical to characterize pattern and connectivity of the channels in the reservoir. After calculating Hausdorff distances and projecting the models by MDS, we can see that the models assemble depending on their channel patterns. These channel distributions affect operation controls of each production well so that the model selection scheme improves management optimization process. We use one of useful global search algorithms, particle swarm optimization (PSO), for our production optimization. PSO is good to find global optimum of objective function, but it takes too much time due to its usage of many particles and iterations. In addition, if we use multiple reservoir models, the simulation time for PSO will be soared. By using the proposed method, we can select good and reliable models that already matches production data. Considering geological uncertainty of the reservoir, we can get well-optimized production controls for maximum net present value. The proposed method shows one of novel solutions to select good cases among the various probabilities. The model selection schemes can be applied to not only production optimization but also history matching or other ensemble-based methods for efficient simulations.

Keywords: distance-based clustering, geological uncertainty, particle swarm optimization (PSO), production optimization

Procedia PDF Downloads 144
4349 A Method for Reconfigurable Manufacturing Systems Customization Measurement

Authors: Jesus Kombaya, Nadia Hamani, Lyes Kermad

Abstract:

The preservation of a company’s place on the market in such aggressive competition is becoming a survival challenge for manufacturers. In this context, survivors are only those who succeed to satisfy their customers’ needs as quickly as possible. The production system should be endowed with a certain level of flexibility to eliminate or reduce the rigidity of the production systems in order to facilitate the conversion and/or the change of system’s features to produce different products. Therefore, it is essential to guarantee the quality, the speed and the flexibility to survive in this competition. According to literature, this adaptability is referred to as the notion of "change". Indeed, companies are trying to establish a more flexible and agile manufacturing system through several reconfiguration actions. Reconfiguration contributes to the extension of the manufacturing system life cycle by modifying its physical, organizational and computer characteristics according to the changing market conditions. Reconfigurability is characterized by six key elements that are: modularity, integrability, diagnosability, convertibility, scalability and customization. In order to control the production systems, it is essential for manufacturers to make good use of this capability in order to be sure that the system has an optimal and adapted level of reconfigurability that allows it to produce in accordance with the set requirements. This document develops a measure of customization of reconfigurable production systems. These measures do not only impact the production system but also impact the product design and the process design, which can therefore serve as a guide for the customization of manufactured product. A case study is presented to show the use of the proposed approach.

Keywords: reconfigurable manufacturing systems, customization, measure, flexibility

Procedia PDF Downloads 128
4348 Numerical Investigation of 3D Printed Pin Fin Heat Sinks for Automotive Inverter Cooling Application

Authors: Alexander Kospach, Fabian Benezeder, Jürgen Abraham

Abstract:

E-mobility poses new challenges for inverters (e.g., higher switching frequencies) in terms of thermal behavior and thermal management. Due to even higher switching frequencies, thermal losses become greater, and the cooling of critical components (like insulated gate bipolar transistor and diodes) comes into focus. New manufacturing methods, such as 3D printing, enable completely new pin-fin structures that can handle higher waste heat to meet the new thermal requirements. Based on the geometrical specifications of the industrial partner regarding the manufacturing possibilities for 3D printing, different and completely new pin-fin structures were numerically investigated for their hydraulic and thermal behavior in fundamental studies assuming an indirect liquid cooling. For the 3D computational fluid dynamics (CFD) thermal simulations OpenFOAM was used, which has as numerical method the finite volume method for solving the conjugate heat transfer problem. A steady-state solver for turbulent fluid flow and solid heat conduction with conjugate heat transfer between solid and fluid regions was used for the simulations. In total, up to fifty pinfin structures and arrangements, some of them completely new, were numerically investigated. On the basis of the results of the principal investigations, the best two pin-fin structures and arrangements for the complete module cooling of an automotive inverter were numerically investigated and compared. There are clear differences in the maximum temperatures for the critical components, such as IGTBs and diodes. In summary, it was shown that 3D pin fin structures can significantly contribute to the improvement of heat transfer and cooling of an automotive inverter. This enables in the future smaller cooling designs and a better lifetime of automotive inverter modules. The new pin fin structures and arrangements can also be applied to other cooling applications where 3D printing can be used.

Keywords: pin fin heat sink optimization, 3D printed pin fins, CFD simulation, power electronic cooling, thermal management

Procedia PDF Downloads 103
4347 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 328
4346 Multi-Objective Exergy Optimization of an Organic Rankine Cycle with Cyclohexane as Working Fluid

Authors: Touil Djamal, Fergani Zineb

Abstract:

In this study, an Organic Rankine Cycle (ORC) with Cyclohexane working fluid is proposed for cogeneration in the cement industry. In this regard: first, a parametric study is conducted to evaluate the effects of some key parameters on the system performances. Next, single and multi-objective optimizations are performed to achieve the system optimal design. The optimization considers the exergy efficiency, the cost per exergy unit and the environmental impact of the net produced power as objective functions. Finally, exergy, exergoeconomic and exergoenvironmental analysis of the cycle is carried out at the optimum operating conditions. The results show that the turbine inlet pressure, the pinch point temperature difference and the heat transfer fluid temperature have significant effects on the performances of the ORC system.

Keywords: organic rankine cycle, multi-objective optimization, exergy, exergoeconomic, exergoenvironmental, multi-objective optimisation, organic rankine cycle, cement plant

Procedia PDF Downloads 280
4345 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System

Authors: Ahmad Rouhani, Masood Jabbari, Sima Honarmand

Abstract:

This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technics and economics. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.

Keywords: hybrid energy system, optimum sizing, power management, TLBO

Procedia PDF Downloads 579
4344 Effectuation in Production: How Production Managers Can Apply Decision-Making Techniques of Successful Entrepreneurs

Authors: Malte Brettel, David Bendig, Michael Keller, Marius Rosenberg

Abstract:

What are the core competences necessary in order to sustain manufacturing in high-wage countries? Aspiring countries all over the world gain market share in manufacturing and rapidly close the productivity and quality gap that has until now protected some parts of the industry in Europe and the United States from dislocation. However, causal production planning and manufacturing, the basis for productivity and quality, is challenged by the ever-greater need for flexibility and customized products in an uncertain business environment. This article uses a case-study-based approach to assess how production managers in high-wage countries can apply decision-making principals from successful entrepreneurs. 'Effectuation' instead of causal decision making can be applied to handle uncertainty of mass customization, to seek the right partners in alliances and to advance towards virtual production. The findings help managers to use their resources more efficiently and contribute to bridge the gap between production research and entrepreneurship.

Keywords: case studies, decision-making behavior, effectuation, production planning

Procedia PDF Downloads 348
4343 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine

Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu

Abstract:

Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.

Keywords: axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization

Procedia PDF Downloads 161
4342 Optimization of Supercritical CO2 Power Cycle for Waste Heat Recovery from Gas Turbine with Respect to Cooling Condition

Authors: Young Min Kim, Jeong Lak Sohn, Eui Soo Yoon

Abstract:

This study describes the optimization of supercritical carbon dioxide (S-CO2) power cycle for recovering waste heat from a gas turbine. An S-CO2 cycle that recovers heat from small industrial and aeroderivative gas turbines can outperform a steam-bottoming cycle despite its simplicity and compactness. In using S-CO2 power cycles for waste heat recovery, a split cycle was studied to maximize the net output power by incorporating the utilization efficiency of the waste heat (lowering the temperature of the exhaust gas through the heater) along with the thermal efficiency of the cycle (minimizing the temperature difference for the heat transfer, exergy loss). The cooling condition of the S-CO2 WHR system has a great impact on the performance and the optimum low pressure of the system. Furthermore, the optimum high pressure of the S-CO2 WHR systems for the maximum power from the given heat sources is dependent on the temperature of the waste heat source.

Keywords: exergy loss, gas turbine, optimization, supercritical CO2 power cycle, split cycle, waste heat recovery

Procedia PDF Downloads 350
4341 Optimization of Platinum Utilization by Using Stochastic Modeling of Carbon-Supported Platinum Catalyst Layer of Proton Exchange Membrane Fuel Cells

Authors: Ali Akbar, Seungho Shin, Sukkee Um

Abstract:

The composition of catalyst layers (CLs) plays an important role in the overall performance and cost of the proton exchange membrane fuel cells (PEMFCs). Low platinum loading, high utilization, and more durable catalyst still remain as critical challenges for PEMFCs. In this study, a three-dimensional material network model is developed to visualize the nanostructure of carbon supported platinum Pt/C and Pt/VACNT catalysts in pursuance of maximizing the catalyst utilization. The quadruple-phase randomly generated CLs domain is formulated using quasi-random stochastic Monte Carlo-based method. This unique statistical approach of four-phase (i.e., pore, ionomer, carbon, and platinum) model is closely mimic of manufacturing process of CLs. Various CLs compositions are simulated to elucidate the effect of electrons, ions, and mass transport paths on the catalyst utilization factor. Based on simulation results, the effect of key factors such as porosity, ionomer contents and Pt weight percentage in Pt/C catalyst have been investigated at the represented elementary volume (REV) scale. The results show that the relationship between ionomer content and Pt utilization is in good agreement with existing experimental calculations. Furthermore, this model is implemented on the state-of-the-art Pt/VACNT CLs. The simulation results on Pt/VACNT based CLs show exceptionally high catalyst utilization as compared to Pt/C with different composition ratios. More importantly, this study reveals that the maximum catalyst utilization depends on the distance spacing between the carbon nanotubes for Pt/VACNT. The current simulation results are expected to be utilized in the optimization of nano-structural construction and composition of Pt/C and Pt/VACNT CLs.

Keywords: catalyst layer, platinum utilization, proton exchange membrane fuel cell, stochastic modeling

Procedia PDF Downloads 121
4340 Valorisation of Mango Seed: Response Surface Methodology Based Optimization of Starch Extraction from Mango Seeds

Authors: Tamrat Tesfaye, Bruce Sithole

Abstract:

Box-Behnken Response surface methodology was used to determine the optimum processing conditions that give maximum extraction yield and whiteness index from mango seed. The steeping time ranges from 2 to 12 hours and slurring of the steeped seed in sodium metabisulphite solution (0.1 to 0.5 w/v) was carried out. Experiments were designed according to Box-Behnken Design with these three factors and a total of 15 runs experimental variables of were analyzed. At linear level, the concentration of sodium metabisulphite had significant positive influence on percentage yield and whiteness index at p<0.05. At quadratic level, sodium metabisulphite concentration and sodium metabisulphite concentration2 had a significant negative influence on starch yield; sodium metabisulphite concentration and steeping time*temperature had significant (p<0.05) positive influence on whiteness index. The adjusted R2 above 0.8 for starch yield (0.906465) and whiteness index (0.909268) showed a good fit of the model with the experimental data. The optimum sodium metabisulphite concentration, steeping hours, and temperature for starch isolation with maximum starch yield (66.428%) and whiteness index (85%) as set goals for optimization with the desirability of 0.91939 was 0.255w/v concentration, 2hrs and 50 °C respectively. The determined experimental value of each response based on optimal condition was statistically in accordance with predicted levels at p<0.05. The Mango seeds are the by-products obtained during mango processing and possess disposal problem if not handled properly. The substitution of food based sizing agents with mango seed starch can contribute as pertinent resource deployment for value-added product manufacturing and waste utilization which might play significance role of food security in Ethiopia.

Keywords: mango, synthetic sizing agent, starch, extraction, textile, sizing

Procedia PDF Downloads 232
4339 Formulation and Evaluation of Dispersible Tablet of Furosemide for Pediatric Use

Authors: O. Benaziz, A. Dorbane, S. Djeraba

Abstract:

The objective of this work is to formulate a dry dispersible form of furosemide in the context of pediatric dose adjustment. To achieve this, we have produced a set of formulas that will be tested in process and after compression. The formula with the best results will be improved to optimize the final shape of the product. Furosemide is the most widely used pediatric diuretic because of its low toxicity. The manufacturing process was chosen taking into account all the data relating to the active ingredient and the excipients used and complying with the specifications and requirements of dispersible tablets. The process used to prepare these tablets was wet granulation. Different excipients were used: lactose, maize starch, magnesium stearate and two superdisintegrants. The mode of incorporation of super-disintegrant changes with each formula. The use of super-disintegrant in the formula allowed optimization of the disintegration time. Prepared tablets were evaluated for weight, content uniformity, hardness, disintegration time, friability and in vitro dissolution test. 

Keywords: formulation, dispersible tablets, wet granulation, superdisintegrants, disintegration

Procedia PDF Downloads 345
4338 Design of Quality Assessment System for On-Orbit 3D Printing Based on 3D Reconstruction Technology

Authors: Jianning Tang, Trevor Hocksun Kwan, Xiaofeng Wu

Abstract:

With the increasing demand for space use in multiple sectors (navigation, telecommunication, imagery, etc.), the deployment and maintenance demand of satellites are growing. Considering the high launching cost and the restrictions on weight and size of the payload when using launch vehicle, the technique of on-orbit manufacturing has obtained more attention because of its significant potential to support future space missions. 3D printing is the most promising manufacturing technology that could be applied in space. However, due to the lack of autonomous quality assessment, the operation of conventional 3D printers still relies on human presence to supervise the printing process. This paper is proposed to develop an automatic 3D reconstruction system aiming at detecting failures on the 3D printed objects through application of point cloud technology. Based on the data obtained from the point cloud, the 3D printer could locate the failure and repair the failure. The system will increase automation and provide 3D printing with more feasibilities for space use without human interference.

Keywords: 3D printing, quality assessment, point cloud, on-orbit manufacturing

Procedia PDF Downloads 120
4337 Multi-Response Optimization of EDM for Ti-6Al-4V Using Taguchi-Grey Relational Analysis

Authors: Ritesh Joshi, Kishan Fuse, Gopal Zinzala, Nishit Nirmal

Abstract:

Ti-6Al-4V is a titanium alloy having high strength, low weight and corrosion resistant which is a required characteristic for a material to be used in aerospace industry. Titanium, being a hard alloy is difficult to the machine via conventional methods, so it is a call to use non-conventional processes. In present work, the effects on Ti-6Al-4V by drilling a hole of Ø 6 mm using copper (99%) electrode in Electric Discharge Machining (EDM) process is analyzed. Effect of various input parameters like peak current, pulse-on time and pulse-off time on output parameters viz material removal rate (MRR) and electrode wear rate (EWR) is studied. Multi-objective optimization technique Grey relational analysis is used for process optimization. Experiments are designed using an L9 orthogonal array. ANOVA is used for finding most contributing parameter followed by confirmation tests for validating the results. Improvement of 7.45% in gray relational grade is observed.

Keywords: ANOVA, electric discharge machining, grey relational analysis, Ti-6Al-4V

Procedia PDF Downloads 365
4336 An Investigation of Aluminum Foil-Epoxy Laminated Composites for Rapid Tooling Applications

Authors: Kevlin Govender, Anthony Walker, Glen Bright

Abstract:

Mass customization is an area of increased importance and the development of rapid tooling applications is pivotal to the success of mass customization. This paper presents a laminated object manufacturing (LOM) process for rapid tooling. The process is termed 3D metal laminate printing and utilizes domestic-grade aluminum foil and epoxy for layered manufacturing. A detailed explanation of the process is presented to produce complex metal laminated composite parts. Aluminum-epoxy composite specimens were manufactured from 0.016mm aluminum and subjected to tensile tests to determine the mechanical properties of the manufactured composite in relation to solid metal specimens. The fracture zone of the specimens was analyzed under scanning electron microscopy (SEM) in order to characterize the fracture mode and study the interfacial bonding of the manufactured laminate specimens.

Keywords: 3D metal laminate printer, aluminum-epoxy composite, laminated object manufacturing, rapid tooling

Procedia PDF Downloads 292
4335 A Multi-Population DE with Adaptive Mutation and Local Search for Global Optimization

Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang

Abstract:

This paper proposes a multi-population DE with adaptive mutation and local search for global optimization, named AMMADE. In order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.

Keywords: differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search

Procedia PDF Downloads 160
4334 Approaching the Spatial Multi-Objective Land Use Planning Problems at Mountain Areas by a Hybrid Meta-Heuristic Optimization Technique

Authors: Konstantinos Tolidis

Abstract:

The mountains are amongst the most fragile environments in the world. The world’s mountain areas cover 24% of the Earth’s land surface and are home to 12% of the global population. A further 14% of the global population is estimated to live in the vicinity of their surrounding areas. As urbanization continues to increase in the world, the mountains are also key centers for recreation and tourism; their attraction is often heightened by their remarkably high levels of biodiversity. Due to the fact that the features in mountain areas vary spatially (development degree, human geography, socio-economic reality, relations of dependency and interaction with other areas-regions), the spatial planning on these areas consists of a crucial process for preserving the natural, cultural and human environment and consists of one of the major processes of an integrated spatial policy. This research has been focused on the spatial decision problem of land use allocation optimization which is an ordinary planning problem on the mountain areas. It is a matter of fact that such decisions must be made not only on what to do, how much to do, but also on where to do, adding a whole extra class of decision variables to the problem when combined with the consideration of spatial optimization. The utility of optimization as a normative tool for spatial problem is widely recognized. However, it is very difficult for planners to quantify the weights of the objectives especially when these are related to mountain areas. Furthermore, the land use allocation optimization problems at mountain areas must be addressed not only by taking into account the general development objectives but also the spatial objectives (e.g. compactness, compatibility and accessibility, etc). Therefore, the main research’s objective was to approach the land use allocation problem by utilizing a hybrid meta-heuristic optimization technique tailored to the mountain areas’ spatial characteristics. The results indicates that the proposed methodological approach is very promising and useful for both generating land use alternatives for further consideration in land use allocation decision-making and supporting spatial management plans at mountain areas.

Keywords: multiobjective land use allocation, mountain areas, spatial planning, spatial decision making, meta-heuristic methods

Procedia PDF Downloads 347
4333 Comparative Study of Radiation Protection in a Hospital Environment

Authors: Lahoucine Zaama, Sanae Douama

Abstract:

In this work, we present the results of a dosimetry study in a Moroccan radiology department . The results are compared with those of a similar study in France. Furthermore, it determines the coefficient of transmission of the lead sheets of different thicknesses depending on the voltage (KV) in a direct exposure. The objective of this study is to choose the thickness of the radiation means to determine the leaf sample sealed with the smallest percentage value radiation transmission, and that in the context of optimization. Thus the comparison among the studies is essential to consider conduct studies and research in this framework to achieve the goal of optimization.

Keywords: radiology, dosimetry, radiation, dose, transmission

Procedia PDF Downloads 496