Search results for: logistic model tree
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17995

Search results for: logistic model tree

17305 The Establishment of RELAP5/SNAP Model for Kuosheng Nuclear Power Plant

Authors: C. Shih, J. R. Wang, H. C. Chang, S. W. Chen, S. C. Chiang, T. Y. Yu

Abstract:

After the measurement uncertainty recapture (MUR) power uprates, Kuosheng nuclear power plant (NPP) was uprated the power from 2894 MWt to 2943 MWt. For power upgrade, several codes (e.g., TRACE, RELAP5, etc.) were applied to assess the safety of Kuosheng NPP. Hence, the main work of this research is to establish a RELAP5/MOD3.3 model of Kuosheng NPP with SNAP interface. The establishment of RELAP5/SNAP model was referred to the FSAR, training documents, and TRACE model which has been developed and verified before. After completing the model establishment, the startup test scenarios would be applied to the RELAP5/SNAP model. With comparing the startup test data and TRACE analysis results, the applicability of RELAP5/SNAP model would be assessed.

Keywords: RELAP5, TRACE, SNAP, BWR

Procedia PDF Downloads 429
17304 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification

Authors: Chung-Ming Lo, Chung-Chien Lee

Abstract:

In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.

Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis

Procedia PDF Downloads 284
17303 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals

Authors: Linghui Meng, James Atlas, Deborah Munro

Abstract:

There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.

Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers

Procedia PDF Downloads 28
17302 QoS-CBMG: A Model for e-Commerce Customer Behavior

Authors: Hoda Ghavamipoor, S. Alireza Hashemi Golpayegani

Abstract:

An approach to model the customer interaction with e-commerce websites is presented. Considering the service quality level as a predictive feature, we offer an improved method based on the Customer Behavior Model Graph (CBMG), a state-transition graph model. To derive the Quality of Service sensitive-CBMG (QoS-CBMG) model, process-mining techniques is applied to pre-processed website server logs which are categorized as ‘buy’ or ‘visit’. Experimental results on an e-commerce website data confirmed that the proposed method outperforms CBMG based method.

Keywords: customer behavior model, electronic commerce, quality of service, customer behavior model graph, process mining

Procedia PDF Downloads 416
17301 Model Based Simulation Approach to a 14-Dof Car Model Using Matlab/Simulink

Authors: Ishit Sheth, Chandrasekhar Jinendran, Chinmaya Ranjan Sahu

Abstract:

A fourteen degree of freedom (DOF) ride and handling control mathematical model is developed for a car using generalized boltzmann hamel equation which will create a basis for design of ride and handling controller. Mathematical model developed yield equations of motion for non-holonomic constrained systems in quasi-coordinates. The governing differential equation developed integrates ride and handling control of car. Model-based systems engineering approach is implemented for simulation using matlab/simulink, vehicle’s response in different DOF is examined and later validated using commercial software (ADAMS). This manuscript involves detailed derivation of full car vehicle model which provides response in longitudinal, lateral and yaw motion to demonstrate the advantages of the developed model over the existing dynamic model. The dynamic behaviour of the developed ride and handling model is simulated for different road conditions.

Keywords: Full Vehicle Model, MBSE, Non Holonomic Constraints, Boltzmann Hamel Equation

Procedia PDF Downloads 228
17300 Comprehensive Risk Assessment Model in Agile Construction Environment

Authors: Jolanta Tamošaitienė

Abstract:

The article focuses on a developed comprehensive model to be used in an agile environment for the risk assessment and selection based on multi-attribute methods. The model is based on a multi-attribute evaluation of risk in construction, and the determination of their optimality criterion values are calculated using complex Multiple Criteria Decision-Making methods. The model may be further applied to risk assessment in an agile construction environment. The attributes of risk in a construction project are selected by applying the risk assessment condition to the construction sector, and the construction process efficiency in the construction industry accounts for the agile environment. The paper presents the comprehensive risk assessment model in an agile construction environment. It provides a background and a description of the proposed model and the developed analysis of the comprehensive risk assessment model in an agile construction environment with the criteria.

Keywords: assessment, environment, agile, model, risk

Procedia PDF Downloads 255
17299 Economic Analysis of Coffee Cultivation in Kodagu District of Karnataka State, India

Authors: P. S. Dhananjaya Swamy, B. Chinnappa, G. B. Ramesh, Naveen P. Kumar

Abstract:

Kodagu district is one of the most densely forested districts in the India as around sixty five per cent of geographical areas under tree cover. Nearly 53 per cent of the flora of Kodagu is endemic. The district is also a hotspot of endemic orchids found mainly in the Thadiandamol. Shade grown, eco-friendly coffee farms are perhaps a selected few places on this planet where nature runs wild. The Kodagu accounts for more than 8.8 per cent of floral diversity of Karnataka state. Estimation of unit cost of cultivation plays a vital role in determining the governmental program their market intervention policies. On an average, planters incurred around Rs. 17041 per acre. The extent of production risk was highest among small category of planters (66 %) compared to other two exhibiting production instability. The result shows that, the coffee productivity in medium plantations was 1051.2 kg per acre as against 758.5 and 789.2 kg in the case of small and large plantations. An annual net return per acre was highest in the case of medium planters (Rs. 26109.3) as against Rs. 20566.7 and Rs. 18572.7 in the case of small and large planters. Cost of production was lowest in the case of small planters (Rs. 18.9 per kg of output) followed by medium planters (Rs. 21.2 per kg of output) and large planters (Rs. 22.5 per kg of output). The productivity of coffee is less whenever it is grown under high shade and native tree cover; it is around 6 quintals per acre when compared with low shade conditions, which is around 8.9 quintals per acre, without a significant difference in the amount invested for growing coffee. Net gain was lower by Rs. 15.5 per kg for the planters growing under high shade and native trees cover when compared with low shade and exotic trees cover.

Keywords: coffee, cultivation, economics, Kodagu

Procedia PDF Downloads 196
17298 Earnings Management and Firm’s Creditworthiness

Authors: Maria A. Murtiati, Ancella A. Hermawan

Abstract:

The objective of this study is to examine whether the firm’s eligibility to get a bank loan is influenced by earnings management. The earnings management is distinguished between accruals and real earnings management. Hypothesis testing is carried out with logistic regression model using sample of 285 companies listed at Indonesian Stock Exchange in 2010. The result provides evidence that a greater magnitude in accruals earnings management increases the firm’s probability to be eligible to get bank loan. In contrast, real earnings management through abnormal cash flow and abnormal discretionary expenses decrease firm’s probability to be eligible to get bank loan, while real management through abnormal production cost increases such probability. The result of this study suggests that if the earnings management is assumed to be opportunistic purpose, the accruals based earnings management can distort the banks credit analysis using financial statements. Real earnings management has more impact on the cash flows, and banks are very concerned on the firm’s cash flow ability. Therefore, this study indicates that banks are more able to detect real earnings management, except abnormal production cost in real earning management.

Keywords: discretionary accruals, real earning management, bank loan, credit worthiness

Procedia PDF Downloads 346
17297 Formal Verification of Cache System Using a Novel Cache Memory Model

Authors: Guowei Hou, Lixin Yu, Wei Zhuang, Hui Qin, Xue Yang

Abstract:

Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible.

Keywords: cache system, formal verification, novel model, system on chip (SoC)

Procedia PDF Downloads 496
17296 Development of Simple-To-Apply Biogas Kinetic Models for the Co-Digestion of Food Waste and Maize Husk

Authors: Owamah Hilary, O. C. Izinyon

Abstract:

Many existing biogas kinetic models are difficult to apply to substrates they were not developed for, as they are substrate specific. Biodegradability kinetic (BIK) model and maximum biogas production potential and stability assessment (MBPPSA) model were therefore developed in this study for the anaerobic co-digestion of food waste and maize husk. Biodegradability constant (k) was estimated as 0.11d-1 using the BIK model. The results of maximum biogas production potential (A) obtained using the MBPPSA model corresponded well with the results obtained using the popular but complex modified Gompertz model for digesters B-1, B-2, B-3, B-4, and B-5. The (If) value of MBPPSA model also showed that digesters B-3, B-4, and B-5 were stable, while B-1 and B-2 were unstable. Similar stability observation was also obtained using the modified Gompertz model. The MBPPSA model can therefore be used as alternative model for anaerobic digestion feasibility studies and plant design.

Keywords: biogas, inoculum, model development, stability assessment

Procedia PDF Downloads 429
17295 The Extent of Virgin Olive-Oil Prices' Distribution Revealing the Behavior of Market Speculators

Authors: Fathi Abid, Bilel Kaffel

Abstract:

The olive tree, the olive harvest during winter season and the production of olive oil better known by professionals under the name of the crushing operation have interested institutional traders such as olive-oil offices and private companies such as food industry refining and extracting pomace olive oil as well as export-import public and private companies specializing in olive oil. The major problem facing producers of olive oil each winter campaign, contrary to what is expected, it is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. These questions are entirely legitimate if we judge by the importance of the issue and the heavy complexity of the uncertainty and competition made tougher by a high level of indebtedness and the experience and expertise of speculators and producers whose objectives are sometimes conflicting. The aim of this paper is to study the formation mechanism of olive oil prices in order to learn about speculators’ behavior and expectations in the market, how they contribute by their industry knowledge and their financial alliances and the size the financial challenge that may be involved for them to build private information hoses globally to take advantage. The methodology used in this paper is based on two stages, in the first stage we study econometrically the formation mechanisms of olive oil price in order to understand the market participant behavior by implementing ARMA, SARMA, GARCH and stochastic diffusion processes models, the second stage is devoted to prediction purposes, we use a combined wavelet- ANN approach. Our main findings indicate that olive oil market participants interact with each other in a way that they promote stylized facts formation. The unstable participant’s behaviors create the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation artificial neural network approach with input information based on wavelet decomposition and recent past history.

Keywords: olive oil price, stylized facts, ARMA model, SARMA model, GARCH model, combined wavelet-artificial neural network, continuous-time stochastic volatility mode

Procedia PDF Downloads 339
17294 Susceptibility of Different Clones of Eucalyptus Species against Gall Wasp, Leptocybe invasa Fisher and La Salle in Punjab, India

Authors: Ashwinder K. Dhaliwal, G. P. S. Dhillon

Abstract:

Eucalyptus is one of the most important forest tree species that can tolerate and grow well on degraded and unfertile soils which are not suitable for other tree species. Besides this, these trees have a short rotation and good economic value. However, the gall inducing wasp Leptocybe invasa Fisher and La Salle has been reported from many countries throughout the world. The spread of L. invasa is of huge economic concern as more than 20,000 ha of young Eucalyptus trees have already been affected in southern states of India. The host plant resistance being the first line of defense against insect pests demands the screening of different germplasm source against L. invasa. Keeping this in view, fourteen different clones of Eucalyptus spp. were evaluated for their susceptibility to L. invasa from a replicated clonal trial planted at Punjab Agricultural University, Ludhiana. The degree of gall infestation was recorded from three plants of each clone in each replication. Three branches selected from the lower, middle and upper canopy of the trees were selected for recording the total number of galls induced by L. invasa. The statistical analysis was done as per the procedure laid down for completely randomised block design (CRBD), analysis of variance (ANOVA), critical difference (CD) and variance components using Proc GLM (SAS software 9.3, SAS Institute Ltd. U.S.A). All possible treatment means were compared with Duncan’s multiple range test (DMRT) at 1 % probability level. The results showed that the clones C-9, C-45 and C-42 were completely free from the infestation of L. invasa. However, there was minor infestation of L. invasa on C-2135, C-413, C-407, C-35, C-72 and C-37 clones. The clone C-6 was severely infested by L. invasa followed by C-11, C-12, F-316 and C-25 clones. The information generated by this study will be helpful for future breeding and use in afforestation programmes.

Keywords: eucalyptus clones, gall wasp, Leptocybe invasa, screening, susceptibility

Procedia PDF Downloads 221
17293 Reflection on Using Bar Model Method in Learning and Teaching Primary Mathematics: A Hong Kong Case Study

Authors: Chui Ka Shing

Abstract:

This case study research attempts to examine the use of the Bar Model Method approach in learning and teaching mathematics in a primary school in Hong Kong. The objectives of the study are to find out to what extent (a) the Bar Model Method approach enhances the construction of students’ mathematics concepts, and (b) the school-based mathematics curriculum development with adopting the Bar Model Method approach. This case study illuminates the effectiveness of using the Bar Model Method to solve mathematics problems from Primary 1 to Primary 6. Some effective pedagogies and assessments were developed to strengthen the use of the Bar Model Method across year levels. Suggestions including school-based curriculum development for using Bar Model Method and further study were discussed.

Keywords: bar model method, curriculum development, mathematics education, problem solving

Procedia PDF Downloads 219
17292 Rural Livelihood under a Changing Climate Pattern in the Zio District of Togo, West Africa

Authors: Martial Amou

Abstract:

This study was carried out to assess the situation of households’ livelihood under a changing climate pattern in the Zio district of Togo, West Africa. The study examined three important aspects: (i) assessment of households’ livelihood situation under a changing climate pattern, (ii) farmers’ perception and understanding of local climate change, (iii) determinants of adaptation strategies undertaken in cropping pattern to climate change. To this end, secondary sources of data, and survey data collected from 235 farmers in four villages in the study area were used. Adapted conceptual framework from Sustainable Livelihood Framework of DFID, two steps Binary Logistic Regression Model and descriptive statistics were used in this study as methodological approaches. Based on Sustainable Livelihood Approach (SLA), various factors revolving around the livelihoods of the rural community were grouped into social, natural, physical, human, and financial capital. Thus, the study came up that households’ livelihood situation represented by the overall livelihood index in the study area (34%) is below the standard average households’ livelihood security index (50%). The natural capital was found as the poorest asset (13%) and this will severely affect the sustainability of livelihood in the long run. The result from descriptive statistics and the first step regression (selection model) indicated that most of the farmers in the study area have clear understanding of climate change even though they do not have any idea about greenhouse gases as the main cause behind the issue. From the second step regression (output model) result, education, farming experience, access to credit, access to extension services, cropland size, membership of a social group, distance to the nearest input market, were found to be the significant determinants of adaptation measures undertaken in cropping pattern by farmers in the study area. Based on the result of this study, recommendations are made to farmers, policy makers, institutions, and development service providers in order to better target interventions which build, promote or facilitate the adoption of adaptation measures with potential to build resilience to climate change and then improve rural livelihood.

Keywords: climate change, rural livelihood, cropping pattern, adaptation, Zio District

Procedia PDF Downloads 325
17291 Frailty and Quality of Life among Older Adults: A Study of Six LMICs Using SAGE Data

Authors: Mamta Jat

Abstract:

Background: The increased longevity has resulted in the increase in the percentage of the global population aged 60 years or over. With this “demographic transition” towards ageing, “epidemiologic transition” is also taking place characterised by growing share of non-communicable diseases in the overall disease burden. So, many of the older adults are ageing with chronic disease and high levels of frailty which often results in lower levels of quality of life. Although frailty may be increasingly common in older adults, prevention or, at least, delay the onset of late-life adverse health outcomes and disability is necessary to maintain the health and functional status of the ageing population. This is an effort using SAGE data to assess levels of frailty and its socio-demographic correlates and its relation with quality of life in LMICs of India, China, Ghana, Mexico, Russia and South Africa in a comparative perspective. Methods: The data comes from multi-country Study on Global AGEing and Adult Health (SAGE), consists of nationally representative samples of older adults in six low and middle-income countries (LMICs): China, Ghana, India, Mexico, the Russian Federation and South Africa. For our study purpose, we will consider only 50+ year’s respondents. The logistic regression model has been used to assess the correlates of frailty. Multinomial logistic regression has been used to study the effect of frailty on QOL (quality of life), controlling for the effect of socio-economic and demographic correlates. Results: Among all the countries India is having highest mean frailty in males (0.22) and females (0.26) and China with the lowest mean frailty in males (0.12) and females (0.14). The odds of being frail are more likely with the increase in age across all the countries. In India, China and Russia the chances of frailty are more among rural older adults; whereas, in Ghana, South Africa and Mexico rural residence is protecting against frailty. Among all countries china has high percentage (71.46) of frail people in low QOL; whereas Mexico has lowest percentage (36.13) of frail people in low QOL.s The risk of having low and middle QOL is significantly (p<0.001) higher among frail elderly as compared to non–frail elderly across all countries with controlling socio-demographic correlates. Conclusion: Women and older age groups are having higher frailty levels than men and younger aged adults in LMICs. The mean frailty scores demonstrated a strong inverse relationship with education and income gradients, while lower levels of education and wealth are showing higher levels of frailty. These patterns are consistent across all LMICs. These data support a significant role of frailty with all other influences controlled, in having low QOL as measured by WHOQOL index. Future research needs to be built on this evolving concept of frailty in an effort to improve quality of life for frail elderly population, in LMICs setting.

Keywords: Keywords: Ageing, elderly, frailty, quality of life

Procedia PDF Downloads 288
17290 Descriptive Study of Tropical Tree Species in Commercial Interest Biosphere Reserve Luki in the Democratic Republic of Congo (DRC)

Authors: Armand Okende, Joëlle De Weerdt, Esther Fichtler, Maaike De Ridder, Hans Beeckman

Abstract:

The rainforest plays a crucial role in regulating the climate balance. The biodiversity of tropical rainforests is undeniable, but many aspects remain poorly known, which directly influences its management. Despite the efforts of sustainable forest management, human pressure in terms of exploitation and smuggling of timber forms a problem compared to exploited species whose status is considered "vulnerable" on the IUCN red list compiled by. Commercial species in Class III of the Democratic Republic of Congo are the least known in the market operating, and their biology is unknown or non-existent. Identification of wood in terms of descriptions and anatomical measurements of the wood is in great demand for various stakeholders such as scientists, customs, IUCN, etc. The objective of this study is the qualitative and quantitative description of the anatomical characteristics of commercial species in Class III of DR Congo. The site of the Luki Biosphere Reserve was chosen because of its high tree species richness. This study focuses on the wood anatomy of 14 commercial species of Class III of DR Congo. Thirty-four wooden discs were collected for these species. The following parameters were measured in the field: Diameter at breast height (DBH), total height and geographic coordinates. Microtomy, identification of vessel parameters (diameter, density and grouping) and photograph of the microscopic sections and determining age were performed in this study. The results obtained are detailed anatomical descriptions of species in Class III of the Democratic Republic of Congo.

Keywords: sustainable management of forest, rainforest, commercial species of class iii, vessel diameter, vessel density, grouping vessel

Procedia PDF Downloads 214
17289 Alternating Current Photovoltaic Module Model

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents modeling of a Alternating Current (AC) Photovoltaic (PV) module using Matlab/Simulink. The proposed AC-PV module model is simple, realistic, and application oriented. The model is derived on module level as compared to cell level directly from the information provided by the manufacturer data sheet. DC-PV module, MPPT control, BC, VSI and LC filter, all were treated as a single unit. The model accounts for changes in variations of both irradiance and temperature. The AC-PV module proposed model is simulated and the results are compared with the datasheet projected numbers to validate model’s accuracy and effectiveness. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: PV modeling, AC PV Module, datasheet, VI curves irradiance, temperature, MPPT, Matlab/Simulink

Procedia PDF Downloads 575
17288 Drivers of Land Degradation in Trays Ecosystem as Modulated under a Changing Climate: Case Study of Côte d'Ivoire

Authors: Kadio Valere R. Angaman, Birahim Bouna Niang

Abstract:

Land degradation is a serious problem in developing countries, including Cote d’Ivoire, which has its economy focused on agriculture. It occurs in all kinds of ecosystems over the world. However, the drivers of land degradation vary from one region to another and from one ecosystem to another. Thus, identifying these drivers is an essential prerequisite to developing and implementing appropriate policies to reverse the trend of land degradation in the country, especially in the trays ecosystem. Using the binary logistic model with primary data obtained through 780 farmers surveyed, we analyze and identify the drivers of land degradation in the trays ecosystem. The descriptive statistics show that 52% of farmers interviewed have stated facing land degradation in their farmland. This high rate shows the extent of land degradation in this ecosystem. Also, the results obtained from the binary logit regression reveal that land degradation is significantly influenced by a set of variables such as sex, education, slope, erosion, pesticide, agricultural activity, deforestation, and temperature. The drivers identified are mostly local; as a result, the government must implement some policies and strategies that facilitate and incentive the adoption of sustainable land management practices by farmers to reverse the negative trend of land degradation.

Keywords: drivers, land degradation, trays ecosystem, sustainable land management

Procedia PDF Downloads 144
17287 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization

Procedia PDF Downloads 208
17286 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
17285 Lean Impact Analysis Assessment Models: Development of a Lean Measurement Structural Model

Authors: Catherine Maware, Olufemi Adetunji

Abstract:

The paper is aimed at developing a model to measure the impact of Lean manufacturing deployment on organizational performance. The model will help industry practitioners to assess the impact of implementing Lean constructs on organizational performance. It will also harmonize the measurement models of Lean performance with the house of Lean that seems to have become the industry standard. The sheer number of measurement models for impact assessment of Lean implementation makes it difficult for new adopters to select an appropriate assessment model or deployment methodology. A literature review is conducted to classify the Lean performance model. Pareto analysis is used to select the Lean constructs for the development of the model. The model is further formalized through the use of Structural Equation Modeling (SEM) in defining the underlying latent structure of a Lean system. An impact assessment measurement model developed can be used to measure Lean performance and can be adopted by different industries.

Keywords: impact measurement model, lean bundles, lean manufacturing, organizational performance

Procedia PDF Downloads 485
17284 Change of Endocrine and Exocrine Insufficiency on Non-Diabetes Patients after Distal Pancreatectomy: A Nationwide Database Study

Authors: Jin-Ming Wu, Te-Wei Ho, Yu-Wen Tien

Abstract:

Background: The aim of this population-based study was to determine the occurrence of diabetes and exocrine pancreatic insufficiencies (EPI) on non-diabetes subjects receiving distal pancreatectomy (DP). Method: A nationwide cohort study between 2000 and 2010 was collected from the Taiwan National Health Insurance Research Database. Among 3264 DP patients, we identified 1410 non-diabetes and 966 non-diabetes non-EPI. Results. Of 1410 non-diabetes DP subjects, 312 patients (22.1%) developed newly-diagnosed diabetes after PD. On a multiple logistic regression model, co-morbid hyperlipidemia (odds ratio, 1.640; 95% CI, 1.362–2.763; P < 0.001) and pancreatitis (odds ratio, 2.428; 95% CI, 1.889–3.121; P < 0.001) significantly contributed to higher incidences of diabetes after DP. Moreover, 380 subjects (39.3%) developed EPI, and pancreatic cancer is the statistically significant risk factor (odds ratio, 4.663; 95% CI, 2.108–6.085; P < 0.001). Conclusion: The patients with co-morbid hyperlipidemia and chronic pancreatitis had higher rates of newly-diagnosed diabetes after DP, moreover, pancreatic cancer subjects had higher rates of pancreatic exocrine insufficiency after DP. The clinicians should be alert to follow up glucose metabolism and clinical symptoms of fat intolerance for DP patients.

Keywords: distal pancreatectomy, National database, diabetes, exocrine insufficiency

Procedia PDF Downloads 196
17283 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 75
17282 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy

Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos

Abstract:

Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.

Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree

Procedia PDF Downloads 156
17281 Development of an Analytical Model for a Synchronous Permanent Magnet Generator

Authors: T. Sahbani, M. Bouteraa, R. Wamkeue

Abstract:

Wind Turbine are considered to be one of the more efficient system of energy production nowadays, a reason that leads the main industrial companies in wind turbine construction and researchers in over the world to look for better performance and one of the ways for that is the use of the synchronous permanent magnet generator. In this context, this work is about developing an analytical model that could simulate different situation in which the synchronous generator may go through, and of course this model match perfectly with the numerical and experimental model.

Keywords: MATLAB, synchronous permanent magnet generator, wind turbine, analytical model

Procedia PDF Downloads 549
17280 River Catchment’s Demography and the Dynamics of Access to Clean Water in the Rural South Africa

Authors: Yiseyon Sunday Hosu, Motebang Dominic Vincent Nakin, Elphina N. Cishe

Abstract:

Universal access to clean and safe drinking water and basic sanitation is one of the targets of the 6th Sustainable Development Goals (SDGs). This paper explores the evidence-based indicators of Water Rights Acts (2013) among households in the rural communities in the Mthatha River catchment of OR Tambo District Municipality of South Africa. Daily access to minimum 25 litres/person and the factors influencing clean water access were investigated in the catchment. A total number of 420 households were surveyed in the upper, peri-urban, lower and coastal regions of Mthatha Rivier catchment. Descriptive and logistic regression analyses were conducted on the data collected from the households to elicit vital information on domestic water security among rural community dwellers. The results show that approximately 68 percent of total households surveyed have access to the required minimum 25 litre/person/day, with 66.3 percent in upper region, 76 per cent in the peri-urban, 1.1 percent in the lower and 2.3 percent in the coastal regions. Only 30 percent among the total surveyed households had access to piped water either in the house or public taps. The logistic regression showed that access to clean water was influenced by lack of water infrastructure, proximity to urban regions, daily flow of pipe-borne water, household size and distance to public taps. This paper recommends that viable integrated rural community-based water infrastructure provision strategies between NGOs and local authority and the promotion of point of use (POU) technologies to enhance better access to clean water.

Keywords: domestic water, household technology, water security, rural community

Procedia PDF Downloads 353
17279 Forecasting Materials Demand from Multi-Source Ordering

Authors: Hui Hsin Huang

Abstract:

The downstream manufactures will order their materials from different upstream suppliers to maintain a certain level of the demand. This paper proposes a bivariate model to portray this phenomenon of material demand. We use empirical data to estimate the parameters of model and evaluate the RMSD of model calibration. The results show that the model has better fitness.

Keywords: recency, ordering time, materials demand quantity, multi-source ordering

Procedia PDF Downloads 534
17278 Survival Analysis Based Delivery Time Estimates for Display FAB

Authors: Paul Han, Jun-Geol Baek

Abstract:

In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.

Keywords: delivery time, survival analysis, Cox PH model, accelerated failure time model

Procedia PDF Downloads 543
17277 Ethanol in Carbon Monoxide Intoxication: Focus on Delayed Neuropsychological Sequelae

Authors: Hyuk-Hoon Kim, Young Gi Min

Abstract:

Background: In carbon monoxide (CO) intoxication, the pathophysiology of delayed neurological sequelae (DNS) is very complex and remains poorly understood. And predicting whether patients who exhibit resolved acute symptoms have escaped or will experience DNS represents a very important clinical issue. Brain magnetic resonance (MR) imaging has been conducted to assess the severity of brain damage as an objective method to predict prognosis. And co-ingestion of a second poison in patients with intentional CO poisoning occurs in almost one-half of patients. Among patients with co-ingestions, 66% ingested ethanol. We assessed the effects of ethanol on neurologic sequelae prevalence in acute CO intoxication by means of abnormal lesion in brain MR. Method: This study was conducted retrospectively by collecting data for patients who visited an emergency medical center during a period of 5 years. The enrollment criteria were diagnosis of acute CO poisoning and the measurement of the serum ethanol level and history of taking a brain MR during admission period. Official readout data by radiologist are used to decide whether abnormal lesion is existed or not. The enrolled patients were divided into two groups: patients with abnormal lesion and without abnormal lesion in Brain MR. A standardized extraction using medical record was performed; Mann Whitney U test and logistic regression analysis were performed. Result: A total of 112 patients were enrolled, and 68 patients presented abnormal brain lesion on MR. The abnormal brain lesion group had lower serum ethanol level (mean, 20.14 vs 46.71 mg/dL) (p-value<0.001). In addition, univariate logistic regression analysis showed the serum ethanol level (OR, 0.99; 95% CI, 0.98 -1.00) was independently associated with the development of abnormal lesion in brain MR. Conclusion: Ethanol could have neuroprotective effect in acute CO intoxication by sedative effect in stressful situation and mitigative effect in neuro-inflammatory reaction.

Keywords: carbon monoxide, delayed neuropsychological sequelae, ethanol, intoxication, magnetic resonance

Procedia PDF Downloads 252
17276 A Platform to Analyze Controllers for Solar Hot Water Systems

Authors: Aziz Ahmad, Guillermo Ramirez-Prado

Abstract:

Governments around the world encourage the use of solar water heating in residential houses due to the low maintenance requirements and efficiency of the solar collector water heating systems. The aim of this work is to study a domestic solar water heating system in a residential building to develop a model of the entire solar water heating system including flat-plate solar collector and storage tank. The proposed model is adaptable to any households and location. The model can be used to test different types of controllers and can provide efficiency as well as economic analysis. The proposed model is based on the heat and mass transfer equations along with assumptions applied in the model which can be modified for a variety of different solar water heating systems and sizes. Simulation results of the model were compared with the actual system which shows similar trends.

Keywords: solar thermal systems, solar water heating, solar collector model, hot water tank model, solar controllers

Procedia PDF Downloads 270