Search results for: larangain particle tracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2452

Search results for: larangain particle tracking

1762 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm

Authors: Dipti Patra, Guguloth Uma, Smita Pradhan

Abstract:

Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.

Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information

Procedia PDF Downloads 391
1761 Long Time Oxidation Behavior of Machined 316 Austenitic Stainless Steel in Primary Water Reactor

Authors: Siyang Wang, Yujin Hu, Xuelin Wang, Wenqian Zhang

Abstract:

Austenitic stainless steels are widely used in nuclear industry to manufacture critical components owing to their excellent corrosion resistance at high temperatures. Almost all the components used in nuclear power plants are produced by surface finishing (surface cold work) such as milling, grinding and so on. The change of surface states induced by machining has great influence on the corrosion behavior. In the present study, long time oxidation behavior of machined 316 austenitic stainless steel exposed to simulated pressure water reactor environment was investigated considering different surface states. Four surface finishes were produced by electro-polishing (P), grinding (G), and two milling (M and M1) processes respectively. Before oxidation, the surface Vickers micro-hardness, surface roughness of each type of sample was measured. Corrosion behavior of four types of sample was studied by using oxidation weight gain method for six oxidation periods. The oxidation time of each period was 120h, 216h, 336h, 504h, 672h and 1344h, respectively. SEM was used to observe the surface morphology of oxide film in several period. The results showed that oxide film on austenitic stainless steel has a duplex-layer structure. The inner oxide film is continuous and compact, while the outer layer is composed of oxide particles. The oxide particle consisted of large particles (nearly micron size) and small particles (dozens of nanometers to a few hundred nanometers). The formation of oxide particle could be significantly affected by the machined surface states. The large particle on cold worked samples (grinding and milling) appeared earlier than electro-polished one, and the milled sample has the largest particle size followed by ground one and electro-polished one. For machined samples, the large particles were almost distributed along the direction of machining marks. Severe exfoliation was observed on one milled surface (M) which had the most heavily cold worked layer, while rare local exfoliation occurred on the ground sample (G) and the other milled sample (M1). The electro-polished sample (P) entirely did not exfoliate.

Keywords: austenitic stainless steel, oxidation, machining, SEM

Procedia PDF Downloads 272
1760 Causality, Special Relativity and Non-existence of Material Particles of Zero Rest Mass

Authors: Mohammad Saleem, Mujahid Kamran

Abstract:

It is shown that causality, the principle that cause must precede effect, leads inter alia, to highly significant result that the velocity of a material particle cannot be even equal to that of light. Consequently, combined with special relativity, it leads to the conclusion that material particles of zero rest mass cannot exist in nature. Thus, causality, a principle without which nature would be incomprehensible, combined with special relativity, forbids the existence of material particles of zero rest mass. For instance, the neutrinos, as is now known, are material particles of non-zero rest mass. The situation changes when we consider the gauge particles. In fact, when the principle of causality was proposed, the concept of gauge particles had not yet been introduced. Now we know that photon, a gauge particle with zero rest mass does exist in nature. Therefore, principle of causality, as generally stated, is valid only for material particles. For gauge particles, in order to make the statement of causality consistent with experiment, it has to be modified: The cause should either precede or be simultaneous with the effect. Combined with special relativity, it allows gauge particles of zero rest mass.

Keywords: causality, gauge particles, material particles, special relativity

Procedia PDF Downloads 482
1759 Flocculation and Settling Rate Studies of Clean Coal Fines at Different Flocculants Dosage, pH Values, Bulk Density and Particle Size

Authors: Patel Himeshkumar Ashokbhai, Suchit Sharma, Arvind Kumar Garg

Abstract:

The results obtained from settling test of coal fines are used as an important tool to select the dewatering equipment such as thickeners, centrifuges and filters. Coal being hydrophobic in nature does not easily settle when mixed with water. Coal slurry that takes longer time to release water is highly undesirable because it poses additional challenge during sedimentation, centrifuge and filtration. If filter cake has higher than permitted moisture content then it not only creates handling problems but inflated freight costs and reduction in input and productivity for coke oven charges. It is to be noted that coal fines drastically increase moisture percentage in filter cake hence are to be minimized. To increase settling rate of coal fines in slurry chemical substances called flocculants or coagulants are added that cause coal particles to flocculate or coalesce into larger particles. These larger particles settle at faster rate and have higher settling velocity. Other important factors affecting settling rate are flocculent dosage, slurry or pulp density and particle size. Hence in this paper we tried to study the settling characteristic of clean coal fines by varying one of the four factors namely 1. Flocculant Dosage (acryl-amide) 2. pH of the water 3. Bulk density 4. Particle size of clean coal fines in settling experiment and drew important conclusions. Result of this paper will be much useful not only for coal beneficiation plant design but also for cost reduction of coke production facilities.

Keywords: bulk density, coal fines, flocculants, flocculation, settling velocity, pH

Procedia PDF Downloads 311
1758 Effect of Nano Packaging Containing Ag-TiO₂ in Inactivating the Selected Bacteria Experimentally Exposed to the Chicken-Eggshell

Authors: Hamed Ahari, Sepideh Farokhi, Mohamad Reza Abedini

Abstract:

This paper focuses on inactivation of the growth of the bacterial mixture, Salmonella enteritidis, Staphylococcus aureus, Bacillus cereus and Escherichia coli, experimentally subjected to the chicken eggshell by two types of nano particle-Ag, composite film and colloidal spray carried out at concentrations of 500, 1000 and 2000 ppm over 28 days. The GLM, Repeated Measurement-ANOVA procedure was used to analyze the effect of time and concentration of nano groups on inactivation of bacteria, simultaneously. The maximum reduction of the bacterial growth was respected to the group “spray 2000 ppm” for which the value of the bacteria reached the minimum (0.93±0.42) on day 7, calculated to be 0.0 on days14 and 28 and followed by the group “spray 1000 ppm”. It was obviously concluded that increasing the dilution of nano coating in spray and film created a significant decrease in the number of bacteria colonies on the eggshells but the effect of packaging in different concentrations of nanocomposite was not statistically significant in different days of the study.

Keywords: nano particle, composite film, eggshell, bacteria

Procedia PDF Downloads 378
1757 Performance Tracking of Thermal Plant Systems of Kuwait and Impact on the Environment

Authors: Abdullah Alharbi

Abstract:

Purpose: This research seeks to take a holistic strategic evaluation of the thermal power plants in Kuwait at both policy and technical level in order to allow a systematic retrofitting program. The new world order in energy generation and consumption demand that sources of energy can safeguard the use of natural resources and generate minimal impacts on the environment. For Kuwait, the energy used per capita is mainly associated with desalination plants. The overall impact of thermal power plant installations manifests indisposed of seawater and the health of marine life. Design/methodology/approach: The research adopts a case study based evaluation of performance data and documents of thermal plant installations in Kuwait. Findings: Research findings on the performance of existing thermal plants demand policy benchmarking with internationally acceptable standards in order to create clarity on decisions regarding demolition, retrofitting, or renewal. Research implications: This research has the potential to strategically inform and influence the piecemeal changes to power plants, including the replacement of power generation equipment, considering the varied technologies for thermal plants. Originality/value: This research provides evidence based data that can be useful for influencing operational efficiency after a holistic evaluation of existing capacity in comparison with future demands.

Keywords: energy, Kuwait, performance, stainability, tracking, thermal plant

Procedia PDF Downloads 84
1756 Quadrature Mirror Filter Bank Design Using Population Based Stochastic Optimization

Authors: Ju-Hong Lee, Ding-Chen Chung

Abstract:

The paper deals with the optimal design of two-channel linear-phase (LP) quadrature mirror filter (QMF) banks using a metaheuristic based optimization technique. Based on the theory of two-channel QMF banks using two recursive digital all-pass filters (DAFs), the design problem is appropriately formulated to result in an objective function which is a weighted sum of the group delay error of the designed QMF bank and the magnitude response error of the designed low-pass analysis filter. Through a frequency sampling and a weighted least squares approach, the optimization problem of the objective function can be solved by utilizing a particle swarm optimization algorithm. The resulting two-channel QMF banks can possess approximately LP response without magnitude distortion. Simulation results are presented for illustration and comparison.

Keywords: quadrature mirror filter bank, digital all-pass filter, weighted least squares algorithm, particle swarm optimization

Procedia PDF Downloads 501
1755 Using Complete Soil Particle Size Distributions for More Precise Predictions of Soil Physical and Hydraulic Properties

Authors: Habib Khodaverdiloo, Fatemeh Afrasiabi, Farrokh Asadzadeh, Martinus Th. Van Genuchten

Abstract:

The soil particle-size distribution (PSD) is known to affect a broad range of soil physical, mechanical and hydraulic properties. Complete descriptions of a PSD curve should provide more information about these properties as opposed to having only information about soil textural class or the soil sand, silt and clay (SSC) fractions. We compared the accuracy of 19 different models of the cumulative PSD in terms of fitting observed data from a large number of Iranian soils. Parameters of the six most promising models were correlated with measured values of the field saturated hydraulic conductivity (Kfs), the mean weight diameter of soil aggregates (MWD), bulk density (ρb), and porosity (∅). These same soil properties were correlated also with conventional PSD parameters (SSC fractions), selected geometric PSD parameters (notably the mean diameter dg and its standard deviation σg), and several other PSD parameters (D50 and D60). The objective was to find the best predictions of several soil physical quality indices and the soil hydraulic properties. Neither SSC nor dg, σg, D50 and D60 were found to have a significant correlation with both Kfs or logKfs, However, the parameters of several cumulative PSD models showed statistically significant correlation with Kfs and/or logKfs (|r| = 0.42 to 0.65; p ≤ 0.05). The correlation between MWD and the model parameters was generally also higher than either with SSC fraction and dg, or with D50 and D60. Porosity (∅) and the bulk density (ρb) also showed significant correlation with several PSD model parameters, with ρb additionally correlating significantly with various geometric (dg), mechanical (D50 and D60), and agronomic (clay and sand) representations of the PSD. The fitted parameters of selected PSD models furthermore showed statistically significant correlations with Kfs,, MWD and soil porosity, which may be viewed as soil quality indices. Results of this study are promising for developing more accurate pedotransfer functions.

Keywords: particle size distribution, soil texture, hydraulic conductivity, pedotransfer functions

Procedia PDF Downloads 261
1754 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences

Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng

Abstract:

Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).

Keywords: motion detection, motion tracking, trajectory analysis, video surveillance

Procedia PDF Downloads 525
1753 Zinc Oxid Nanotubes Modified by SiO2 as a Recyclable Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones

Authors: Rakhshan Hakimelahi

Abstract:

In recent years, zinc oxid nano tubes have attracted much attention. The direct use of zinc oxid nano tubes modified by SiO2 as recoverable catalysts for organic reactions is very rare. The catalysts were characterized by XRD. The average particle size of ZnO catalysts is 57 nm and there are high density defects on nano tubes surfaces. A simple and efficient method for the quinazolin derivatives synthesis from the condensation isatoic anhydride and an aromatic aldehyde with ammonium acetate in the presence of a catalytic amount zinc oxid nano tubes modified by SiO2 is described. The reason proposed for higher catalytic activity of zinc oxid nano tubes modified by SiO2 is a combination effect of the small particle size and high-density surface defects. The practical and simple method led to excellent yields of the 2,3-Di hydro quinazolin-4(1H)-one derivatives under mild conditions and within short times.

Keywords: 2, 3-Dihydroquinazolin-4(1H)-one derivatives, reusable catalyst, SiO2, zinc oxid nanotubes

Procedia PDF Downloads 363
1752 4-DOFs Parallel Mechanism for Minimally Invasive Robotic Surgery

Authors: Khalil Ibrahim, Ahmed Ramadan, Mohamed Fanni, Yo Kobayashi, Ahmed Abo-Ismail, Masakatus G. Fujie

Abstract:

This paper deals with the design process and the dynamic control simulation of a new type of 4-DOFs parallel mechanism that can be used as an endoscopic surgical manipulator. The proposed mechanism, 2-PUU_2-PUS, is designed based on the screw theory and the parallel virtual chain type synthesis method. Based on the structure analysis of the 4-DOF parallel mechanism, the inverse position equation is studied using the inverse analysis theory of kinematics. The design and the stress analysis of the mechanism are investigated using SolidWorks software. The virtual prototype of the parallel mechanism is constructed, and the dynamic simulation is performed using ADAMS TM software. The system model utilizing PID and PI controllers has been built using MATLAB software. A more realistic simulation in accordance with a given bending angle and point to point control is implemented by the use of both ADAMS/MATLAB software. The simulation results showed that this control method has solved the coordinate control for the 4-DOF parallel manipulator so that each output is feedback to the four driving rods. From the results, the tracking performance is achieved. Other control techniques, such as intelligent ones, are recommended to improve the tracking performance and reduce the numerical truncation error.

Keywords: parallel mechanisms, medical robotics, tracjectory control, virtual chain type synthesis method

Procedia PDF Downloads 449
1751 Magnetic Susceptibility Measurements of Urban Areas in Denizli City and Showing the Distributions of Heavy Metal Pollution

Authors: Ali Aydin

Abstract:

Three hundred and fifty soil samples were collected around the urban and residential area, for the purpose of a magnetic susceptibility study on pollution in Denizli City, Turkiye. Measurements of volume-specific magnetic susceptibility (к) and mass-specific magnetic susceptibility (χ) show a significant variation range from place to place collected soil samples. In this study, we did a primary magnetic study near the high heavy traffic pollution in a part of Denizli city, Turkiye which was said the most polluted city in Aegean Region of Turkey. The magnetic susceptibility measurements increased from the garden area to residential area and reached the high levels near the industrial areas of the city. Magnetic particle concentration and grain size sourced exhaust gasses, and other pollution sources increase with the increasing distance from a residential area, indicating the high traffic road area.

Keywords: magnetic susceptibility, pollution, magnetic particle, Denizli

Procedia PDF Downloads 278
1750 Liquid-Liquid Plug Flow Characteristics in Microchannel with T-Junction

Authors: Anna Yagodnitsyna, Alexander Kovalev, Artur Bilsky

Abstract:

The efficiency of certain technological processes in two-phase microfluidics such as emulsion production, nanomaterial synthesis, nitration, extraction processes etc. depends on two-phase flow regimes in microchannels. For practical application in chemistry and biochemistry it is very important to predict the expected flow pattern for a large variety of fluids and channel geometries. In the case of immiscible liquids, the plug flow is a typical and optimal regime for chemical reactions and needs to be predicted by empirical data or correlations. In this work flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction are investigated. Three liquid-liquid flow systems are considered, viz. kerosene – water, paraffin oil – water and castor oil – paraffin oil. Different flow patterns such as parallel flow, slug flow, plug flow, dispersed (droplet) flow, and rivulet flow are observed for different velocity ratios. New flow pattern of the parallel flow with steady wavy interface (serpentine flow) has been found. It is shown that flow pattern maps based on Weber numbers for different liquid-liquid systems do not match well. Weber number multiplied by Ohnesorge number is proposed as a parameter to generalize flow maps. Flow maps based on this parameter are superposed well for all liquid-liquid systems of this work and other experiments. Plug length and velocity are measured for the plug flow regime. When dispersed liquid wets channel walls plug length cannot be predicted by known empirical correlations. By means of particle tracking velocimetry technique instantaneous velocity fields in a plug flow regime were measured. Flow circulation inside plug was calculated using velocity data that can be useful for mass flux prediction in chemical reactions.

Keywords: flow patterns, hydrodynamics, liquid-liquid flow, microchannel

Procedia PDF Downloads 379
1749 Characterization of Atmospheric Aerosols by Developing a Cascade Impactor

Authors: Sapan Bhatnagar

Abstract:

Micron size particles emitted from different sources and produced by combustion have serious negative effects on human health and environment. They can penetrate deep into our lungs through the respiratory system. Determination of the amount of particulates present in the atmosphere per cubic meter is necessary to monitor, regulate and model atmospheric particulate levels. Cascade impactor is used to collect the atmospheric particulates and by gravimetric analysis, their concentration in the atmosphere of different size ranges can be determined. Cascade impactors have been used for the classification of particles by aerodynamic size. They operate on the principle of inertial impaction. It consists of a number of stages each having an impaction plate and a nozzle. Collection plates are connected in series with smaller and smaller cutoff diameter. Air stream passes through the nozzle and the plates. Particles in the stream having large enough inertia impact upon the plate and smaller particles pass onto the next stage. By designing each successive stage with higher air stream velocity in the nozzle, smaller diameter particles will be collected at each stage. Particles too small to be impacted on the last collection plate will be collected on a backup filter. Impactor consists of 4 stages each made of steel, having its cut-off diameters less than 10 microns. Each stage is having collection plates, soaked with oil to prevent bounce and allows the impactor to function at high mass concentrations. Even after the plate is coated with particles, the incoming particle will still have a wet surface which significantly reduces particle bounce. The particles that are too small to be impacted on the last collection plate are then collected on a backup filter (microglass fiber filter), fibers provide larger surface area to which particles may adhere and voids in filter media aid in reducing particle re-entrainment.

Keywords: aerodynamic diameter, cascade, environment, particulates, re-entrainment

Procedia PDF Downloads 310
1748 Investigations of Bergy Bits and Ship Interactions in Extreme Waves Using Smoothed Particle Hydrodynamics

Authors: Mohammed Islam, Jungyong Wang, Dong Cheol Seo

Abstract:

The Smoothed Particle Hydrodynamics (SPH) method is a novel, meshless, and Lagrangian technique based numerical method that has shown promises to accurately predict the hydrodynamics of water and structure interactions in violent flow conditions. The main goal of this study is to build confidence on the versatility of the Smoothed Particle Hydrodynamics (SPH) based tool, to use it as a complementary tool to the physical model testing capabilities and support research need for the performance evaluation of ships and offshore platforms exposed to an extreme and harsh environment. In the current endeavor, an open-sourced SPH-based tool was used and validated for modeling and predictions of the hydrodynamic interactions of a 6-DOF ship and bergy bits. The study involved the modeling of a modern generic drillship and simplified bergy bits in floating and towing scenarios and in regular and irregular wave conditions. The predictions were validated using the model-scale measurements on a moored ship towed at multiple oblique angles approaching a floating bergy bit in waves. Overall, this study results in a thorough comparison between the model scale measurements and the prediction outcomes from the SPH tool for performance and accuracy. The SPH predicted ship motions and forces were primarily within ±5% of the measurements. The velocity and pressure distribution and wave characteristics over the free surface depicts realistic interactions of the wave, ship, and the bergy bit. This work identifies and presents several challenges in preparing the input file, particularly while defining the mass properties of complex geometry, the computational requirements, and the post-processing of the outcomes.

Keywords: SPH, ship and bergy bit, hydrodynamic interactions, model validation, physical model testing

Procedia PDF Downloads 121
1747 Preparation and Evaluation of Zidovudine Nanoparticles

Authors: D. R. Rama Brahma Reddy, A. Vijaya Sarada Reddy

Abstract:

Nanoparticles represent a promising drug delivery system of controlled and targeted drug release. They are specially designed to release the drug in the vicinity of target tissue. The aim of this study was to prepare and evaluate polymethacrylic acid nanoparticles containing Zidovudine in different drug to polymer ratio by nanoprecipitation method. SEM indicated that nanoparticles have a discrete spherical structure without aggregation. The average particle size was found to be 120 ± 0.02 - 420 ± 0.05 nm. The particle size of the nanoparticles was gradually increased with increase in the proportion of polymethacrylic acid polymer. The drug content of the nanoparticles was increasing on increasing polymer concentration up to a particular concentration. No appreciable difference was observed in the extent of degradation of product during 60 days in which, nanoparticles were stored at various temperatures. FT-IR studies indicated that there was no chemical interaction between drug and polymer and stability of drug. The in-vitro release behavior from all the drug loaded batches was found to be zero order and provided sustained release over a period of 24 h. The developed formulation overcome and alleviates the drawbacks and limitations of Zidovudine sustained release formulations and could possibility be advantageous in terms of increased bio availability of Zidovudine.

Keywords: nanoparticles, zidovudine, biodegradable, polymethacrylic acid

Procedia PDF Downloads 605
1746 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT

Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez

Abstract:

Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.

Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management

Procedia PDF Downloads 122
1745 Diversity, Biochemical and Genomic Assessment of Selected Benthic Species of Two Tropical Lagoons, Southwest Nigeria

Authors: G. F. Okunade, M. O. Lawal, R. E. Uwadiae, D. Portnoy

Abstract:

The diversity, physico-chemical, biochemical and genomics assessment of Macrofauna species of Ologe and Badagry Lagoons were carried out between August 2016 and July 2018. The concentrations of Fe, Zn, Mn, Cd, Cr, and Pb in water were determined by Atomic Absorption Spectrophotometer (AAS). Particle size distribution was determined with wet-sieving and sedimentation using hydrometer method. Genomics analyses were carried using 25 P. fusca (quadriseriata) and 25 P.fusca from each lagoon due to abundance in both lagoons all through the two years of collection. DNA was isolated from each sample using the Mag-Bind Blood and Tissue DNA HD 96 kit; a method designed to isolate high quality. The biochemical characteristics were analysed in the dominanat species (P.aurita and T. fuscatus) using ELISA kits. Physico-chemical parameters such as pH, total dissolved solids, dissolved oxygen, conductivity and TDS were analysed using APHA standard protocols. The Physico-chemical parameters of the water quality recorded with mean values of 32.46 ± 0.66mg/L and 41.93 ± 0.65 for COD, 27.28 ± 0.97 and 34.82 ± 0.1 mg/L for BOD, 0.04 ± 4.71 mg/L for DO, 6.65 and 6.58 for pH in Ologe and Badagry lagoons with significant variations (p ≤ 0.05) across seasons. The mean and standard deviation of salinity for Ologe and Badagry Lagoons ranged from 0.43 ± 0.30 to 0.27 ± 0.09. A total of 4210 species belonging to a phylum, two classes, four families and a total of 2008 species in Ologe lagoon while a phylum, two classes, 5 families and a total of 2202 species in Badagry lagoon. The percentage composition of the classes at Ologe lagoon had 99% gastropod and 1% bivalve, while Gastropod contributed 98.91% and bivalve 1.09% in Badagry lagoon. Particle size was distributed in 0.002mm to 2.00mm, particle size distribution in Ologe lagoon recorded 0.83% gravels, 97.83% sand, and 1.33% silt particles while Badagry lagoon recorded 7.43% sand, 24.71% silt, and 67.86% clay particles hence, the excessive dredging activities going on in the lagoon. Maximum percentage of sand (100%) was seen in station 6 in Ologe lagoon while the minimum (96%) was found in station 1. P. aurita (Ologe Lagoon) and T. fuscastus (Badagry Lagoon) were the most abundant benthic species in which both contributed 61.05% and 64.35%, respectively. The enzymatic activities of P. aurita observed with mean values of 21.03 mg/dl for AST, 10.33 mg/dl for ALP, 82.16 mg/dl for ALT and 73.06 mg/dl for CHO in Ologe Lagoon While T. fuscatus observed mean values of Badagry Lagoon) recorded mean values 29.76 mg/dl, ALP with 11.69mg/L, ALT with 140.58 mg/dl and CHO with 45.98 mg/dl. There were significant variations (P < 0.05) in AST and CHO levels of activities in the muscles of the species.

Keywords: benthos, biochemical responses, genomics, metals, particle size

Procedia PDF Downloads 114
1744 Novel Method of In-Situ Tracking of Mechanical Changes in Composite Electrodes during Charging-Discharging by QCM-D

Authors: M. D. Levi, Netanel Shpigel, Sergey Sigalov, Gregory Salitra, Leonid Daikhin, Doron Aurbach

Abstract:

We have developed an in-situ method for tracking ions adsorption into composite nanoporous carbon electrodes based on quartz-crystal microbalance (QCM). In these first papers QCM was used as a simple gravimetric probe of compositional changes in carbon porous composite electrodes during their charging since variation of the electrode potential did not change significantly width of the resonance. In contrast, when we passed from nanoporous carbons to a composite Li-ion battery material such as LiFePO4 olivine, the change in the resonance width was comparable with change of the resonance frequency (polymeric binder PVdF was shown to be completely rigid when used in aqueous solutions). We have provided a quantitative hydrodynamic admittance model of ion-insertion processes into electrode host accompanied by intercalation-induced dimensional changes of electrode particles, and hence the entire electrode coating. The change in electrode deformation and the related porosity modify hydrodynamic solid-liquid interactions tracked by QCM with dissipation monitoring. Using admittance modeling, we are able to evaluate the changes of effective thickness and permeability/porosity of composite electrode caused by applied potential and as a function of cycle number. This unique non-destructive technique may have great advantage in early diagnostics of cycling life durability of batteries and supercapacitors.

Keywords: Li-ion batteries, particles deformations, QCM-D, viscoelasticity

Procedia PDF Downloads 426
1743 Optimal Sliding Mode Controller for Knee Flexion during Walking

Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem

Abstract:

This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.

Keywords: optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons

Procedia PDF Downloads 68
1742 Exposure Assessment for Worker Exposed to Heavy Metals during Road Marking Operations

Authors: Yin-Hsuan Wu, Perng-Jy Tsai, Ying-Fang Wang, Shun-Hui Chung

Abstract:

The present study was conducted to characterize exposure concentrations, concentrations deposited on the different respiratory regions, and resultant health risks associated with heavy metal exposures for road marking workers. Road marking workers of three similar exposure groups (SEGs) were selected, including the paint pouring worker, marking worker, and preparing worker. Personal exposure samples were collected using an inhalable dust sampler (IOM), and the involved particle size distribution samples were estimated using an eight-stage Marple personal cascade impactor during five working days. In total, 25 IOM samples and 20 Marple samples were collected. All collected samples were analyzed for their heavy metal contents using the ICP/MS. The resultant heavy metal particle size distributions were also used to estimate the fractions of particle deposited on the head airways (Chead), tracheobronchial (Cthorac) and alveolar regions (Cresp) of the exposed workers. In addition, Pb and Cr were selected to estimate the incremental cancer risk, and Zn, Ti, and Mo were selected to estimate the corresponding non-cancer risk in the present study. Results show that three heavy metals, including Pb, Cr, and Ti, were found with the highest concentrations for the SEG of the paint pouring worker (=0.585±2.98, 0.307±1.71, 0.902±2.99 μg/m³, respectively). For the fraction of heavy metal particle deposited on the respiratory tract, both alveolar and head regions were found with the highest values (=23-43% and 39-61%, respectively). For both SEGs of the paint pouring and marking, 51% of Cr, 59-61% of Zn, and 48-51% of Ti were found to be deposited on the alveolar region, and 41-43% of Pb was deposited on the head region. Finally, the incremental cancer risk for the SEGs of the paint pouring, marking, and preparing were found as 1.08×10⁻⁵, 2.78×10⁻⁶, and 2.20×10⁻⁶, respectively. In addition, the estimated non-cancer risk for the above three SEGs was found to be consistently less than unity. In conclusion, though the estimated non-cancer risk was less than unity, all resultant incremental cancer risk was greater than 10⁻⁶ indicating the abatement of workers’ exposure is necessary. It is suggested that strategies, including placing on the molten kettle, substitution the currently used paints for less heavy metal containing paints, and wearing fume protecting personal protective equipment can be considered in the future from reducing the worker’s exposure aspect.

Keywords: health risk assessment, heavy metal, respiratory track deposition, road marking

Procedia PDF Downloads 147
1741 Tracking and Classifying Client Interactions with Personal Coaches

Authors: Kartik Thakore, Anna-Roza Tamas, Adam Cole

Abstract:

The world health organization (WHO) reports that by 2030 more than 23.7 million deaths annually will be caused by Cardiovascular Diseases (CVDs); with a 2008 economic impact of $3.76 T. Metabolic syndrome is a disorder of multiple metabolic risk factors strongly indicated in the development of cardiovascular diseases. Guided lifestyle intervention driven by live coaching has been shown to have a positive impact on metabolic risk factors. Individuals’ path to improved (decreased) metabolic risk factors are driven by personal motivation and personalized messages delivered by coaches and augmented by technology. Using interactions captured between 400 individuals and 3 coaches over a program period of 500 days, a preliminary model was designed. A novel real time event tracking system was created to track and classify clients based on their genetic profile, baseline questionnaires and usage of a mobile application with live coaching sessions. Classification of clients and coaches was done using a support vector machines application build on Apache Spark, Stanford Natural Language Processing Library (SNLPL) and decision-modeling.

Keywords: guided lifestyle intervention, metabolic risk factors, personal coaching, support vector machines application, Apache Spark, natural language processing

Procedia PDF Downloads 416
1740 Chitosan-Aluminum Monostearate Dispersion as Fabricating Liquid for Constructing Controlled Drug Release Matrix

Authors: Kotchamon Yodkhum, Thawatchai Phaechamud

Abstract:

Hydrophobic chitosan-based materials have been developed as controlled drug delivery system. This study was aimed to prepare and evaluate chitosan-aluminum monostearate composite dispersion (CLA) as fabricating liquid for construct a hydrophobic, controlled-release solid drug delivery matrix. This work was attempted to blend hydrophobic substance, aluminum monostearate (AMS), with chitosan in acidic aqueous medium without using any surfactants or grafting reaction, and high temperature during mixing that are normally performed when preparing hydrophobic chitosan system. Lactic acid solution (2%w/v) was employed as chitosan solvent. CLA dispersion was prepared by dispersing different amounts of AMS (1-20% w/w) in chitosan solution (4% w/w) with continuous agitation using magnetic stirrer for 24 h. Effect of AMS amount on physicochemical properties of the dispersion such as viscosity, rheology and particle size was evaluated. Morphology of chitosan-AMS complex (dispersant) was observed under inverted microscope and atomic force microscope. Stability of CLA dispersions was evaluated after preparation within 48 h. CLA dispersions containing AMS less than 5 % w/w exhibited rheological behavior as Newtonian while that containing higher AMS amount exhibited as pseudoplastic. Particle size of the dispersant was significantly smaller when AMS amount was increased up to 5% w/w and was not different between the higher AMS amount system. Morphology of the dispersant under inverted microscope displayed irregular shape and their size exhibited the same trend with particle size measurement. Observation of the dispersion stability revealed that phase separation occurred faster in the system containing higher AMS amount which indicated lower stability of the system. However, the dispersions were homogeneous and stable more than 12 hours after preparation that enough for fabrication process. The prepared dispersions had ability to be fabricated as a porous matrix via lyophilization technique.

Keywords: chitosan, aluminum monostearate, dispersion, controlled-release

Procedia PDF Downloads 374
1739 Ant-Tracking Attribute: A Model for Understanding Production Response

Authors: Prince Suka Neekia Momta, Rita Iheoma Achonyeulo

Abstract:

Ant Tracking seismic attribute applied over 4-seconds seismic volume revealed structural features triggered by clay diapirism, growth fault development, rapid deltaic sedimentation and intense drilling. The attribute was extracted on vertical seismic sections and time slices. Mega tectonic structures such as growth faults and clay diapirs are visible on vertical sections with obscured minor lineaments or fractures. Fractures are distinctively visible on time slices yielding recognizable patterns corroborating established geologic models. This model seismic attribute enabled the understanding of fluid flow characteristics and production responses. Three structural patterns recognized in the field include: major growth faults, minor faults or lineaments and network of fractures. Three growth faults mapped on seismic section form major deformation bands delimiting the area into three blocks or depocenters. The growth faults trend E-W, dip down-to-south in the basin direction, and cut across the study area. The faults initiating from about 2000ms extended up to 500ms, and tend to progress parallel and opposite to the growth direction of an upsurging diapiric structure. The diapiric structures form the major deformational bands originating from great depths (below 2000ms) and rising to about 1200ms where series of sedimentary layers onlapped and pinchout stratigraphically against the diapir. Several other secondary faults or lineaments that form parallel streaks to one another also accompanied the growth faults. The fracture networks have no particular trend but form a network surrounding the well area. Faults identified in the study area have potentials for structural hydrocarbon traps whereas the presence of fractures created a fractured-reservoir condition that enhanced rapid fluid flow especially water. High aquifer flow potential aided by possible fracture permeability resulted in rapid decline in oil rate. Through the application of Ant Tracking attribute, it is possible to obtain detailed interpretation of structures that can have direct influence on oil and gas production.

Keywords: seismic, attributes, production, structural

Procedia PDF Downloads 44
1738 The Pressure Losses in the Model of Human Lungs

Authors: Michaela Chovancova, Pavel Niedoba

Abstract:

For the treatment of acute and chronic lung diseases it is preferred to deliver medicaments by inhalation. The drug is delivered directly to tracheobronchial tree. This way allows the given medicament to get directly into the place of action and it makes rapid onset of action and maximum efficiency. The transport of aerosol particles in the particular part of the lung is influenced by their size, anatomy of the lungs, breathing pattern and airway resistance. This article deals with calculation of airway resistance in the lung model of Horsfield. It solves the problem of determination of the pressure losses in bifurcation and thus defines the pressure drop at a given location in the bronchial tree. The obtained data will be used as boundary conditions for transport of aerosol particles in a central part of bronchial tree realized by Computational Fluid Dynamics (CFD) approach. The results obtained from CFD simulation will allow us to provide information on the required particle size and optimal inhalation technique for particle transport into particular part of the lung.

Keywords: human lungs, bronchial tree, pressure losses, airways resistance, flow, breathing

Procedia PDF Downloads 342
1737 On the Quantum Behavior of Nanoparticles: Quantum Theory and Nano-Pharmacology

Authors: Kurudzirayi Robson Musikavanhu

Abstract:

Nanophase particles exhibit quantum behavior by virtue of their small size, being particles of gamma to x-ray wavelength [atomic range]. Such particles exhibit high frequencies, high energy/photon, high penetration power, high ionization power [atomic behavior] and are stable at low energy levels as opposed to bulk phase matter [macro particles] which exhibit higher wavelength [radio wave end] properties, hence lower frequency, lower energy/photon, lower penetration power, lower ionizing power and are less stable at low temperatures. The ‘unique’ behavioral motion of Nano systems will remain a mystery as long as quantum theory remains a mystery, and for pharmacology, pharmacovigilance profiling of Nano systems becomes virtually impossible. Quantum theory is the 4 – 3 – 5 electromagnetic law of life and life motion systems on planet earth. Electromagnetic [wave-particle] properties of all particulate matter changes as mass [bulkiness] changes from one phase to the next [Nano-phase to micro-phase to milli-phase to meter-phase to kilometer phase etc.] and the subsequent electromagnetic effect of one phase particle on bulk matter [different phase] changes from one phase to another. All matter exhibit electromagnetic properties [wave-particle duality] in behavior and the lower the wavelength [and the lesser the bulkiness] the higher the gamma ray end properties exhibited and the higher the wavelength [and the greater the bulkiness], the more the radio-wave end properties are exhibited. Quantum theory is the 4 [moon] – 3[sun] – [earth] 5 law of the Electromagnetic spectrum [solar system]. 4 + 3 = 7; 4 + 3 + 5 = 12; 4 * 3 * 5 = 60; 42 + 32 = 52; 43 + 33 + 53 = 63. Quantum age is overdue.

Keywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theory

Procedia PDF Downloads 423
1736 Famotidine Loaded Solid Lipid Nanoparticles (SLN) for Oral Delivery System

Authors: Rachmat Mauludin, Novita R. Kusuma, Diky Mudhakir

Abstract:

Famotidine (FMT) is one of used substances in the treatment of hiperacidity and peptic ulcer, administered orally and parenterally via intravenous injection. Oral administration, which is more favorable, has been reported to have many obstacles in the process of the treatment, includes decreasing the bioavailability of FMT. This research was aimed to prepare FMT in form of solid lipid nanoparticles (SLN) with size ranging between 100-200 nm. The research was carried out also by optimizing factors that may affect physical stability of SLN. Formulation of Famotidine SLN was carried out by optimizing factors, such as duration of homogenization and sonication, lipid concentration, stabilizer composition and stabilizer concentration. SLN physical stability was evaluated (particle size distribution) for 42 days in 3 diferent temperatures. Entrapment efficiency and drug loading was determined indirectly and directly. The morphology of SLN was visualized by transmission electron microscope (TEM). In vitro release study of FMT was conducted in 2 mediums, at pH of 1.2 and 7.4. Chemical stability of FMT was determined by quantifying the concentration of FMT within 42 days. Famotidin SLN consisted of GMS as lipid and poloxamer 188, lecithin, and polysorbate 80 as stabilizers. Homogenization and sonication was performed for 5 minutes and 10 minutes. Physyical stability of nanoparticles at 3 different temperatures was no significant difference. The best formula was physically stable until 42 days with mean particle size below 200 nm. Nanoparticles produced was able to entrap FMT until 86.6%. Evaluation by TEM showed that nanoparticles was spherical and solid. In medium pH of 1.2, FMT was released only 30% during 4 hour. On the other hand, within 4 hours SLN could release FMT completely in medium pH of 7.4. The FMT concentration in nanoparticles dispersion was maintained until 95% in 42 days (40oC, RH 75%). Famotidine SLN was able to be produced with mean particle size ranging between 100-200 nm and physically stable for 42 days. SLN could be loaded by 86,6% of FMT. Morphologically, obtained SLN was spheric and solid. During 4 hours in medium pH of 1.2 and 7.4, FMT was released until 30% and 100%, respectively.

Keywords: solid lipid nanoparticle (SLN), famotidine (FMT), physicochemical properties, release study

Procedia PDF Downloads 343
1735 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 158
1734 Determination of Elements and Minerals Present in Harmattan Dust Using Particle Induced X-Ray Emission (PIXE) and X-Ray Fluorescence (XRF) Across Selected Nigerian Stations

Authors: Aweda Francis Olatunbosun, Falaiye Oluwasesan Adeniran

Abstract:

The suspended harmattan dust was collected at seven different stations in Nigeria: Iwo (7º 63'N, 4º 19'E), Oyo (8º 12'N, 3º 42'E), Ilorin (8º36'N, 4º 35'E), Minna (9º36'N, 06º35'E), Abuja (09º 09'N, 07º 11'E), Lafia (08º 49'N, 07º50'E), and Jos (9º55'N, 8º55'E), which were analyzed to determine elements and minerals present in the sample using X-Ray Fluorescence (XRF), and Particle Induced X-Ray Emission (PIXE). The collected sample results show the elemental concentration of the sample in various forms across each station. Cr, Ce, Mo, Zr, Sr, V, Ti, K, As, Ni, Mn, Ca, Pb, Fe, Zn, and Cu were found in the sample using an XRF machine. The minerals discovered in the sample include, but are not limited to, Corundum [Al₂O₃], Periclase [MgO], Rutile [TiO₂], and Quartz [SiO₂] in various proportions. Furthermore, the results revealed the enrichment factor for Iwo (1.3998 μg/m³), Oyo (1.3998 μg/m³), Ilorin (1.79765 μg/m³), Minna (1.737325 μg/m³), Abuja (1.635425 μg/m³), Lafia (1.409695 μg/m³), and Jos (1.787075 μg/m³). The study concluded that the sample contains sixteen (16) elements and minerals in varying percentages and concentrations. It is therefore recommended that appropriate safety procedures be put in place to raise community awareness of the presence of elements in harmattan dust.

Keywords: elements, minerals, harmattan dust, XRF, PIXE

Procedia PDF Downloads 326
1733 [Keynote]: No-Trust-Zone Architecture for Securing Supervisory Control and Data Acquisition

Authors: Michael Okeke, Andrew Blyth

Abstract:

Supervisory Control And Data Acquisition (SCADA) as the state of the art Industrial Control Systems (ICS) are used in many different critical infrastructures, from smart home to energy systems and from locomotives train system to planes. Security of SCADA systems is vital since many lives depend on it for daily activities and deviation from normal operation could be disastrous to the environment as well as lives. This paper describes how No-Trust-Zone (NTZ) architecture could be incorporated into SCADA Systems in order to reduce the chances of malicious intent. The architecture is made up of two distinctive parts which are; the field devices such as; sensors, PLCs pumps, and actuators. The second part of the architecture is designed following lambda architecture, which is made up of a detection algorithm based on Particle Swarm Optimization (PSO) and Hadoop framework for data processing and storage. Apache Spark will be a part of the lambda architecture for real-time analysis of packets for anomalies detection.

Keywords: industrial control system (ics, no-trust-zone (ntz), particle swarm optimisation (pso), supervisory control and data acquisition (scada), swarm intelligence (SI)

Procedia PDF Downloads 323