Search results for: ionic wind
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1587

Search results for: ionic wind

897 Laminar Separation Bubble Prediction over an Airfoil Using Transition SST Turbulence Model on Moderate Reynolds Number

Authors: Younes El Khchine, Mohammed Sriti

Abstract:

A parametric study has been conducted to analyse the flow around S809 airfoil of a wind turbine in order to better understand the characteristics and effects of laminar separation bubble (LSB) on aerodynamic design for maximizing wind turbine efficiency. Numerical simulations were performed at low Reynolds numbers by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations based on C-type structural mesh and using the γ-Reθt turbulence model. A two-dimensional study was conducted for the chord Reynolds number of 1×10⁵ and angles of attack (AoA) between 0 and 20.15 degrees. The simulation results obtained for the aerodynamic coefficients at various angles of attack (AoA) were compared with XFoil results. A sensitivity study was performed to examine the effects of Reynolds number and free-stream turbulence intensity on the location and length of the laminar separation bubble and the aerodynamic performances of wind turbines. The results show that increasing the Reynolds number leads to a delay in the laminar separation on the upper surface of the airfoil. The increase in Reynolds number leads to an accelerated transition process, and the turbulent reattachment point moves closer to the leading edge owing to an earlier reattachment of the turbulent shear layer. This leads to a considerable reduction in the length of the separation bubble as the Reynolds number is increased. The increase in the level of free-stream turbulence intensity leads to a decrease in separation bubble length and an increase in the lift coefficient while having negligible effects on the stall angle. When the AoA increased, the bubble on the suction airfoil surface was found to move upstream to the leading edge of the airfoil, that causes earlier laminar separation.

Keywords: laminar separation bubble, turbulence intensity, S809 airfoil, transition model, Reynolds number

Procedia PDF Downloads 71
896 Sundarban as a Buffer against Storm Surge Flooding

Authors: Mohiuddin Sakib, Fatin Nihal, Anisul Haque, Munsur Rahman, Mansur Ali

Abstract:

Sundarban, the largest mangrove forest in the world, is known to act as a buffer against the cyclone and storm surge. Theoretically, Sundarban absorbs the initial thrust of the wind and acts to ‘resist’ the storm surge flooding. The role of Sundarban was evident during the cyclone Sidr when the Sundarban solely defended the initial thrust of the cyclonic wind and the resulting storm surge inundation. In doing this, Sundarban sacrificed 30% of its plant habitats. Although no scientific study has yet been conducted, it is generally believed that Sundarban will continuously play its role as a buffer against the cyclone when landfall of the cyclone is at or close to the Sundarban. Considering these facts, the present study mainly focused on a scientific insight into the role of Sundarban as a buffer against the present-day cyclone and storm surge and also its probable role on the impacts of future storms of similar nature but with different landfall locations. The Delft 3D dashboard and flow model are applied to compute the resulting inundation due to cyclone induced storm surge. The results show that Sundarban indeed acts as a buffer against the storm surge inundation when cyclone landfall is at or close to Sundarban.

Keywords: buffer, Mangrove forest, Sidr, landfall, roughness

Procedia PDF Downloads 382
895 Numerical Study of Laminar Separation Bubble Over an Airfoil Using γ-ReθT SST Turbulence Model on Moderate Reynolds Number

Authors: Younes El Khchine

Abstract:

A parametric study has been conducted to analyse the flow around S809 airfoil of a wind turbine in order to better understand the characteristics and effects of laminar separation bubble (LSB) on aerodynamic design for maximizing wind turbine efficiency. Numerical simulations were performed at low Reynolds numbers by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations based on C-type structural mesh and using the γ-Reθt turbulence model. A two-dimensional study was conducted for the chord Reynolds number of 1×105 and angles of attack (AoA) between 0 and 20.15 degrees. The simulation results obtained for the aerodynamic coefficients at various angles of attack (AoA) were compared with XFoil results. A sensitivity study was performed to examine the effects of Reynolds number and free-stream turbulence intensity on the location and length of the laminar separation bubble and the aerodynamic performances of wind turbines. The results show that increasing the Reynolds number leads to a delay in the laminar separation on the upper surface of the airfoil. The increase in Reynolds number leads to an accelerated transition process, and the turbulent reattachment point moves closer to the leading edge owing to an earlier reattachment of the turbulent shear layer. This leads to a considerable reduction in the length of the separation bubble as the Reynolds number is increased. The increase in the level of free-stream turbulence intensity leads to a decrease in separation bubble length and an increase in the lift coefficient while having negligible effects on the stall angle. When the AoA increased, the bubble on the suction airfoil surface was found to move upstream to the leading edge of the airfoil, causing earlier laminar separation.

Keywords: laminar separation bubble, turbulence intensity, s809 airfoil, transition model, Reynolds number

Procedia PDF Downloads 63
894 Fabrication of All-Cellulose Composites from End-of-Life Textiles

Authors: Behnaz Baghaei, Mikael Skrifvars

Abstract:

Sustainability is today a trend that is seen everywhere, with no exception for the textiles 31 industry. However, there is a rather significant downside regarding how the textile industry currently operates, namely the huge amount of end-of-life textiles coming along with it. Approximately 73% of the 53 million tonnes of fibres used annually for textile production is landfilled or incinerated, while only 12% is recycled as secondary products. Mechanical recycling of end-of-life textile fabrics into yarns and fabrics was before very common, but due to the low costs for virgin man-made fibres, the current textile material composition diversity, the fibre material quality variations and the high recycling costs this route is not feasible. Another way to decrease the ever-growing pile of textile waste is to repurpose the textile. If a feasible methodology can be found to reuse end-of life textiles as secondary market products including a manufacturing process that requires rather low investment costs, then this can be highly beneficial to counteract the increasing textile waste volumes. In structural composites, glass fibre textiles are used as reinforcements, but today there is a growing interest in biocomposites where the reinforcement and/or the resin are from a biomass resource. All-cellulose composites (ACCs) are monocomponent or single polymer composites, and they are entirely made from cellulose, ideally leading to a homogeneous biocomposite. Since the matrix and the reinforcement are both made from cellulose, and therefore chemically identical, they are fully compatible with each other which allow efficient stress transfer and adhesion at their interface. Apart from improving the mechanical performance of the final products, the recycling of the composites will be facilitated. This paper reports the recycling of end-of-life cellulose containing textiles by fabrication of all-cellulose composites (ACCs). Composite laminates were prepared by using an ionic liquid (IL) in a hot process, involving a partial dissolving of the cellulose fibres. Discharged denim fabrics were used as the reinforcement while dissolved cellulose from two different cellulose resources was used as the matrix phase. Virgin cotton staple fibres and recovered cotton from polyester/cotton (polycotton) waste fabrics were used to form the matrix phase. The process comprises the dissolving 6 wt.% cellulose solution in the ionic liquid 1-butyl-3-methyl imidazolium acetate ([BMIM][Ac]), this solution acted as a precursor for the matrix component. The denim fabrics were embedded in the cellulose/IL solution after which laminates were formed, which also involved removal of the IL by washing. The effect of reuse of the recovered IL was also investigated. The mechanical properties of the obtained ACCs were determined regarding tensile, impact and flexural properties. Mechanical testing revealed that there are no clear differences between the values measured for mechanical strength and modulus of the manufactured ACCs from denim/cotton-fresh IL, denim/recovered cotton-fresh IL and denim/cotton-recycled IL. This could be due to the low weight fraction of the cellulose matrix in the final ACC laminates and presumably the denim as cellulose reinforcement strongly influences and dominates the mechanical properties. Fabricated ACC composite laminates were further characterized regarding scanning electron microscopy.

Keywords: all-cellulose composites, denim fabrics, ionic liquid, mechanical properties

Procedia PDF Downloads 105
893 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device

Authors: Muthana A. M. Jameel Al-Jaboori

Abstract:

In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.

Keywords: water wave, models, Wells turbine, MATLAB program

Procedia PDF Downloads 342
892 Numerical Study of Laminar Separation Bubble Over an Airfoil Using γ-ReθT SST Turbulence Model on Moderate Reynolds Number

Authors: Younes El Khchine, Mohammed Sriti

Abstract:

A parametric study has been conducted to analyse the flow around S809 airfoil of wind turbine in order to better understand the characteristics and effects of laminar separation bubble (LSB) on aerodynamic design for maximizing wind turbine efficiency. Numerical simulations were performed at low Reynolds number by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations based on C-type structural mesh and using γ-Reθt turbulence model. Two-dimensional study was conducted for the chord Reynolds number of 1×105 and angles of attack (AoA) between 0 and 20.15 degrees. The simulation results obtained for the aerodynamic coefficients at various angles of attack (AoA) were compared with XFoil results. A sensitivity study was performed to examine the effects of Reynolds number and free-stream turbulence intensity on the location and length of laminar separation bubble and aerodynamic performances of wind turbine. The results show that increasing the Reynolds number leads to a delay in the laminar separation on the upper surface of the airfoil. The increase in Reynolds number leads to an accelerate transition process and the turbulent reattachment point move closer to the leading edge owing to an earlier reattachment of the turbulent shear layer. This leads to a considerable reduction in the length of the separation bubble as the Reynolds number is increased. The increase of the level of free-stream turbulence intensity leads to a decrease in separation bubble length and an increase the lift coefficient while having negligible effects on the stall angle. When the AoA increased, the bubble on the suction airfoil surface was found to moves upstream to leading edge of the airfoil that causes earlier laminar separation.

Keywords: laminar separation bubble, turbulence intensity, S809 airfoil, transition model, Reynolds number

Procedia PDF Downloads 67
891 Optimal Sizes of Battery Energy Storage Systems for Economic Operation in Microgrid

Authors: Sirus Mohammadi, Sara Ansari, Darush dehghan, Habib Hoshyari

Abstract:

Batteries for storage of electricity from solar and wind generation farms are a key element in the success of sustainability. In recent years, due to large integration of Renewable Energy Sources (RESs) like wind turbine and photovoltaic unit into the Micro-Grid (MG), the necessity of Battery Energy Storage (BES) has increased dramatically. The BES has several benefits and advantages in the MG-based applications such as short term power supply, power quality improvement, facilitating integration of RES, ancillary service and arbitrage. This paper presents the cost-based formulation to determine the optimal size of the BES in the operation management of MG. Also, some restrictions, i.e. power capacity of Distributed Generators (DGs), power and energy capacity of BES, charge/discharge efficiency of BES, operating reserve and load demand satisfaction should be considered as well. In this paper, a methodology is proposed for the optimal allocation and economic analysis of ESS in MGs on the basis of net present value (NPV). As the optimal operation of an MG strongly depends on the arrangement and allocation of its ESS, economic operation strategies and optimal allocation methods of the ESS devices are required for the MG.

Keywords: microgrid, energy storage system, optimal sizing, net present value

Procedia PDF Downloads 486
890 An Experimental Study of Downstream Structures on the Flow-Induced Vibrations Energy Harvester Performances

Authors: Pakorn Uttayopas, Chawalit Kittichaikarn

Abstract:

This paper presents an experimental investigation for the characteristics of an energy harvesting device exploiting flow-induced vibration in a wind tunnel. A stationary bluff body is connected with a downstream tip body via an aluminium cantilever beam. Various lengths of aluminium cantilever beam and different shapes of downstream tip body are considered. The results show that the characteristics of the energy harvester’s vibration depend on both the length of the aluminium cantilever beam and the shape of the downstream tip body. The highest ratio between vibration amplitude and bluff body diameter was found to be 1.39 for an energy harvester with a symmetrical triangular tip body and L/D1 = 5 at 9.8 m/s of flow speed (Re = 20077). Using this configuration, the electrical energy was extracted with a polyvinylidene fluoride (PVDF) piezoelectric beam with different load resistances, of which the optimal value could be found on each Reynolds number. The highest power output was found to be 3.19 µW, at 9.8 m/s of flow speed (Re = 20077) and 27 MΩ of load resistance.

Keywords: downstream structures, energy harvesting, flow-induced vibration, piezoelectric material, wind tunnel

Procedia PDF Downloads 226
889 Production and Purification of Monosaccharides by Hydrolysis of Sugar Cane Bagasse in an Ionic Liquid Medium

Authors: T. R. Bandara, H. Jaelani, G. J. Griffin

Abstract:

The conversion of lignocellulosic waste materials, such as sugar cane bagasse, to biofuels such as ethanol has attracted significant interest as a potential element for transforming transport fuel supplies to totally renewable sources. However, the refractory nature of the cellulosic structure of lignocellulosic materials has impeded progress on developing an economic process, whereby the cellulose component may be effectively broken down to glucose monosaccharides and then purified to allow downstream fermentation. Ionic liquid (IL) treatment of lignocellulosic biomass has been shown to disrupt the crystalline structure of cellulose thus potentially enabling the cellulose to be more readily hydrolysed to monosaccharides. Furthermore, conventional hydrolysis of lignocellulosic materials yields byproducts that are inhibitors for efficient fermentation of the monosaccharides. However, selective extraction of monosaccharides from an aqueous/IL phase into an organic phase utilizing a combination of boronic acids and quaternary amines has shown promise as a purification process. Hydrolysis of sugar cane bagasse immersed in an aqueous solution with IL (1-ethyl-3-methylimidazolium acetate) was conducted at different pH and temperature below 100 ºC. It was found that the use of a high concentration of hydrochloric acid to acidify the solution inhibited the hydrolysis of bagasse. At high pH (i.e. basic conditions), using sodium hydroxide, catalyst yields were reduced for total reducing sugars (TRS) due to the rapid degradation of the sugars formed. For purification trials, a supported liquid membrane (SLM) apparatus was constructed, whereby a synthetic solution containing xylose and glucose in an aqueous IL phase was transported across a membrane impregnated with phenyl boronic acid/Aliquat 336 to an aqueous phase. The transport rate of xylose was generally higher than that of glucose indicating that a SLM scheme may not only be useful for purifying sugars from undesirable toxic compounds, but also for fractionating sugars to improve fermentation efficiency.

Keywords: biomass, bagasse, hydrolysis, monosaccharide, supported liquid membrane, purification

Procedia PDF Downloads 244
888 Dual Thermoresponsive Polyzwitterionic Core-Shell Microgels and Study of Their Anti-Fouling Effect

Authors: P. Saha, R. Ganguly, N. K .Singha, A. Pich

Abstract:

Microgel, a smart class of material, has drawn attention in the past few years due to its response to external stimuli like temperature, pH, and ionic strength of the solution. Among them, one type of polymer becomes soluble, and the other becomes insoluble in water upon heating displaying upper critical solution temperature (UCST) (e.g., polysulfobetaine, PSB) and lower critical solution temperature (LCST) (e.g., poly(N-vinylcaprolactam, PVCL)) respectively. Polyzwitterions, electrically neutral polymers are biocompatible, biodegradable, and non-cytotoxic in nature, and presence of zwitterionic pendant group in the main backbone makes them stable against temperature and pH variations and strong hydration capability in salt solution promotes them to be used as interfacial bio-adhesion resistance material. Majority of zwitterionic microgels have been synthesized in mini- emulsion technique using free radical polymerization approach. Here, a new route to synthesize dual thermo-responsive PVCL microgels decorated with appreciable amount of zwitterionic PSB chains was developed by a purely water-based surfactant-free reversible addition–fragmentation chain transfer (RAFT) precipitation polymerization. PSB macro-RAFTs having different molecular weights were synthesized and utilized for surface-grafting with PVCL microgels varying the macro-RAFT concentration using N,N′-methylenebis(acrylamide) (BIS) as cross-linker. Increasing the PSB concentration in the PVCL microgels resulted in a linear increase in UCST but decrease in hydrodynamic radius due to strong intrachain coulombic attraction forces acting between the opposite charges present in the zwitterionic groups. Anti- fouling effect was observed on addition of BSA protein solution on the microgel-coated membrane surfaces as studied by fluorescence spectrophotoscopy.

Keywords: microgels, polyzwitterions, upper critical solution temperature-lower critical solution temperature, UCST-LCST, ionic crosslinking

Procedia PDF Downloads 108
887 Evaluation of Energy Upgrade Measures and Connection of Renewable Energy Sources Using Software Tools: Case Study of an Academic Library Building in Larissa, Greece

Authors: Giwrgos S. Gkarmpounis, Aikaterini G. Rokkou, Marios N. Moschakis

Abstract:

Increased energy consumption in the academic buildings, creates the need to implement energy saving measures and to take advantage of the renewable energy sources to cover the electrical needs of those buildings. An Academic Library will be used as a case study. With the aid of RETScreen software that takes into account the energy consumptions and characteristics of the Library Building, it is proved that measures such as the replacement of fluorescent lights with led lights, the installation of outdoor shading, the replacement of the openings and Building Management System installation, provide a high level of energy savings. Moreover, given the available space of the building and the climatic data, the installation of a photovoltaic system of 100 kW can also cover a serious amount of the building energy consumption, unlike a wind system that seems uncompromising. Lastly, HOMER software is used to compare the use of a photovoltaic system against a wind system in order to verify the results that came up from the RETScreen software concerning the renewable energy sources.

Keywords: building sector, energy saving measures, energy upgrading, homer software, renewable energy sources, RETScreen software

Procedia PDF Downloads 219
886 The Impact of Undisturbed Flow Speed on the Correlation of Aerodynamic Coefficients as a Function of the Angle of Attack for the Gyroplane Body

Authors: Zbigniew Czyz, Krzysztof Skiba, Miroslaw Wendeker

Abstract:

This paper discusses the results of aerodynamic investigation of the Tajfun gyroplane body designed by a Polish company, Aviation Artur Trendak. This gyroplane has been studied as a 1:8 scale model. Scaling objects for aerodynamic investigation is an inherent procedure in any kind of designing. If scaling, the criteria of similarity need to be satisfied. The basic criteria of similarity are geometric, kinematic and dynamic. Despite the results of aerodynamic research are often reduced to aerodynamic coefficients, one should pay attention to how values of coefficients behave if certain criteria are to be satisfied. To satisfy the dynamic criterion, for example, the Reynolds number should be focused on. This is the correlation of inertial to viscous forces. With the multiplied flow speed by the specific dimension as a numerator (with a constant kinematic viscosity coefficient), flow speed in a wind tunnel research should be increased as many times as an object is decreased. The aerodynamic coefficients specified in this research depend on the real forces that act on an object, its specific dimension, medium speed and variations in its density. Rapid prototyping with a 3D printer was applied to create the research object. The research was performed with a T-1 low-speed wind tunnel (its diameter of the measurement volume is 1.5 m) and a six-element aerodynamic internal scales, WDP1, at the Institute of Aviation in Warsaw. This T-1 wind tunnel is low-speed continuous operation with open space measurement. The research covered a number of the selected speeds of undisturbed flow, i.e. V = 20, 30 and 40 m/s, corresponding to the Reynolds numbers (as referred to 1 m) Re = 1.31∙106, 1.96∙106, 2.62∙106 for the angles of attack ranging -15° ≤ α ≤ 20°. Our research resulted in basic aerodynamic characteristics and observing the impact of undisturbed flow speed on the correlation of aerodynamic coefficients as a function of the angle of attack of the gyroplane body. If the speed of undisturbed flow in the wind tunnel changes, the aerodynamic coefficients are significantly impacted. At speed from 20 m/s to 30 m/s, drag coefficient, Cx, changes by 2.4% up to 9.9%, whereas lift coefficient, Cz, changes by -25.5% up to 15.7% if the angle of attack of 0° excluded or by -25.5% up to 236.9% if the angle of attack of 0° included. Within the same speed range, the coefficient of a pitching moment, Cmy, changes by -21.1% up to 7.3% if the angles of attack -15° and -10° excluded or by -142.8% up to 618.4% if the angle of attack -15° and -10° included. These discrepancies in the coefficients of aerodynamic forces definitely need to consider while designing the aircraft. For example, if load of certain aircraft surfaces is calculated, additional correction factors definitely need to be applied. This study allows us to estimate the discrepancies in the aerodynamic forces while scaling the aircraft. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: aerodynamics, criteria of similarity, gyroplane, research tunnel

Procedia PDF Downloads 384
885 Flow Separation Control on an Aerofoil Using Grooves

Authors: Neel K. Shah

Abstract:

Wind tunnel tests have been performed at The University of Manchester to investigate the impact of surface grooves of a trapezoidal planform on flow separation on a symmetrical aerofoil. A spanwise array of the grooves has been applied around the maximum thickness location of the upper surface of an NACA-0015 aerofoil. The aerofoil has been tested in a two-dimensional set-up in a low-speed wind tunnel at an angle of attack (AoA) of 3° and a chord-based Reynolds number (Re) of ~2.7 x 105. A laminar separation bubble developed on the aerofoil at low AoA. It has been found that the grooves shorten the streamwise extent of the separation bubble by shedding a pair of counter-rotating vortices. However, the increase in leading-edge suction due to the shorter bubble is not significant since the creation of the grooves results in a decrease of surface curvature and an increase in blockage (increase in surface pressure). Additionally, the increased flow mixing by the grooves thickens the boundary layer near the trailing edge of the aerofoil also contributes to this limitation. As a result of these competing effects, the improvement in the pressure-lift and pressure-drag coefficients are small, i.e., by ~1.30% and ~0.30%, respectively, at 3° AoA. Crosswire anemometry shows that the grooves increase turbulence intensity and Reynolds stresses in the wake, thus indicating an increase in viscous drag.

Keywords: aerofoil flow control, flow separation, grooves, vortices

Procedia PDF Downloads 305
884 Window Opening Behavior in High-Density Housing Development in Subtropical Climate

Authors: Minjung Maing, Sibei Liu

Abstract:

This research discusses the results of a study of window opening behavior of large housing developments in the high-density megacity of Hong Kong. The methods used for the study involved field observations using photo documentation of the four cardinal elevations (north, south-east, and west) of two large housing developments in a very dense urban area of approx. 46,000 persons per square meter within the city of Hong Kong. The targeted housing developments (A and B) are large public housing with a population of about 13,000 in each development of lower income. However, the mean income level in development A is about 40% higher than development B and home ownership is 60% in development A and 0% in development B. Mapping of the surrounding amenities and layout of the developments were also studied to understand the available activities to the residents. The photo documentation of the elevations was taken from November 2016 to February 2018 to gather a full spectrum of different seasons and both in the morning and afternoon (am/pm) times. From the photograph, the window opening behavior was measured by counting the amount of windows opened as a percentage of all the windows on that façade. For each date of survey data collected, weather data was recorded from weather stations located in the same region to collect temperature, humidity and wind speed. To further understand the behavior, simulation studies of microclimate conditions of the housing development was conducted using the software ENVI-met, a widely used simulation tool by researchers studying urban climate. Four major conclusions can be drawn from the data analysis and simulation results. Firstly, there is little change in the amount of window opening during the different seasons within a temperature range of 10 to 35 degrees Celsius. This means that people who tend to open their windows have consistent window opening behavior throughout the year and high tolerance of indoor thermal conditions. Secondly, for all four elevations the lower-income development B opened more windows (almost two times more units) than higher-income development A meaning window opening behavior had strong correlations with income level. Thirdly, there is a lack of correlation between outdoor horizontal wind speed and window opening behavior, as the changes of wind speed do not seem to affect the action of opening windows in most conditions. Similar to the low correlation between horizontal wind speed and window opening percentage, it is found that vertical wind speed also cannot explain the window opening behavior of occupants. Fourthly, there is a slightly higher average of window opening on the south elevation than the north elevation, which may be due to the south elevation being well shaded from high angle sun during the summer and allowing heat into units from lower angle sun during the winter season. These findings are important to providing insight into how to better design urban environments and indoor thermal environments for a liveable high density city.

Keywords: high-density housing, subtropical climate, urban behavior, window opening

Procedia PDF Downloads 119
883 Allelopathic Effects of Eucalyptus camaldulensis and E. gomphocephala on Seed Germination and Seedling Growth of Barley

Authors: Sallah S. El-Ammari, Mona. S. Hasan

Abstract:

This research is aimed to study allelopathic effects of two wind breakers Eucalyptus camaldulensis and E.gomphocephala on germination and growth of barley using aqueous extracts of leaves at 0.5, 1, 5, and 10% concentrations for treatment of barley caryopsis in petri dishes incubated in growth chamber. Distilled water was used in the experiment as a control. Seed germination was recorded on daily basis for five days. After ten days measurements of root length, shoot length, fresh and dry weight of root and shoot were taken. With the exception of 0.5% E. gomphocephala extract effect on length and dry weight of barley root, all the tested extract concentrations for both eucalyptus species significantly decreased the percent and speed of germination, root and shoot length, fresh and dry weight of root and shoot of barley compared to the control. For both species the allelopathic effect was significantly increasing with the increase of the extract concentration. Although, higher allelopathic effect was shown by E. camaldulensis, the results indicating that both eucalyptus species should not be recommended as wind breakers for barley fields.

Keywords: allelopathy, eucalyptus, barley, Libya

Procedia PDF Downloads 341
882 Designing Sustainable Building Based on Iranian's Windmills

Authors: Negar Sartipzadeh

Abstract:

Energy-conscious design, which coordinates with the Earth ecological systems during its life cycle, has the least negative impact on the environment with the least waste of resources. Due to the increasing in world population as well as the consumption of fossil fuels that cause the production of greenhouse gasses and environmental pollution, mankind is looking for renewable and also sustainable energies. The Iranian native construction is a clear evidence of energy-aware designing. Our predecessors were forced to rely on the natural resources and sustainable energies as well as environmental issues which have been being considered in the recent world. One of these endless energies is wind energy. Iranian traditional architecture foundations is a appropriate model in solving the environmental crisis and the contemporary energy. What will come in this paper is an effort to recognition and introduction of the unique characteristics of the Iranian architecture in the application of aerodynamic and hydraulic energies derived from the wind, which are the most common and major type of using sustainable energies in the traditional architecture of Iran. Therefore, the recent research attempts to offer a hybrid system suggestions for application in new constructions designing in a region such as Nashtifan, which has potential through reviewing windmills and how they deal with sustainable energy sources, as a model of Iranian native construction.

Keywords: renewable energy, sustainable building, windmill, Iranian architecture

Procedia PDF Downloads 412
881 Flow Control Optimisation Using Vortex Generators in Turbine Blade

Authors: J. Karthik, G. Vinayagamurthy

Abstract:

Aerodynamic flow control is achieved by interaction of flowing medium with corresponding structure so that its natural flow state is disturbed to delay the transition point. This paper explains the aerodynamic effect and optimized design of Vortex Generators on the turbine blade to achieve maximum flow control. The airfoil is chosen from NREL [National Renewable Energy Laboratory] S-series airfoil as they are characterized with good lift characteristics and lower noise. Vortex generators typically chosen are Ogival, Rectangular, Triangular and Tapered Fin shapes attached near leading edge. Vortex generators are typically distributed from the primary to tip of the blade section. The design wind speed is taken as 6m/s and the computational analysis is executed. The blade surface is simulated using k- ɛ SST model and results are compared with X-FOIL results. The computational results are validated using Wind Tunnel Testing of the blade corresponding to the design speed. The effect of Vortex generators on the flow characteristics is studied from the results of analysis. By comparing the computational and test results of all shapes of Vortex generators; the optimized design is achieved for effective flow control corresponding to the blade.

Keywords: flow control, vortex generators, design optimisation, CFD

Procedia PDF Downloads 395
880 Efficiency Improvement of Ternary Nanofluid Within a Solar Photovoltaic Unit Combined with Thermoelectric Considering Environmental Analysis

Authors: Mohsen Sheikholeslami, Zahra Khalili, Ladan Momayez

Abstract:

Impacts of environmental parameters and dust deposition on the efficiency of solar panel have been scrutinized in this article. To gain thermal output, trapezoidal cooling channel has been attached in the bottom of the panel incorporating ternary nanofluid. To produce working fluid, water has been mixed with Fe₃O₄-TiO₂-GO nanoparticles. Also, the arrangement of fins has been considered to grow the cooling rate of the silicon layer. The existence of a thermoelectric layer above the cooling channel leads to higher electrical output. Efficacy of ambient temperature (Ta), speed of wind (V𝓌ᵢₙ𝒹) and inlet temperature (Tᵢₙ) and velocity (Vin) of ternary nanofluid on performance of PVT has been assessed. As Tin increases, electrical efficiency declines about 3.63%. Increase of ambient temperature makes thermal performance enhance about 33.46%. The PVT efficiency decreases about 13.14% and 16.6% with augment of wind speed and dust deposition. CO₂ mitigation has been reduced about 15.49% in presence of dust while it increases about 17.38% with growth of ambient temperature.

Keywords: photovoltaic system, CO₂ mitigation, ternary nanofluid, thermoelectric generator, environmental parameters, trapezoidal cooling channel

Procedia PDF Downloads 71
879 Finite Element Simulation of an Offshore Monopile Subjected to Cyclic Loading Using Hypoplasticity with Intergranular Strain Anisotropy (ISA) for the Soil

Authors: William Fuentes, Melany Gil

Abstract:

Numerical simulations of offshore wind turbines (OWTs) in shallow waters demand sophisticated models considering the cyclic nature of the environmental loads. For the case of an OWT founded on sands, rapid loading may cause a reduction of the effective stress of the soil surrounding the structure. This eventually leads to its settlement, tilting, or other issues affecting its serviceability. In this work, a 3D FE model of an OWT founded on sand is constructed and analyzed. Cyclic loading with different histories is applied at certain points of the tower to simulate some environmental forces. The mechanical behavior of the soil is simulated through the recently proposed ISA-hypoplastic model for sands. The Intergranular Strain Anisotropy ISA can be interpreted as an enhancement of the intergranular strain theory, often used to extend hypoplastic formulations for the simulation of cyclic loading. In contrast to previous formulations, the proposed constitutive model introduces an elastic range for small strain amplitudes, includes the cyclic mobility effect and is able to capture the cyclic behavior of sands under a larger number of cycles. The model performance is carefully evaluated on the FE dynamic analysis of the OWT.

Keywords: offshore wind turbine, monopile, ISA, hypoplasticity

Procedia PDF Downloads 237
878 Experimental Investigation of S822 and S823 Wind Turbine Airfoils Wake

Authors: Amir B. Khoshnevis, Morteza Mirhosseini

Abstract:

The paper deals with a sub-part of an extensive research program on the wake survey method in various Reynolds numbers and angles of attack. This research experimentally investigates the wake flow characteristics behind S823 and S822 airfoils in which designed for small wind turbines. Velocity measurements determined by using hot-wire anemometer. Data acquired in the wake of the airfoil at locations(c is the chord length): 0.01c - 3c. Reynolds number increased due to increase of free stream velocity. Results showed that mean velocity profiles depend on the angle of attack and location of data collections. Data acquired at the low Reynolds numbers (smaller than 10^5). Effects of Reynolds numbers on the mean velocity profiles are more significant in near locations the trailing edge and these effects decrease by taking distance from trailing edge toward downstream. Mean velocity profiles region increased by increasing the angle of attack, except for 7°, and also the maximum velocity deficit (velocity defect) increased. The difference of mean velocity in and out of the wake decreased by taking distance from trailing edge, and mean velocity profile become wider and more uniform.

Keywords: angle of attack, Reynolds number, velocity deficit, separation

Procedia PDF Downloads 367
877 Vibration control of Bridge Super structure using Tuned Mass Damper (TMD)

Authors: Tauhidur Rahman, Dhrubajyoti Thakuria

Abstract:

In this article, vibration caused by earthquake excitation, wind load and the high-speed vehicle in the superstructure has been studied. An attempt has been made to control these vibrations using passive Tuned Mass Dampers (TMD). Tuned mass damper consists of a mass, spring, and viscous damper which dissipates the vibration energy of the primary structure at the damper of the TMD. In the present paper, the concrete box girder bridge superstructure is considered and is modeled using MIDAS software. The bridge is modeled as Euler-Bernoulli beam to study the responses imposed by high-speed vehicle, earthquake excitation and wind load. In the present study, comparative study for the responses has been done considering different velocities of the train. The results obtained in this study are based on Indian standard loadings specified in Indian Railways Board (Bridge Rules). A comparative study has been done for the responses of the high-speed vehicle with and without Tuned Mass Dampers. The results indicate that there is a significant reduction in displacement and acceleration in the bridge superstructure when Tuned Mass Damper is used.

Keywords: bridge superstructure, high speed vehicle, tuned mass damper, TMD, vibration control

Procedia PDF Downloads 396
876 Phospholipid Cationic and Zwitterionic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Microalgae

Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres

Abstract:

Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro-fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect mammalian eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge or a zwitterionic polar-head group to prevent microfouling with marine bacteria. Toxicity of these compounds was also studied in order to identify the most promising compounds that inhibit biofilm development and show low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.

Keywords: amphiphilic phospholipids, biofilm, marine fouling, non-toxique assays

Procedia PDF Downloads 129
875 Evaluation of Alternative Energy Sources for Energy Production in Turkey

Authors: Naci Büyükkaracığan, Murat Ahmet Ökmen

Abstract:

In parallel with the population growth rate, the need of human being for energy sources in the world is gradually increasing incessant. The addition of this situation that demand for energy will be busier in the future, industrialization, the rise in living standards and technological developments, especially in developing countries. Alternative energy sources have aroused interest due to reasons such as serious environmental issues that were caused by fossil energy sources, potentially decreasing reserves, different social, political and economic problems caused by dependency on source providing countries and price instability. Especially in developed countries as European countries and also U.S.A particularly, alternative energy sources such as wind, geothermal, solar and biomass energy, hydrolic and hydrogen have been utilized in different forms, especially in electricity production. It includes a review of technical and environmental factors for energy sources that are potential replacements for fossil fuels and examines their fitness to supply the energy for a high standard of living on a worldwide basis. Despite all developments, fossil energy sources have been overwhelmingly used all around the world in primary energy sources consumption and they will outnumber other energy sources in the short term. Today, parallel to population growth and economy in Turkey, energy sources consumption is increasingly continuing. On one side, Turkey, currently 80% dependent on energy providing countries, has been heavily conducting fossil energy sources raw material quest within its own borders in order to lower the percentage, and the other side, there have been many researches for exploring potential of alternative energy sources and utilization. This case will lead to both a decrease in foreign energy dependency and a variety of energy sources. This study showed the current energy potential of Turkey and presents historical development of these energy sources and their share in electricity production. The research also seeked for answers to arguments that if the potential can be sufficient in the future. As a result of this study, it was concluded that observed geothermal energy, particularly active tectonic regions of Turkey, to have an alternative energy potential could be considered to be valuable on bass wind and solar energy.

Keywords: alternative energy sources, energy productions, hydroenergy, solar energy, wind energy

Procedia PDF Downloads 620
874 Utilization of Fins to Improve the Response of Pile under Torsional Loads

Authors: Waseim Ragab Azzam Ahmed Mohamed Nasr, Aalaa Ibrahim Khater

Abstract:

Torsional loads from offshore wind turbines, waves, wind, earthquakes, ship collisions in the maritime environment, and electrical transmission towers might affect the pile foundations. Torsional loads can also be caused by the axial load from the sustaining structures. The paper introduces the finned pile, an alternative method of pile modification. The effects of torsional loads were investigated through a series of experimental tests aimed at improving the torsional capacity of a single pile in the sand (where sand was utilized in a state of medium density (Dr = 50%), with or without fins. In these tests, the fins' length, width, form, and number were varied to see how these attributes affected the maximum torsional capacity of the piles. We have noticed the torsion-rotation reaction. The findings demonstrated that the fins improve the maximum torsional capacity of the piles. It was demonstrated that a length of 0.6 times the embedded pile's length and a width equivalent to the pile's diameter constitute the optimal fin geometry. For the conventional pile and the finned pile, the maximum torsional capacities were determined to be 4.12 N.m. and 7.36 N.m., respectively. When subjected to torsional loads, the fins' presence enhanced the piles' maximum torsional capacity by almost 79%.

Keywords: clean sand, finned piles, model tests, torsional load

Procedia PDF Downloads 52
873 Growth and Yield Potential of Quinoa genotypes on Salt Affected Soils

Authors: Shahzad M. A. Basra, Shahid Iqbal, Irfan Afzal, Hafeez-ur-Rehman

Abstract:

Quinoa a facultative halophyte crop plant is a new introduction in Pakistan due to its superior nutritional profile and its abiotic stress tolerance, especially against salinity. Present study was conducted to explore halophytic behavior of quinoa. Four quinoa genotypes (A1, A2, A7 and A9) were evaluated against high salinity (control, 100, 200, 300 and 400 mM). Evaluation was made on the basis of ionic analysis (Na+, K+ and K+: Na+ ratio in shoot) and root- shoot fresh and dry weight at four leaf stage. Seedling growth i.e. fresh and dry weight of shoot and root increased by 100 mM salinity and then growth decreased gradually with increasing salinity level in all geno types. Mineral analysis indicated that A2 and A7 have more tolerant behavior having low Na+ and high K+ ¬concentration as compared to A1 and A9. Same geno types as above were also evaluated against high salinity (control, 10, 20, 30, and 40 dS m-1) in pot culture during 2012-13. It was found that increase in salinity up to 10 dS m-1 the plant height, stem diameter and yield related traits increased but decreased with further increase in salinity. Same trend was observed in ionic contents. Maximum grain yield was achieved by A7 (100 g plant-1) followed by A2 (82 g plant-1) at salinity level 10 dS m-1. Next phase was carried out through field settings by using salt tolerant geno types (A2 and A7) at Crop Physiology Research Area Farm (non saline soil as control)/ Proka Farm (salt affected with EC up to 15 dS m-1), University of Agriculture, Faisalabad and Soil Salinity Research Institute, Pindi Bhtiaan (SSRI) Farm (one normal as control and two salt affected fields with EC values up to 15 and 30 dS m-1) during 2013-14. Genotype A7 showed maximum growth and gave maximum yield (3200 kg ha-1) at Proka Farm which was statistically at par to the values of yield obtained on normal soils of Faisalabad. Geno type A7 also gave maximum yield 2800 kg ha-1 on normal field of Pindi bhtiaan followed by as obtained (2340) on salt problem field (15 dS m-1) of same location.

Keywords: quinoa, salinity, halophyte, genotype

Procedia PDF Downloads 562
872 Modeling of Carbon Monoxide Distribution under the Sky-Train Stations

Authors: Suranath Chomcheon, Nathnarong Khajohnsaksumeth, Benchawan Wiwatanapataphee

Abstract:

Carbon monoxide is one of the harmful gases which have colorless, odorless, and tasteless. Too much carbon monoxide taken into the human body causes the reduction of oxygen transportation within human body cells leading to many symptoms including headache, nausea, vomiting, loss of consciousness, and death. Carbon monoxide is considered as one of the air pollution indicators. It is mainly released as soot from the exhaust pipe of the incomplete combustion of the vehicle engine. Nowadays, the increase in vehicle usage and the slowly moving of the vehicle struck by the traffic jam has created a large amount of carbon monoxide, which accumulated in the street canyon area. In this research, we study the effect of parameters such as wind speed and aspect ratio of the height building affecting the ventilation. We consider the model of the pollutant under the Bangkok Transit System (BTS) stations in a two-dimensional geometrical domain. The convention-diffusion equation and Reynolds-averaged Navier-stokes equation is used to describe the concentration and the turbulent flow of carbon monoxide. The finite element method is applied to obtain the numerical result. The result shows that our model can describe the dispersion patterns of carbon monoxide for different wind speeds.

Keywords: air pollution, carbon monoxide, finite element, street canyon

Procedia PDF Downloads 118
871 A Computational Fluid Dynamics Study of Turbulence Flow and Parameterization of an Aerofoil

Authors: Mohamed Z. M. Duwahir, Shian Gao

Abstract:

The main objective of this project was to introduce and test a new scheme for parameterization of subsonic aerofoil, using a function called Shape Function. Python programming was used to create a user interactive environment for geometry generation of aerofoil using NACA and Shape Function methodologies. Two aerofoils, NACA 0012 and NACA 1412, were generated using this function. Testing the accuracy of the Shape Function scheme was done by Linear Square Fitting using Python and CFD modelling the aerofoil in Fluent. NACA 0012 (symmetrical aerofoil) was better approximated using Shape Function than NACA 1412 (cambered aerofoil). The second part of the project involved comparing two turbulent models, k-ε and Spalart-Allmaras (SA), in Fluent by modelling the aerofoils NACA 0012 and NACA 1412 in conditions of Reynolds number of 3 × 106. It was shown that SA modelling is better for aerodynamic purpose. The experimental coefficient of lift (Cl) and coefficient of drag (Cd) were compared with empirical wind tunnel data for a range of angle of attack (AOA). As a further step, this project involved drawing and meshing 3D wings in Gambit. The 3D wing flow was solved and compared with 2D aerofoil section experimental results and wind tunnel data.

Keywords: CFD simulation, shape function, turbulent modelling, aerofoil

Procedia PDF Downloads 347
870 Optimizing the Insertion of Renewables in the Colombian Power Sector

Authors: Felipe Henao, Yeny Rodriguez, Juan P. Viteri, Isaac Dyner

Abstract:

Colombia is rich in natural resources and greatly focuses on the exploitation of water for hydroelectricity purposes. Alternative cleaner energy sources, such as solar and wind power, have been largely neglected despite: a) its abundance, b) the complementarities between hydro, solar and wind power, and c) the cost competitiveness of renewable technologies. The current limited mix of energy sources creates considerable weaknesses for the system, particularly when facing extreme dry weather conditions, such as El Niño event. In the past, El Niño have exposed the truly consequences of a system heavily dependent on hydropower, i.e. loss of power supply, high energy production costs, and loss of overall competitiveness for the country. Nonetheless, it is expected that the participation of hydroelectricity will increase in the near future. In this context, this paper proposes a stochastic lineal programming model to optimize the insertion of renewable energy systems (RES) into the Colombian electricity sector. The model considers cost-based generation competition between traditional energy technologies and alternative RES. This work evaluates the financial, environmental, and technical implications of different combinations of technologies. Various scenarios regarding the future evolution of costs of the technologies are considered to conduct sensitivity analysis of the solutions – to assess the extent of the participation of the RES in the Colombian power sector. Optimization results indicate that, even in the worst case scenario, where costs remain constant, the Colombian power sector should diversify its portfolio of technologies and invest strongly in solar and wind power technologies. The diversification through RES will contribute to make the system less vulnerable to extreme weather conditions, reduce the overall system costs, cut CO2 emissions, and decrease the chances of having national blackout events in the future. In contrast, the business as usual scenario indicates that the system will turn more costly and less reliable.

Keywords: energy policy and planning, stochastic programming, sustainable development, water management

Procedia PDF Downloads 278
869 Supramolecular Approach towards Novel Applications: Battery, Band Gap and Gas Separation

Authors: Sudhakara Naidu Neppalli, Tejas S. Bhosale

Abstract:

It is well known that the block copolymer (BCP) can form a complex molecule, through non-covalent bonds such as hydrogen bond, ionic bond and co-ordination bond, with low molecular weight compound as well as with macromolecules, which provide vast applications, includes the alteration of morphology and properties of polymers. Hence we covered the research that, the importance of non-covalent bonds in increasing the non-favourable segmental interactions of the blocks was well examined by attaching and detaching the bonds between the BCP and additive. We also monitored the phase transition of block copolymer and effective interaction parameter (χeff) for Li-doped polymers using small angle x-ray scattering and transmission electron microscopy. The effective interaction parameter (χeff) between two block components was evaluated using Leibler theory based on the incompressible random phase approximation (RPA) for ionized BCP in a disordered state. Furthermore, conductivity experiments demonstrate that the ionic conductivity in the samples quenched from the different structures is morphology-independent, while it increases with increasing ion salt concentration. Morphological transitions, interaction parameter, and thermal stability also examined in quarternized block copolymer. D-spacing was used to estimate effective interaction parameter (χeff) of block components in weak and strong segregation regimes of ordered phase. Metal-containing polymer has been the topic of great attention in recent years due to their wide range of potential application. Similarly, metal- ligand complex is used as a supramolecular linker between the polymers giving rise to a ‘Metallo-Supramolecule assembly. More precisely, functionalized polymer end capped with 2, 2’:6’, 2”- terpyridine ligand can be selectively complexed with wide range of transition metal ions and then subsequently attached to other terpyridine terminated polymer block. In compare to other supramolecular assembly, BCP involved metallo-supramolecule assembly offers vast applications such as optical activity, electrical conductivity, luminescence and photo refractivity.

Keywords: band gap, block copolymer, conductivity, interaction parameter, phase transition

Procedia PDF Downloads 160
868 Techno-Economic Analysis of Offshore Hybrid Energy Systems with Hydrogen Production

Authors: Anna Crivellari, Valerio Cozzani

Abstract:

Even though most of the electricity produced in the entire world still comes from fossil fuels, new policies are being implemented in order to promote a more sustainable use of energy sources. Offshore renewable resources have become increasingly attractive thanks to the huge entity of power potentially obtained. However, the intermittent nature of renewables often limits the capacity of the systems and creates mismatches between supply and demand. Hydrogen is foreseen to be a promising vector to store and transport large amounts of excess renewable power by using existing oil and gas infrastructure. In this work, an offshore hybrid energy system integrating wind energy conversion with hydrogen production was conceptually defined and applied to offshore gas platforms. A techno-economic analysis was performed by considering two different locations for the installation of the innovative power system, i.e., the North Sea and the Adriatic Sea. The water depth, the distance of the platform from the onshore gas grid, the hydrogen selling price and the green financial incentive were some of the main factors taken into account in the comparison. The results indicated that the use of well-defined indicators allows to capture specifically different cost and revenue features of the analyzed systems, as well as to evaluate their competitiveness in the actual and future energy market.

Keywords: cost analysis, energy efficiency assessment, hydrogen production, offshore wind energy

Procedia PDF Downloads 115