Search results for: input mode
3425 Trusting Smart Speakers: Analysing the Different Levels of Trust between Technologies
Authors: Alec Wells, Aminu Bello Usman, Justin McKeown
Abstract:
The growing usage of smart speakers raises many privacy and trust concerns compared to other technologies such as smart phones and computers. In this study, a proxy measure of trust is used to gauge users’ opinions on three different technologies based on an empirical study, and to understand which technology most people are most likely to trust. The collected data were analysed using the Kruskal-Wallis H test to determine the statistical differences between the users’ trust level of the three technologies: smart speaker, computer and smart phone. The findings of the study revealed that despite the wide acceptance, ease of use and reputation of smart speakers, people find it difficult to trust smart speakers with their sensitive information via the Direct Voice Input (DVI) and would prefer to use a keyboard or touchscreen offered by computers and smart phones. Findings from this study can inform future work on users’ trust in technology based on perceived ease of use, reputation, perceived credibility and risk of using technologies via DVI.Keywords: direct voice input, risk, security, technology, trust
Procedia PDF Downloads 1913424 The Scattering in Flexible Reactive Silencer Containing Rigid Partitioning
Authors: Muhammad Afzal, Junaid Uzair Satti
Abstract:
The noise emanating from the ducting of heating, ventilation, and air-conditioning (HVAC) system is often attenuated by using the dissipative silencers. Such devices work well for the high-frequency noise but are less operative in the low-frequency noise range. The present study analyzes a reactive silencer comprising expansion chamber of the elastic membranes partitioned symmetrically by a rigid plate. The Mode-Matching scheme has been developed to solve the governing boundary value problem. The orthogonal and non-orthogonal duct modes of acoustic pressures and normal velocities are matched at interfaces. It enables to recast the differential system into the infinite system of linear algebraic of equations, which is, then truncated and inverted for the solution. The truncated solution is validated through the conservation of energy and reconstruction of matching conditions. The results for scattering energy flux and transmission loss are shown against frequency and the dimensions of the chamber. It is seen that the stop-band of the silencer can be shifted to the broadband by changing the dimensions of the chamber and the properties of the elastic membranes. The modeled reactive silencer is more efficient in low frequency regime where the passive devices are least effective.Keywords: acoustic scattering, elastic membranes mode-matching, reactive silencer
Procedia PDF Downloads 1463423 Comparison of Accumulated Stress Based Pore Pressure Model and Plasticity Model in 1D Site Response Analysis
Authors: Saeedullah J. Mandokhail, Shamsher Sadiq, Meer H. Khan
Abstract:
This paper presents the comparison of excess pore water pressure ratio (ru) predicted by using accumulated stress based pore pressure model and plasticity model. One dimensional effective stress site response analyses were performed on a 30 m deep sand column (consists of a liquefiable layer in between non-liquefiable layers) using accumulated stress based pore pressure model in Deepsoil and PDMY2 (PressureDependentMultiYield02) model in Opensees. Three Input motions with different peak ground acceleration (PGA) levels of 0.357 g, 0.124 g, and 0.11 g were used in this study. The developed excess pore pressure ratio predicted by the above two models were compared and analyzed along the depth. The time history of the ru at mid of the liquefiable layer and non-liquefiable layer were also compared. The comparisons show that the two models predict mostly similar ru values. The predicted ru is also consistent with the PGA level of the input motions.Keywords: effective stress, excess pore pressure ratio, pore pressure model, site response analysis
Procedia PDF Downloads 2273422 Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems
Authors: Yas Barzegaar, Atrin Barzegar
Abstract:
The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert’s opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers.Keywords: failure modes, fuzzy rules, fuzzy inference system, risk assessment
Procedia PDF Downloads 1023421 A Thermo-mechanical Finite Element Model to Predict Thermal Cycles and Residual Stresses in Directed Energy Deposition Technology
Authors: Edison A. Bonifaz
Abstract:
In this work, a numerical procedure is proposed to design dense multi-material structures using the Directed Energy Deposition (DED) process. A thermo-mechanical finite element model to predict thermal cycles and residual stresses is presented. A numerical layer build-up procedure coupled with a moving heat flux was constructed to minimize strains and residual stresses that result in the multi-layer deposition of an AISI 316 austenitic steel on an AISI 304 austenitic steel substrate. To simulate the DED process, the automated interface of the ABAQUS AM module was used to define element activation and heat input event data as a function of time and position. Of this manner, the construction of ABAQUS user-defined subroutines was not necessary. Thermal cycles and thermally induced stresses created during the multi-layer deposition metal AM pool crystallization were predicted and validated. Results were analyzed in three independent metal layers of three different experiments. The one-way heat and material deposition toolpath used in the analysis was created with a MatLab path script. An optimal combination of feedstock and heat input printing parameters suitable for fabricating multi-material dense structures in the directed energy deposition metal AM process was established. At constant power, it can be concluded that the lower the heat input, the lower the peak temperatures and residual stresses. It means that from a design point of view, the one-way heat and material deposition processing toolpath with the higher welding speed should be selected.Keywords: event series, thermal cycles, residual stresses, multi-pass welding, abaqus am modeler
Procedia PDF Downloads 693420 In-silico Analysis of Plumbagin against Cancer Receptors
Authors: Arpita Roy, Navneeta Bharadvaja
Abstract:
Cancer is an uncontrolled growth of abnormal cells in the body. It is one of the most serious diseases on which extensive research work has been going on all over the world. Structure-based drug designing is a computational approach which helps in the identification of potential leads that can be used for the development of a drug. Plumbagin is a naphthoquinone derivative from Plumbago zeylanica roots and belongs to one of the largest and diverse groups of plant metabolites. Anticancer and antiproliferative activities of plumbagin have been observed in animal models as well as in cell cultures. Plumbagin shows inhibitory effects on multiple cancer-signaling proteins; however, the binding mode and the molecular interactions have not yet been elucidated for most of these protein targets. In this investigation, an attempt to provide structural insights into the binding mode of plumbagin against four cancer receptors using molecular docking was performed. Plumbagin showed minimal energy against targeted cancer receptors, therefore suggested its stability and potential towards different cancers. The least binding energies of plumbagin with COX-2, TACE, and CDK6 are -5.39, -4.93, -and 4.81 kcal/mol, respectively. Comparison studies of plumbagin with different receptors showed that it is a promising compound for cancer treatment. It was also found that plumbagin obeys the Lipinski’s Rule of 5 and computed ADMET properties which showed drug likeliness and improved bioavailability. Since plumbagin is from a natural source, it has reduced side effects, and these results would be useful for cancer treatment.Keywords: cancer, receptor, plumbagin, docking
Procedia PDF Downloads 1433419 Auto-Tuning of CNC Parameters According to the Machining Mode Selection
Authors: Jenq-Shyong Chen, Ben-Fong Yu
Abstract:
CNC(computer numerical control) machining centers have been widely used for machining different metal components for various industries. For a specific CNC machine, its everyday job is assigned to cut different products with quite different attributes such as material type, workpiece weight, geometry, tooling, and cutting conditions. Theoretically, the dynamic characteristics of the CNC machine should be properly tuned match each machining job in order to get the optimal machining performance. However, most of the CNC machines are set with only a standard set of CNC parameters. In this study, we have developed an auto-tuning system which can automatically change the CNC parameters and in hence change the machine dynamic characteristics according to the selection of machining modes which are set by the mixed combination of three machine performance indexes: the HO (high surface quality) index, HP (high precision) index and HS (high speed) index. The acceleration, jerk, corner error tolerance, oscillation and dynamic bandwidth of machine’s feed axes have been changed according to the selection of the machine performance indexes. The proposed auto-tuning system of the CNC parameters has been implemented on a PC-based CNC controller and a three-axis machining center. The measured experimental result have shown the promising of our proposed auto-tuning system.Keywords: auto-tuning, CNC parameters, machining mode, high speed, high accuracy, high surface quality
Procedia PDF Downloads 3803418 Support Vector Machine Based Retinal Therapeutic for Glaucoma Using Machine Learning Algorithm
Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Yang Yung, Tracy Lin Huan
Abstract:
Glaucoma is a group of visual maladies represented by the scheduled optic nerve neuropathy; means to the increasing dwindling in vision ground, resulting in loss of sight. In this paper, a novel support vector machine based retinal therapeutic for glaucoma using machine learning algorithm is conservative. The algorithm has fitting pragmatism; subsequently sustained on correlation clustering mode, it visualizes perfect computations in the multi-dimensional space. Support vector clustering turns out to be comparable to the scale-space advance that investigates the cluster organization by means of a kernel density estimation of the likelihood distribution, where cluster midpoints are idiosyncratic by the neighborhood maxima of the concreteness. The predicted planning has 91% attainment rate on data set deterrent on a consolidation of 500 realistic images of resolute and glaucoma retina; therefore, the computational benefit of depending on the cluster overlapping system pedestal on machine learning algorithm has complete performance in glaucoma therapeutic.Keywords: machine learning algorithm, correlation clustering mode, cluster overlapping system, glaucoma, kernel density estimation, retinal therapeutic
Procedia PDF Downloads 2543417 A Novel Design in the Use of Planar Transformers for LDMOS Based Amplifiers in Bands II, III, DRM+, DVB-T and DAB+
Authors: Antonis Constantinides, Christos Yiallouras, Christakis Damianou
Abstract:
The coaxial transformer-coupled push-pull circuitry has been used widely in HF and VHF amplifiers for many decades without significant changes in the topology of the transformers. Basic changes over the years concerned the construction and turns ratio of the transformers as has been imposed upon the newer technologies active devices demands. The balun transmission line transformers applied in push-pull amplifiers enable input/output impedance transformation, but are mainly used to convert the balanced output into unbalanced and the input unbalanced into balanced. A simple and affordable alternative solution over the traditional coaxial transformer is the coreless planar balun. A key advantage over the traditional approach lies in the high specifications repeatability; simplifying the amplifier construction requirements as the planar balun constitutes an integrated part of the PCB copper layout. This paper presents the performance analysis of a planar LDMOS MRFE6VP5600 Push-Pull amplifier that enables robust operation in Band III, DVB-T, DVB-T2 standards but functions equally well in Band II, for DRM+ new generation transmitters.Keywords: amplifier, balun, complex impedance, LDMOS, planar-transformers
Procedia PDF Downloads 4403416 Miniaturization of Germanium Photo-Detectors by Using Micro-Disk Resonator
Authors: Haifeng Zhou, Tsungyang Liow, Xiaoguang Tu, Eujin Lim, Chao Li, Junfeng Song, Xianshu Luo, Ying Huang, Lianxi Jia, Lianwee Luo, Kim Dowon, Qing Fang, Mingbin Yu, Guoqiang Lo
Abstract:
Several Germanium photodetectors (PD) built on silicon micro-disks are fabricated on the standard Si photonics multiple project wafers (MPW) and demonstrated to exhibit very low dark current, satisfactory operation bandwidth and moderate responsivity. Among them, a vertical p-i-n Ge PD based on a 2.0 µm-radius micro-disk has a dark current of as low as 35 nA, compared to a conventional PD current of 1 µA with an area of 100 µm2. The operation bandwidth is around 15 GHz at a reverse bias of 1V. The responsivity is about 0.6 A/W. Microdisk is a striking planar structure in integrated optics to enhance light-matter interaction and construct various photonics devices. The disk geometries feature in strongly and circularly confining light into an ultra-small volume in the form of whispering gallery modes. A laser may benefit from a microdisk in which a single mode overlaps the gain materials both spatially and spectrally. Compared to microrings, micro-disk removes the inner boundaries to enable even better compactness, which also makes it very suitable for some scenarios that electrical connections are needed. For example, an ultra-low power (≈ fJ) athermal Si modulator has been demonstrated with a bit rate of 25Gbit/s by confining both photons and electrically-driven carriers into a microscale volume.In this work, we study Si-based PDs with Ge selectively grown on a microdisk with the radius of a few microns. The unique feature of using microdisk for Ge photodetector is that mode selection is not important. In the applications of laser or other passive optical components, microdisk must be designed very carefully to excite the fundamental mode in a microdisk in that essentially the microdisk usually supports many higher order modes in the radial directions. However, for detector applications, this is not an issue because the local light absorption is mode insensitive. Light power carried by all modes are expected to be converted into photo-current. Another benefit of using microdisk is that the power circulation inside avoids any introduction of the reflector. A complete simulation model with all involved materials taken into account is established to study the promise of microdisk structures for photodetector by using finite difference time domain (FDTD) method. By viewing from the current preliminary data, the directions to further improve the device performance are also discussed.Keywords: integrated optical devices, silicon photonics, micro-resonator, photodetectors
Procedia PDF Downloads 4073415 Numerical Solution of Transient Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates
Authors: Djalal Hamed
Abstract:
The aim of this paper is to perform, by mean of the finite volume method, a numerical solution of the transient natural convection in a narrow rectangular channel between two vertical parallel Material Testing Reactor (MTR)-type fuel plates, imposed under a heat flux with a cosine shape to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not reach a specific safety limits (90 °C). For this purpose, a computer program is developed to determine the principal parameters related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor core power. Throughout the obtained results, we noticed that the core power should not reach 400 kW, to ensure a safe passive residual heat removing from the nuclear core by the upward natural convection cooling mode.Keywords: buoyancy force, friction force, finite volume method, transient natural convection
Procedia PDF Downloads 1963414 A Soft System Approach to Explore Ill-Defined Issues in Distance Education System - A Case of Saudi Arabia
Authors: Sulafah Basahel
Abstract:
Nowadays, Higher Education Institutions (HEIs) around the world are attempting to utilize Information and Communication Technologies (ICTs) to enhance learning process and strategies of knowledge delivery for students through Distance Education (DE) system. Stakeholders in DE system face a complex situation of different ill-defined and related issues that influence decision making process. In this study system thinking as a body of knowledge is used to explore the emergent properties that produced from these connections between issues and could have either positive or negative outcomes for the DE development. Checkland Soft System Methodology (SSM) - Mode 2 is employed in a cultural context of Saudi Arabia for more knowledge acquisition purposes among multiple stakeholders in DE rather than solving problems to achieve an overall development of DE system. This paper will discuss some political, cultural issues and connections between them that impact on effectiveness of stakeholders’ activities and relations. This study will significantly contribute to both system thinking and education fields by leading decision makers in DE to reconsider future plans, strategies and right actions for more successful educational practices.Keywords: distance education, higher education institutions, ill-defined issues, soft system methodology-Mode 2
Procedia PDF Downloads 2703413 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks
Authors: S. Neelima, P. S. Subramanyam
Abstract:
The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)
Procedia PDF Downloads 4363412 A Contactless Capacitive Biosensor for Muscle Activity Measurement
Authors: Charn Loong Ng, Mamun Bin Ibne Reaz
Abstract:
As elderly population grows globally, the percentage of people diagnosed with musculoskeletal disorder (MSD) increase proportionally. Electromyography (EMG) is an important biosignal that contributes to MSD’s clinical diagnose and recovery process. Conventional conductive electrode has many disadvantages in the continuous EMG measurement application. This research has design a new surface EMG biosensor based on the parallel-plate capacitive coupling principle. The biosensor is developed by using a double-sided PCB with having one side of the PCB use to construct high input impedance circuitry while the other side of the copper (CU) plate function as biosignal sensing metal plate. The metal plate is insulated using kapton tape for contactless application. The result implicates that capacitive biosensor is capable to constantly capture EMG signal without having galvanic contact to human skin surface. However, there are noticeable noise couple into the measured signal. Post signal processing is needed in order to present a clean and significant EMG signal. A complete design of single ended, non-contact, high input impedance, front end EMG biosensor is presented in this paper.Keywords: contactless, capacitive, biosensor, electromyography
Procedia PDF Downloads 4503411 Improved Simultaneous Performance in the Time Domain and in the Frequency Domain
Authors: Azeddine Ghodbane, David Bensoussan, Maher Hammami
Abstract:
An innovative approach for controlling unstable and invertible systems has demonstrated superior performance compared to conventional controllers. It has been successfully applied to a levitation system and drone control. Simulations have yielded satisfactory performances when applied to a satellite antenna controller. This design method, based on sensitivity analysis, has also been extended to handle multivariable unstable and invertible systems that exhibit dominant diagonal characteristics at high frequencies, enabling decentralized control. Furthermore, this control method has been expanded to the realm of adaptive control. In this study, we introduce an alternative adaptive architecture that enhances both time and frequency performance, helpfully mitigating the effects of disturbances from the input plant and external disturbances affecting the output. To facilitate superior performance in both the time and frequency domains, we have developed user-friendly interactive design methods using the GeoGebra platform.Keywords: control theory, decentralized control, sensitivity theory, input-output stability theory, robust multivariable feedback control design
Procedia PDF Downloads 1133410 Damage Identification Using Experimental Modal Analysis
Authors: Niladri Sekhar Barma, Satish Dhandole
Abstract:
Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures.Keywords: damage identification, damage quantification, damage detection using modal analysis, structural damage identification
Procedia PDF Downloads 1163409 Biofouling Control during the Wastewater Treatment in Self-Support Carbon Nanotubes Membrane: Role of Low Voltage Electric Potential
Authors: Chidambaram Thamaraiselvan, Carlos Dosoretz
Abstract:
This work will explore the influence of low voltage electric field, both alternating (AC) and direct (DC) currents, on biofouling control to highly electrically conductive self-supporting carbon nanotubes (CNT) membranes at conditions which encourage bacterial growth. A mutant strain of Pseudomonas putida S12 was used a model bacterium. The antibiofouling studies were performed with flow-through mode connecting an electric circuit in resistive mode. Major emphasis was placed on AC due to its ability of repulsing and inactivating bacteria. The observations indicate that an AC potential >1500 mV, 1 kHz frequency, 100 Ω external resistance on ground side and pulse wave above the offset (+0.45) almost completely prevented attachment of bacteria (>98.5%) and bacterial inactivation (95.3±2.5%). Findings suggest that at the conditions applied, direct electron transfer might be dominant in a decrease of cell viability. AC resulted more effective than DC, both in terms of biofouling reduction compared to cathodic DC and in terms of cell inactivation compared to anodic DC. This electrically polarized CNT membranes offer a viable antibiofouling strategy to hinder biofouling and simplify membrane care during filtration.Keywords: bacterial attachment, biofouling control, low electric potential, water treatment
Procedia PDF Downloads 2703408 Rehabilitation Team after Brain Damages as Complex System Integrating Consciousness
Authors: Olga Maksakova
Abstract:
A work with unconscious patients after acute brain damages besides special knowledge and practical skills of all the participants requires a very specific organization. A lot of said about team approach in neurorehabilitation, usually as for outpatient mode. Rehabilitologists deal with fixed patient problems or deficits (motion, speech, cognitive or emotional disorder). Team-building means superficial paradigm of management psychology. Linear mode of teamwork fits casual relationships there. Cases with deep altered states of consciousness (vegetative states, coma, and confusion) require non-linear mode of teamwork: recovery of consciousness might not be the goal due to phenomenon uncertainty. Rehabilitation team as Semi-open Complex System includes the patient as a part. Patient's response pattern becomes formed not only with brain deficits but questions-stimuli, context, and inquiring person. Teamwork is sourcing of phenomenology knowledge of patient's processes as Third-person approach is replaced with Second- and after First-person approaches. Here is a chance for real-time change. Patient’s contacts with his own body and outward things create a basement for restoration of consciousness. The most important condition is systematic feedbacks to any minimal movement or vegetative signal of the patient. Up to now, recovery work with the most severe contingent is carried out in the mode of passive physical interventions, while an effective rehabilitation team should include specially trained psychologists and psychotherapists. It is they who are able to create a network of feedbacks with the patient and inter-professional ones building up the team. Characteristics of ‘Team-Patient’ system (TPS) are energy, entropy, and complexity. Impairment of consciousness as the absence of linear contact appears together with a loss of essential functions (low energy), vegetative-visceral fits (excessive energy and low order), motor agitation (excessive energy and excessive order), etc. Techniques of teamwork are different in these cases for resulting optimization of the system condition. Directed regulation of the system complexity is one of the recovery tools. Different signs of awareness appear as a result of system self-organization. Joint meetings are an important part of teamwork. Regular or event-related discussions form the language of inter-professional communication, as well as the patient's shared mental model. Analysis of complex communication process in TPS may be useful for creation of the general theory of consciousness.Keywords: rehabilitation team, urgent rehabilitation, severe brain damage, consciousness disorders, complex system theory
Procedia PDF Downloads 1463407 Interaction of Local, Flexural-Torsional, and Flexural Buckling in Cold-Formed Steel Lipped-Angle Compression Members
Authors: K. C. Kalam Aswathy, M. V. Anil Kumar
Abstract:
The possible failure modes of cold-formed steel (CFS) lipped angle (LA) compression members are yielding, local, flexural-torsional, or flexural buckling, and any possible interaction between these buckling modes. In general, the strength estimated by current design guidelines is conservative for these members when flexural-torsional buckling (FTB) is the first global buckling mode, as the post-buckling strength of this mode is not accounted for in the global buckling strength equations. The initial part of this paper reports the results of an experimental and numerical study of CFS-LA members undergoing independent FTB. The modifications are suggested to global buckling strength equations based on these results. Subsequently, the reduction in the ultimate strength from strength corresponding to independent buckling modes for LA members undergoing interaction between buckling modes such as local-flexural torsional, flexural-flexural torsional, local-flexural, and local-flexural torsional-flexural are studied systematically using finite element analysis results. A simple and more accurate interaction equation that accounts for the above interactions between buckling modes in CFS-LA compression members is proposed.Keywords: buckling interactions, cold-formed steel, flexural-torsional buckling, lipped angle
Procedia PDF Downloads 873406 Metamorphosis of Teaching-Learning During COVID-19 Crisis and Challenges of Education in India
Authors: Saroj Pandey
Abstract:
COVID-19, declared by the World Health Organization a pandemic (WHO,2020), has created an unprecedented crisis world over endangering the human survival itself. Corona induced lockdowns forced approximately 140 million students of 190 countries at various levels of education from preprimary to higher education to remain confined to their homes. In India, approximately 360 million students were affected by the forced shut down of schools due to the countrywide lockdown in March 2020 and resultant disruption of education. After the initial shock and anxiety the Indian polity and education system bounced back with a number of initiatives, and online education came as a major rescuer for the education system of the country. The distance and online mode of learning that was treated as the poor cousin of conventional mode and often criticized for its quality became the major crusader overnight changing the entire ecosystem of traditional teaching -leaning towards the virtual mode. Teachers who were averse to technology were forced to remodel their educational pedagogies and reorient themselves overnight to use various online platforms such as Zoom, Google meet, and other such platforms to reach the learners. This metamorphosis through ensured students was meaningfully engaged in their studies during the lockdown period but it has its own set of challenges. This paper deals with the government initiatives, and teachers' self-efforts to keep the channel of teaching learning on providing academic and socio emotional support to students during the most difficult period of their life as well as the digital divide between the rich and poor, rural and urban, and boys and girls in India and resultant challenges. It also provides an overview of few significant self-initiatives of teachers to reach their students during the crisis period, who did not have internet and smartphone facilities as well as the initiatives being taken at the government level to address the learning needs and mitigate the learning gaps of learners, bridge the digital divide, strategic planning and upskilling of teachers to overcome the effect of COVID-19 crisis.Keywords: COVID-19, online education, initiatives, challenges
Procedia PDF Downloads 1143405 A Multi-Regional Structural Path Analysis of Virtual Water Flows Caused by Coal Consumption in China
Authors: Cuiyang Feng, Xu Tang, Yi Jin
Abstract:
Coal is the most important primary energy source in China, which exerts a significant influence on the rapid economic growth. However, it makes the water resources to be a constraint on coal industry development, on account of the reverse geographical distribution between coal and water. To ease the pressure on water shortage, the ‘3 Red Lines’ water policies were announced by the Chinese government, and then ‘water for coal’ plan was added to that policies in 2013. This study utilized a structural path analysis (SPA) based on the multi-regional input-output table to quantify the virtual water flows caused by coal consumption in different stages. Results showed that the direct water input (the first stage) was the highest amount in all stages of coal consumption, accounting for approximately 30% of total virtual water content. Regional analysis demonstrated that virtual water trade alleviated the pressure on water use for coal consumption in water shortage areas, but the import of virtual water was not from the areas which are rich in water. Sectoral analysis indicated that the direct inputs from the sectors of ‘production and distribution of electric power and heat power’ and ‘Smelting and pressing of metals’ took up the major virtual water flows, while the sectors of ‘chemical industry’ and ‘manufacture of non-metallic mineral products’ importantly but indirectly consumed the water. With the population and economic growth in China, the water demand-and-supply gap in coal consumption would be more remarkable. In additional to water efficiency improvement measures, the central government should adjust the strategies of the virtual water trade to address local water scarcity issues. Water resource as the main constraints should be highly considered in coal policy to promote the sustainable development of the coal industry.Keywords: coal consumption, multi-regional input-output model, structural path analysis, virtual water
Procedia PDF Downloads 3023404 Tail-Binding Effect of Kinesin-1 Auto Inhibition Using Elastic Network Model
Authors: Hyun Joon Chang, Jae In Kim, Sungsoo Na
Abstract:
Kinesin-1 (hereafter called kinesin) is a molecular motor protein that moves cargos toward the end of microtubules using the energy of adenosine triphosphate (ATP) hydrolysis. When kinesin is inactive, its tail autoinhibits the motor chain in order to prevent from reacting with the ATP by cross-linking of the tail domain to the motor domains at two positions. However, the morphological study of kinesin during autoinhibition is yet remained obscured. In this study, we report the effect of the binding site of the tail domain using the normal mode analysis of the elastic network model on kinesin in the tail-free form and tail-bind form. Considering the relationship between the connectivity of conventional network model with respect to the cutoff length and the functionality of the binding site of the tail, we revaluated the network model to observe the key role of the tail domain in its structural aspect. Contingent on the existence of the tail domain, the results suggest the morphological stability of the motor domain. Furthermore, employing the results from normal mode analysis, we have determined the strain energy of the neck linker, an essential portion of the motor domain for ATP hydrolysis. The results of the neck linker also converge to the same indication, i.e. the morphological analysis of the motor domain.Keywords: elastic network model, Kinesin-1, autoinhibition
Procedia PDF Downloads 4553403 Investigation of a Natural Convection Heat Sink for LEDs Based on Micro Heat Pipe Array-Rectangular Channel
Authors: Wei Wang, Yaohua Zhao, Yanhua Diao
Abstract:
The exponential growth of the lighting industry has rendered traditional thermal technologies inadequate for addressing the thermal management challenges inherent to high-power light-emitting diode (LED) technology. To enhance the thermal management of LEDs, this study proposes a heat sink configuration that integrates a miniature heat pipe array based on phase change technology with rectangular channels. The thermal performance of the heat sink was evaluated through experimental testing, and the results demonstrated that when the input power was 100W, 150W, and 200W, the temperatures of the LED substrate were 47.64℃, 56.78℃, and 69.06℃, respectively. Additionally, the maximum temperature difference of the MHPA in the vertical direction was observed to be 0.32℃, 0.30℃, and 0.30℃, respectively. The results demonstrate that the heat sink not only effectively dissipates the heat generated by the LEDs, but also exhibits excellent temperature uniformity. In consideration of the experimental measurement outcomes, a corresponding numerical model was developed as part of this study. Following the model validation, the effect of the structural parameters of the heat sink on its heat dissipation efficacy was examined through the use of response surface methodology (RSM) analysis. The rectangular channel width, channel height, channel length, number of channel cross-sections, and channel cross-section spacing were selected as the input parameters, while the LED substrate temperature and the total mass of the heat sink were regarded as the response variables. Subsequently, the response was subjected to an analysis of variance (ANOVA), which yielded a regression model that predicted the response based on the input variables. This offers some direction for the design of the radiator.Keywords: light-emitting diodes, heat transfer, heat pipe, natural convection, response surface methodology
Procedia PDF Downloads 343402 The Analysis of Thermal Conductivity in Porcine Meat Due to Electricity by Finite Element Method
Authors: Orose Rugchati, Sarawut Wattanawongpitak
Abstract:
This research studied the analysis of the thermal conductivity and heat transfer in porcine meat due to the electric current flowing between the electrode plates in parallel. Hot-boned pork sample was prepared in 2*1*1 cubic centimeter. The finite element method with ANSYS workbench program was applied to simulate this heat transfer problem. In the thermal simulation, the input thermoelectric energy was calculated from measured current that flowing through the pork and the input voltage from the dc voltage source. The comparison of heat transfer in pork according to two voltage sources: DC voltage 30 volts and dc pulsed voltage 60 volts (pulse width 50 milliseconds and 50 % duty cycle) were demonstrated. From the result, it shown that the thermal conductivity trends to be steady at temperature 40C and 60C around 1.39 W/mC and 2.65 W/mC for dc voltage source 30 volts and dc pulsed voltage 60 volts, respectively. For temperature increased to 50C at 5 minutes, the appearance color of porcine meat at the exposer point has become to fade. This technique could be used for predicting of thermal conductivity caused by some meat’s characteristics.Keywords: thermal conductivity, porcine meat, electricity, finite element method
Procedia PDF Downloads 1403401 Climate Change and the Role of Foreign-Invested Enterprises
Authors: Xuemei Jiang, Kunfu Zhu, Shouyang Wang
Abstract:
In this paper, we selected China as a case and employ a time-series of unique input-output tables distinguishing firm ownership and processing exports, to evaluate the role of foreign-invested enterprises (FIEs) in China’s rapid carbon dioxide emission growth. The results suggested that FIEs contributed to 11.55% of the economic outputs’ growth in China between 1992-2010, but accounted for only 9.65% of the growth of carbon dioxide emissions. In relative term, until 2010 FIEs still emitted much less than Chinese-owned enterprises (COEs) when producing the same amount of outputs, although COEs experienced much faster technology upgrades. In an ideal scenario where we assume the final demands remain unchanged and COEs completely mirror the advanced technologies of FIEs, more than 2000 Mt of carbon dioxide emissions would be reduced for China in 2010. From a policy perspective, the widespread FIEs are very effective and efficient channel to encourage technology transfer from developed to developing countries.Keywords: carbon dioxide emissions, foreign-invested enterprises, technology transfer, input–output analysis, China
Procedia PDF Downloads 3983400 Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel
Authors: Sanjeev Kumar, S. K. Nath
Abstract:
Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300°C, 1150°C, 1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat temperatures of 30°C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900ºC. For parent steel, impact toughness value is 26.8J at -50°C in transverse direction.Keywords: HAZ simulation, mechanical properties, peak temperature, ship hull steel, weldability
Procedia PDF Downloads 5613399 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant
Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan
Abstract:
The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.Keywords: soft jar test, jar test, water treatment plant process, artificial neural network
Procedia PDF Downloads 1653398 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area
Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim
Abstract:
In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.Keywords: data estimation, link data, machine learning, road network
Procedia PDF Downloads 5103397 Optimal Economic Restructuring Aimed at an Optimal Increase in GDP Constrained by a Decrease in Energy Consumption and CO2 Emissions
Authors: Alexander Vaninsky
Abstract:
The objective of this paper is finding the way of economic restructuring - that is, change in the shares of sectoral gross outputs - resulting in the maximum possible increase in the gross domestic product (GDP) combined with decreases in energy consumption and CO2 emissions. It uses an input-output model for the GDP and factorial models for the energy consumption and CO2 emissions to determine the projection of the gradient of GDP, and the antigradients of the energy consumption and CO2 emissions, respectively, on a subspace formed by the structure-related variables. Since the gradient (antigradient) provides a direction of the steepest increase (decrease) of the objective function, and their projections retain this property for the functions' limitation to the subspace, each of the three directional vectors solves a particular problem of optimal structural change. In the next step, a type of factor analysis is applied to find a convex combination of the projected gradient and antigradients having maximal possible positive correlation with each of the three. This convex combination provides the desired direction of the structural change. The national economy of the United States is used as an example of applications.Keywords: economic restructuring, input-output analysis, divisia index, factorial decomposition, E3 models
Procedia PDF Downloads 3143396 Adaptive Backstepping Control of Uncertain Nonlinear Systems with Input Backlash
Authors: Ali Anwar, Hu Qinglei, Li Bo, Muhammad Taha Ali
Abstract:
In this paper a generic model of perturbed nonlinear systems is considered which is affected by hard backlash nonlinearity at the input. The nonlinearity is modelled by a dynamic differential equation which presents a more precise shape as compared to the existing linear models and is compatible with nonlinear design technique such as backstepping. Moreover, a novel backstepping based nonlinear control law is designed which explicitly incorporates a continuous-time adaptive backlash inverse model. It provides a significant flexibility to control engineers, whereby they can use the estimated backlash spacing value specified on actuators such as gears etc. in the adaptive Backlash Inverse model during the control design. It ensures not only global stability but also stringent transient performance with desired precision. It is also robust to external disturbances upon which the bounds are taken as unknown and traverses the backlash spacing efficiently with underestimated information about the actual value. The continuous-time backlash inverse model is distinguished in the sense that other models are either discrete-time or involve complex computations. Furthermore, numerical simulations are presented which not only illustrate the effectiveness of proposed control law but also its comparison with PID and other backstepping controllers.Keywords: adaptive control, hysteresis, backlash inverse, nonlinear system, robust control, backstepping
Procedia PDF Downloads 460